Techies / app.py
majorSeaweed's picture
Create app.py
44d6f7f verified
import streamlit as st
import os
import torch
import pandas as pd
from PIL import Image
from pylatexenc.latex2text import LatexNodes2Text
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
BitsAndBytesConfig,
Qwen2VLForConditionalGeneration,
AutoProcessor
)
from qwen_vl_utils import process_vision_info
#############################
# Utility functions
#############################
def convert_latex_to_plain_text(latex_string):
converter = LatexNodes2Text()
plain_text = converter.latex_to_text(latex_string)
return plain_text
#############################
# Caching model loads so they only happen once
#############################
@st.cache_resource(show_spinner=False)
def load_ocr_model():
# Load OCR model and processor
model_ocr = Qwen2VLForConditionalGeneration.from_pretrained(
"prithivMLmods/Qwen2-VL-OCR-2B-Instruct",
torch_dtype="auto",
device_map="auto"
)
processor_ocr = AutoProcessor.from_pretrained("prithivMLmods/Qwen2-VL-OCR-2B-Instruct")
return model_ocr, processor_ocr
@st.cache_resource(show_spinner=False)
def load_llm_model():
# Load LLM model and tokenizer with BitsAndBytes 4-bit quantization configuration
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model_name = "deepseek-ai/deepseek-math-7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="auto"
)
tokenizer.pad_token = tokenizer.eos_token
return model, tokenizer
#############################
# OCR & Expression solver functions
#############################
def img_2_text(image, model_ocr, processor_ocr):
# Prepare the conversation messages
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": "Derive the latex expression from the image given"}
],
}
]
# Generate the text prompt from the conversation template
text = processor_ocr.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
# Process vision inputs
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor_ocr(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to(model_ocr.device)
generated_ids = model_ocr.generate(**inputs, max_new_tokens=512)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor_ocr.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return output_text[0].split('<|im_end|>')[0]
def expression_solver(expression, model_llm, tokenizer_llm):
device = next(model_llm.parameters()).device
prompt = f"""You are a helpful math assistant. Please analyze the problem carefully and provide a step-by-step solution.
- If the problem is an equation, solve for the unknown variable(s).
- If it is an expression, simplify it fully.
- If it is a word problem, explain how you arrive at the result.
- Output final value, either True or False in case of expressions where you have to verify, or the value of variables in expressions where you have to solve in a <ANS> </ANS> tag with no other text in it.
Problem: {expression}
Answer:
"""
inputs = tokenizer_llm(prompt, return_tensors="pt").to(device)
outputs = model_llm.generate(
**inputs,
max_new_tokens=512,
do_sample=True,
top_p=0.95,
temperature=0.7
)
generated_text = tokenizer_llm.decode(outputs[0], skip_special_tokens=True)
return generated_text
def process_images(images, model_ocr, processor_ocr, model_llm, tokenizer_llm):
results = []
for image_file in images:
# Open image with PIL
image = Image.open(image_file)
# Run OCR to get LaTeX string
ocr_text = img_2_text(image, model_ocr, processor_ocr)
# Convert LaTeX to plain text expression
expression = convert_latex_to_plain_text(ocr_text)
# Solve or simplify the expression using the LLM
solution = expression_solver(expression, model_llm, tokenizer_llm)
results.append({
"Filename": image_file.name,
"OCR LaTeX": ocr_text,
"Converted Expression": expression,
"Solution": solution
})
return results
#############################
# Streamlit UI
#############################
st.title("Math OCR & Solver")
st.markdown(
"""
This app uses a Vision-Language OCR model to extract a LaTeX expression from an image,
converts it to plain text, and then uses a language model to solve or simplify the expression.
"""
)
st.sidebar.header("Upload Images")
uploaded_files = st.sidebar.file_uploader("Choose one or more images", type=["png", "jpg", "jpeg"], accept_multiple_files=True)
if uploaded_files:
st.subheader("Uploaded Images")
for file in uploaded_files:
st.image(file, caption=file.name, use_column_width=True)
if st.button("Process Images"):
with st.spinner("Loading models and processing images..."):
# Load models once
model_ocr, processor_ocr = load_ocr_model()
model_llm, tokenizer_llm = load_llm_model()
# Process each uploaded image
results = process_images(uploaded_files, model_ocr, processor_ocr, model_llm, tokenizer_llm)
# Display results in a table
df_results = pd.DataFrame(results)
st.success("Processing complete!")
st.write(df_results)
else:
st.info("Please upload one or more images from the sidebar to begin.")