Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
import pandas as pd
|
5 |
+
from PIL import Image
|
6 |
+
from pylatexenc.latex2text import LatexNodes2Text
|
7 |
+
from transformers import (
|
8 |
+
AutoTokenizer,
|
9 |
+
AutoModelForCausalLM,
|
10 |
+
BitsAndBytesConfig,
|
11 |
+
Qwen2VLForConditionalGeneration,
|
12 |
+
AutoProcessor
|
13 |
+
)
|
14 |
+
from qwen_vl_utils import process_vision_info
|
15 |
+
|
16 |
+
#############################
|
17 |
+
# Utility functions
|
18 |
+
#############################
|
19 |
+
|
20 |
+
def convert_latex_to_plain_text(latex_string):
|
21 |
+
converter = LatexNodes2Text()
|
22 |
+
plain_text = converter.latex_to_text(latex_string)
|
23 |
+
return plain_text
|
24 |
+
|
25 |
+
#############################
|
26 |
+
# Caching model loads so they only happen once
|
27 |
+
#############################
|
28 |
+
|
29 |
+
@st.cache_resource(show_spinner=False)
|
30 |
+
def load_ocr_model():
|
31 |
+
# Load OCR model and processor
|
32 |
+
model_ocr = Qwen2VLForConditionalGeneration.from_pretrained(
|
33 |
+
"prithivMLmods/Qwen2-VL-OCR-2B-Instruct",
|
34 |
+
torch_dtype="auto",
|
35 |
+
device_map="auto"
|
36 |
+
)
|
37 |
+
processor_ocr = AutoProcessor.from_pretrained("prithivMLmods/Qwen2-VL-OCR-2B-Instruct")
|
38 |
+
return model_ocr, processor_ocr
|
39 |
+
|
40 |
+
@st.cache_resource(show_spinner=False)
|
41 |
+
def load_llm_model():
|
42 |
+
# Load LLM model and tokenizer with BitsAndBytes 4-bit quantization configuration
|
43 |
+
bnb_config = BitsAndBytesConfig(
|
44 |
+
load_in_4bit=True,
|
45 |
+
bnb_4bit_use_double_quant=True,
|
46 |
+
bnb_4bit_quant_type="nf4",
|
47 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
48 |
+
)
|
49 |
+
model_name = "deepseek-ai/deepseek-math-7b-instruct"
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
51 |
+
model = AutoModelForCausalLM.from_pretrained(
|
52 |
+
model_name,
|
53 |
+
quantization_config=bnb_config,
|
54 |
+
device_map="auto"
|
55 |
+
)
|
56 |
+
tokenizer.pad_token = tokenizer.eos_token
|
57 |
+
return model, tokenizer
|
58 |
+
|
59 |
+
#############################
|
60 |
+
# OCR & Expression solver functions
|
61 |
+
#############################
|
62 |
+
|
63 |
+
def img_2_text(image, model_ocr, processor_ocr):
|
64 |
+
# Prepare the conversation messages
|
65 |
+
messages = [
|
66 |
+
{
|
67 |
+
"role": "user",
|
68 |
+
"content": [
|
69 |
+
{"type": "image", "image": image},
|
70 |
+
{"type": "text", "text": "Derive the latex expression from the image given"}
|
71 |
+
],
|
72 |
+
}
|
73 |
+
]
|
74 |
+
|
75 |
+
# Generate the text prompt from the conversation template
|
76 |
+
text = processor_ocr.apply_chat_template(
|
77 |
+
messages, tokenize=False, add_generation_prompt=True
|
78 |
+
)
|
79 |
+
# Process vision inputs
|
80 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
81 |
+
inputs = processor_ocr(
|
82 |
+
text=[text],
|
83 |
+
images=image_inputs,
|
84 |
+
videos=video_inputs,
|
85 |
+
padding=True,
|
86 |
+
return_tensors="pt",
|
87 |
+
)
|
88 |
+
inputs = inputs.to(model_ocr.device)
|
89 |
+
|
90 |
+
generated_ids = model_ocr.generate(**inputs, max_new_tokens=512)
|
91 |
+
generated_ids_trimmed = [
|
92 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
93 |
+
]
|
94 |
+
output_text = processor_ocr.batch_decode(
|
95 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
96 |
+
)
|
97 |
+
return output_text[0].split('<|im_end|>')[0]
|
98 |
+
|
99 |
+
def expression_solver(expression, model_llm, tokenizer_llm):
|
100 |
+
device = next(model_llm.parameters()).device
|
101 |
+
prompt = f"""You are a helpful math assistant. Please analyze the problem carefully and provide a step-by-step solution.
|
102 |
+
- If the problem is an equation, solve for the unknown variable(s).
|
103 |
+
- If it is an expression, simplify it fully.
|
104 |
+
- If it is a word problem, explain how you arrive at the result.
|
105 |
+
- Output final value, either True or False in case of expressions where you have to verify, or the value of variables in expressions where you have to solve in a <ANS> </ANS> tag with no other text in it.
|
106 |
+
|
107 |
+
Problem: {expression}
|
108 |
+
Answer:
|
109 |
+
"""
|
110 |
+
inputs = tokenizer_llm(prompt, return_tensors="pt").to(device)
|
111 |
+
outputs = model_llm.generate(
|
112 |
+
**inputs,
|
113 |
+
max_new_tokens=512,
|
114 |
+
do_sample=True,
|
115 |
+
top_p=0.95,
|
116 |
+
temperature=0.7
|
117 |
+
)
|
118 |
+
generated_text = tokenizer_llm.decode(outputs[0], skip_special_tokens=True)
|
119 |
+
return generated_text
|
120 |
+
|
121 |
+
def process_images(images, model_ocr, processor_ocr, model_llm, tokenizer_llm):
|
122 |
+
results = []
|
123 |
+
for image_file in images:
|
124 |
+
# Open image with PIL
|
125 |
+
image = Image.open(image_file)
|
126 |
+
# Run OCR to get LaTeX string
|
127 |
+
ocr_text = img_2_text(image, model_ocr, processor_ocr)
|
128 |
+
# Convert LaTeX to plain text expression
|
129 |
+
expression = convert_latex_to_plain_text(ocr_text)
|
130 |
+
# Solve or simplify the expression using the LLM
|
131 |
+
solution = expression_solver(expression, model_llm, tokenizer_llm)
|
132 |
+
results.append({
|
133 |
+
"Filename": image_file.name,
|
134 |
+
"OCR LaTeX": ocr_text,
|
135 |
+
"Converted Expression": expression,
|
136 |
+
"Solution": solution
|
137 |
+
})
|
138 |
+
return results
|
139 |
+
|
140 |
+
#############################
|
141 |
+
# Streamlit UI
|
142 |
+
#############################
|
143 |
+
|
144 |
+
st.title("Math OCR & Solver")
|
145 |
+
st.markdown(
|
146 |
+
"""
|
147 |
+
This app uses a Vision-Language OCR model to extract a LaTeX expression from an image,
|
148 |
+
converts it to plain text, and then uses a language model to solve or simplify the expression.
|
149 |
+
"""
|
150 |
+
)
|
151 |
+
|
152 |
+
st.sidebar.header("Upload Images")
|
153 |
+
uploaded_files = st.sidebar.file_uploader("Choose one or more images", type=["png", "jpg", "jpeg"], accept_multiple_files=True)
|
154 |
+
|
155 |
+
if uploaded_files:
|
156 |
+
st.subheader("Uploaded Images")
|
157 |
+
for file in uploaded_files:
|
158 |
+
st.image(file, caption=file.name, use_column_width=True)
|
159 |
+
|
160 |
+
if st.button("Process Images"):
|
161 |
+
with st.spinner("Loading models and processing images..."):
|
162 |
+
# Load models once
|
163 |
+
model_ocr, processor_ocr = load_ocr_model()
|
164 |
+
model_llm, tokenizer_llm = load_llm_model()
|
165 |
+
|
166 |
+
# Process each uploaded image
|
167 |
+
results = process_images(uploaded_files, model_ocr, processor_ocr, model_llm, tokenizer_llm)
|
168 |
+
# Display results in a table
|
169 |
+
df_results = pd.DataFrame(results)
|
170 |
+
st.success("Processing complete!")
|
171 |
+
st.write(df_results)
|
172 |
+
else:
|
173 |
+
st.info("Please upload one or more images from the sidebar to begin.")
|