Spaces:
Sleeping
Sleeping
import streamlit as st | |
import os | |
import torch | |
import pandas as pd | |
from PIL import Image | |
from pylatexenc.latex2text import LatexNodes2Text | |
from transformers import ( | |
AutoTokenizer, | |
AutoModelForCausalLM, | |
BitsAndBytesConfig, | |
Qwen2VLForConditionalGeneration, | |
AutoProcessor | |
) | |
from qwen_vl_utils import process_vision_info | |
############################# | |
# Utility functions | |
############################# | |
def convert_latex_to_plain_text(latex_string): | |
converter = LatexNodes2Text() | |
plain_text = converter.latex_to_text(latex_string) | |
return plain_text | |
############################# | |
# Caching model loads so they only happen once | |
############################# | |
def load_ocr_model(): | |
# Load OCR model and processor | |
model_ocr = Qwen2VLForConditionalGeneration.from_pretrained( | |
"prithivMLmods/Qwen2-VL-OCR-2B-Instruct", | |
torch_dtype="auto", | |
device_map="auto" | |
) | |
processor_ocr = AutoProcessor.from_pretrained("prithivMLmods/Qwen2-VL-OCR-2B-Instruct") | |
return model_ocr, processor_ocr | |
def load_llm_model(): | |
# Load LLM model and tokenizer with BitsAndBytes 4-bit quantization configuration | |
bnb_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_compute_dtype=torch.bfloat16 | |
) | |
model_name = "deepseek-ai/deepseek-math-7b-instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
quantization_config=bnb_config, | |
device_map="auto" | |
) | |
tokenizer.pad_token = tokenizer.eos_token | |
return model, tokenizer | |
############################# | |
# OCR & Expression solver functions | |
############################# | |
def img_2_text(image, model_ocr, processor_ocr): | |
# Prepare the conversation messages | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": image}, | |
{"type": "text", "text": "Derive the latex expression from the image given"} | |
], | |
} | |
] | |
# Generate the text prompt from the conversation template | |
text = processor_ocr.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
# Process vision inputs | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor_ocr( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
) | |
inputs = inputs.to(model_ocr.device) | |
generated_ids = model_ocr.generate(**inputs, max_new_tokens=512) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = processor_ocr.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
return output_text[0].split('<|im_end|>')[0] | |
def expression_solver(expression, model_llm, tokenizer_llm): | |
device = next(model_llm.parameters()).device | |
prompt = f"""You are a helpful math assistant. Please analyze the problem carefully and provide a step-by-step solution. | |
- If the problem is an equation, solve for the unknown variable(s). | |
- If it is an expression, simplify it fully. | |
- If it is a word problem, explain how you arrive at the result. | |
- Output final value, either True or False in case of expressions where you have to verify, or the value of variables in expressions where you have to solve in a <ANS> </ANS> tag with no other text in it. | |
Problem: {expression} | |
Answer: | |
""" | |
inputs = tokenizer_llm(prompt, return_tensors="pt").to(device) | |
outputs = model_llm.generate( | |
**inputs, | |
max_new_tokens=512, | |
do_sample=True, | |
top_p=0.95, | |
temperature=0.7 | |
) | |
generated_text = tokenizer_llm.decode(outputs[0], skip_special_tokens=True) | |
return generated_text | |
def process_images(images, model_ocr, processor_ocr, model_llm, tokenizer_llm): | |
results = [] | |
for image_file in images: | |
# Open image with PIL | |
image = Image.open(image_file) | |
# Run OCR to get LaTeX string | |
ocr_text = img_2_text(image, model_ocr, processor_ocr) | |
# Convert LaTeX to plain text expression | |
expression = convert_latex_to_plain_text(ocr_text) | |
# Solve or simplify the expression using the LLM | |
solution = expression_solver(expression, model_llm, tokenizer_llm) | |
results.append({ | |
"Filename": image_file.name, | |
"OCR LaTeX": ocr_text, | |
"Converted Expression": expression, | |
"Solution": solution | |
}) | |
return results | |
############################# | |
# Streamlit UI | |
############################# | |
st.title("Math OCR & Solver") | |
st.markdown( | |
""" | |
This app uses a Vision-Language OCR model to extract a LaTeX expression from an image, | |
converts it to plain text, and then uses a language model to solve or simplify the expression. | |
""" | |
) | |
st.sidebar.header("Upload Images") | |
uploaded_files = st.sidebar.file_uploader("Choose one or more images", type=["png", "jpg", "jpeg"], accept_multiple_files=True) | |
if uploaded_files: | |
st.subheader("Uploaded Images") | |
for file in uploaded_files: | |
st.image(file, caption=file.name, use_column_width=True) | |
if st.button("Process Images"): | |
with st.spinner("Loading models and processing images..."): | |
# Load models once | |
model_ocr, processor_ocr = load_ocr_model() | |
model_llm, tokenizer_llm = load_llm_model() | |
# Process each uploaded image | |
results = process_images(uploaded_files, model_ocr, processor_ocr, model_llm, tokenizer_llm) | |
# Display results in a table | |
df_results = pd.DataFrame(results) | |
st.success("Processing complete!") | |
st.write(df_results) | |
else: | |
st.info("Please upload one or more images from the sidebar to begin.") | |