Spaces:
Runtime error
Runtime error
File size: 13,966 Bytes
9027584 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import os
# setup Grouded-Segment-Anything
os.system("python -m pip install -e 'Grounded-Segment-Anything/segment_anything'")
os.system("python -m pip install -e 'Grounded-Segment-Anything/GroundingDINO'")
os.system("pip install --upgrade diffusers[torch]")
os.system("pip install opencv-python pycocotools matplotlib onnxruntime onnx ipykernel")
# setup recognize-anything
os.system("python -m pip install -e 'recognize-anything'")
import random # noqa: E402
import cv2 # noqa: E402
import groundingdino.datasets.transforms as T # noqa: E402
import numpy as np # noqa: E402
import torch # noqa: E402
import torchvision # noqa: E402
import torchvision.transforms as TS # noqa: E402
from groundingdino.models import build_model # noqa: E402
from groundingdino.util.slconfig import SLConfig # noqa: E402
from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap # noqa: E402
from PIL import Image, ImageDraw, ImageFont # noqa: E402
from ram import inference_ram # noqa: E402
from ram import inference_tag2text # noqa: E402
from ram.models import ram # noqa: E402
from ram.models import tag2text_caption # noqa: E402
from segment_anything import SamPredictor, build_sam # noqa: E402
# args
config_file = "Grounded-Segment-Anything/GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py"
ram_checkpoint = "./ram_swin_large_14m.pth"
tag2text_checkpoint = "./tag2text_swin_14m.pth"
grounded_checkpoint = "./groundingdino_swint_ogc.pth"
sam_checkpoint = "./sam_vit_h_4b8939.pth"
box_threshold = 0.25
text_threshold = 0.2
iou_threshold = 0.5
device = "cpu"
def load_model(model_config_path, model_checkpoint_path, device):
args = SLConfig.fromfile(model_config_path)
args.device = device
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
load_res = model.load_state_dict(
clean_state_dict(checkpoint["model"]), strict=False)
print(load_res)
_ = model.eval()
return model
def get_grounding_output(model, image, caption, box_threshold, text_threshold, device="cpu"):
caption = caption.lower()
caption = caption.strip()
if not caption.endswith("."):
caption = caption + "."
model = model.to(device)
image = image.to(device)
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
logits.shape[0]
# filter output
logits_filt = logits.clone()
boxes_filt = boxes.clone()
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
logits_filt.shape[0]
# get phrase
tokenlizer = model.tokenizer
tokenized = tokenlizer(caption)
# build pred
pred_phrases = []
scores = []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(
logit > text_threshold, tokenized, tokenlizer)
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
scores.append(logit.max().item())
return boxes_filt, torch.Tensor(scores), pred_phrases
def draw_mask(mask, draw, random_color=False):
if random_color:
color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255), 153)
else:
color = (30, 144, 255, 153)
nonzero_coords = np.transpose(np.nonzero(mask))
for coord in nonzero_coords:
draw.point(coord[::-1], fill=color)
def draw_box(box, draw, label):
# random color
color = tuple(np.random.randint(0, 255, size=3).tolist())
line_width = min(5, max(25, 0.006*max(draw.im.size)))
draw.rectangle(((box[0], box[1]), (box[2], box[3])), outline=color, width=line_width)
if label:
font_path = os.path.join(
cv2.__path__[0], 'qt', 'fonts', 'DejaVuSans.ttf')
font_size = min(15, max(75, 0.02*max(draw.im.size)))
font = ImageFont.truetype(font_path, size=font_size)
if hasattr(font, "getbbox"):
bbox = draw.textbbox((box[0], box[1]), str(label), font)
else:
w, h = draw.textsize(str(label), font)
bbox = (box[0], box[1], w + box[0], box[1] + h)
draw.rectangle(bbox, fill=color)
draw.text((box[0], box[1]), str(label), fill="white", font=font)
draw.text((box[0], box[1]), label, font=font)
def inference(raw_image, specified_tags, tagging_model_type, tagging_model, grounding_dino_model, sam_model):
raw_image = raw_image.convert("RGB")
# run tagging model
normalize = TS.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
transform = TS.Compose([
TS.Resize((384, 384)),
TS.ToTensor(),
normalize
])
image = raw_image.resize((384, 384))
image = transform(image).unsqueeze(0).to(device)
# Currently ", " is better for detecting single tags
# while ". " is a little worse in some case
if tagging_model_type == "RAM":
res = inference_ram(image, tagging_model)
tags = res[0].strip(' ').replace(' ', ' ').replace(' |', ',')
tags_chinese = res[1].strip(' ').replace(' ', ' ').replace(' |', ',')
print("Tags: ", tags)
print("图像标签: ", tags_chinese)
else:
res = inference_tag2text(image, tagging_model, specified_tags)
tags = res[0].strip(' ').replace(' ', ' ').replace(' |', ',')
caption = res[2]
print(f"Tags: {tags}")
print(f"Caption: {caption}")
# run groundingDINO
transform = T.Compose([
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
image, _ = transform(raw_image, None) # 3, h, w
boxes_filt, scores, pred_phrases = get_grounding_output(
grounding_dino_model, image, tags, box_threshold, text_threshold, device=device
)
# run SAM
image = np.asarray(raw_image)
sam_model.set_image(image)
size = raw_image.size
H, W = size[1], size[0]
for i in range(boxes_filt.size(0)):
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
boxes_filt[i][2:] += boxes_filt[i][:2]
boxes_filt = boxes_filt.cpu()
# use NMS to handle overlapped boxes
nms_idx = torchvision.ops.nms(
boxes_filt, scores, iou_threshold).numpy().tolist()
boxes_filt = boxes_filt[nms_idx]
pred_phrases = [pred_phrases[idx] for idx in nms_idx]
transformed_boxes = sam_model.transform.apply_boxes_torch(
boxes_filt, image.shape[:2]).to(device)
masks, _, _ = sam_model.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes.to(device),
multimask_output=False,
)
# draw output image
mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0))
mask_draw = ImageDraw.Draw(mask_image)
for mask in masks:
draw_mask(mask[0].cpu().numpy(), mask_draw, random_color=True)
image_draw = ImageDraw.Draw(raw_image)
for box, label in zip(boxes_filt, pred_phrases):
draw_box(box, image_draw, label)
out_image = raw_image.convert('RGBA')
out_image.alpha_composite(mask_image)
# return
if tagging_model_type == "RAM":
return tags, tags_chinese, out_image
else:
return tags, caption, out_image
if __name__ == "__main__":
import gradio as gr
# load RAM
ram_model = ram(pretrained=ram_checkpoint, image_size=384, vit='swin_l')
ram_model.eval()
ram_model = ram_model.to(device)
# load Tag2Text
delete_tag_index = [] # filter out attributes and action categories which are difficult to grounding
for i in range(3012, 3429):
delete_tag_index.append(i)
tag2text_model = tag2text_caption(pretrained=tag2text_checkpoint,
image_size=384,
vit='swin_b',
delete_tag_index=delete_tag_index)
tag2text_model.threshold = 0.64 # we reduce the threshold to obtain more tags
tag2text_model.eval()
tag2text_model = tag2text_model.to(device)
# load groundingDINO
grounding_dino_model = load_model(config_file, grounded_checkpoint, device=device)
# load SAM
sam_model = SamPredictor(build_sam(checkpoint=sam_checkpoint).to(device))
# build GUI
def build_gui():
description = """
<center><strong><font size='10'>Recognize Anything Model + Grounded-SAM</font></strong></center>
<br>
Welcome to the RAM/Tag2Text + Grounded-SAM demo! <br><br>
<li>
<b>Recognize Anything Model + Grounded-SAM:</b> Upload your image to get the <b>English and Chinese tags</b> (by RAM) and <b>masks and boxes</b> (by Grounded-SAM)!
</li>
<li>
<b>Tag2Text Model + Grounded-SAM:</b> Upload your image to get the <b>tags and caption</b> (by Tag2Text) and <b>masks and boxes</b> (by Grounded-SAM)!
(Optional: Specify tags to get the corresponding caption.)
</li>
""" # noqa
article = """
<p style='text-align: center'>
RAM and Tag2Text are trained on open-source datasets, and we are persisting in refining and iterating upon it.<br/>
Grounded-SAM is a combination of Grounding DINO and SAM aming to detect and segment anything with text inputs.<br/>
<a href='https://recognize-anything.github.io/' target='_blank'>Recognize Anything: A Strong Image Tagging Model</a>
|
<a href='https://https://tag2text.github.io/' target='_blank'>Tag2Text: Guiding Language-Image Model via Image Tagging</a>
|
<a href='https://github.com/IDEA-Research/Grounded-Segment-Anything' target='_blank'>Grounded-Segment-Anything</a>
</p>
""" # noqa
def inference_with_ram(img):
return inference(img, None, "RAM", ram_model, grounding_dino_model, sam_model)
def inference_with_t2t(img, input_tags):
return inference(img, input_tags, "Tag2Text", tag2text_model, grounding_dino_model, sam_model)
with gr.Blocks(title="Recognize Anything Model") as demo:
###############
# components
###############
gr.HTML(description)
with gr.Tab(label="Recognize Anything Model"):
with gr.Row():
with gr.Column():
ram_in_img = gr.Image(type="pil")
with gr.Row():
ram_btn_run = gr.Button(value="Run")
ram_btn_clear = gr.Button(value="Clear")
with gr.Column():
ram_out_img = gr.Image(type="pil")
ram_out_tag = gr.Textbox(label="Tags")
ram_out_biaoqian = gr.Textbox(label="标签")
gr.Examples(
examples=[
["images/demo1.jpg"],
["images/demo2.jpg"],
["images/demo4.jpg"],
],
fn=inference_with_ram,
inputs=[ram_in_img],
outputs=[ram_out_tag, ram_out_biaoqian, ram_out_img],
cache_examples=True
)
with gr.Tab(label="Tag2Text Model"):
with gr.Row():
with gr.Column():
t2t_in_img = gr.Image(type="pil")
t2t_in_tag = gr.Textbox(label="User Specified Tags (Optional, separated by comma)")
with gr.Row():
t2t_btn_run = gr.Button(value="Run")
t2t_btn_clear = gr.Button(value="Clear")
with gr.Column():
t2t_out_img = gr.Image(type="pil")
t2t_out_tag = gr.Textbox(label="Tags")
t2t_out_cap = gr.Textbox(label="Caption")
gr.Examples(
examples=[
["images/demo4.jpg", ""],
["images/demo4.jpg", "power line"],
["images/demo4.jpg", "track, train"],
],
fn=inference_with_t2t,
inputs=[t2t_in_img, t2t_in_tag],
outputs=[t2t_out_tag, t2t_out_cap, t2t_out_img],
cache_examples=True
)
gr.HTML(article)
###############
# events
###############
# run inference
ram_btn_run.click(
fn=inference_with_ram,
inputs=[ram_in_img],
outputs=[ram_out_tag, ram_out_biaoqian, ram_out_img]
)
t2t_btn_run.click(
fn=inference_with_t2t,
inputs=[t2t_in_img, t2t_in_tag],
outputs=[t2t_out_tag, t2t_out_cap, t2t_out_img]
)
# clear all
def clear_all():
return [gr.update(value=None)] * 4 + [gr.update(value="")] * 5
ram_btn_clear.click(fn=clear_all, inputs=[], outputs=[
ram_in_img, ram_out_img, t2t_in_img, t2t_out_img,
ram_out_tag, ram_out_biaoqian, t2t_in_tag, t2t_out_tag, t2t_out_cap
])
t2t_btn_clear.click(fn=clear_all, inputs=[], outputs=[
ram_in_img, t2t_in_img, t2t_in_img, t2t_out_img,
ram_out_tag, ram_out_biaoqian, t2t_in_tag, t2t_out_tag, t2t_out_cap
])
return demo
build_gui().launch(enable_queue=True, share=True)
|