File size: 4,525 Bytes
a6e39ab
81b2481
 
 
 
 
 
6b4c086
24da5c3
81b2481
 
 
 
 
6b4c086
 
24da5c3
a6e39ab
6b4c086
 
24da5c3
 
 
a6e39ab
 
24da5c3
 
a6e39ab
24da5c3
81b2481
24da5c3
81b2481
24da5c3
 
 
 
 
 
 
 
 
 
81b2481
 
24da5c3
81b2481
a6e39ab
81b2481
24da5c3
a6e39ab
24da5c3
 
 
 
 
a6e39ab
24da5c3
 
 
6b4c086
24da5c3
81b2481
24da5c3
 
 
81b2481
d9873e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e33e34e
 
 
 
d9873e2
 
 
e33e34e
 
 
24da5c3
81b2481
a6e39ab
81b2481
 
 
24da5c3
a6e39ab
81b2481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24da5c3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import spaces
import os
import tempfile
import gradio as gr
from dotenv import load_dotenv
import torch
from scipy.io.wavfile import write
from diffusers import DiffusionPipeline
from transformers import pipeline
from pathlib import Path

load_dotenv()
hf_token = os.getenv("HF_TKN")

device_id = 0 if torch.cuda.is_available() else -1

captioning_pipeline = pipeline(
    "image-to-text",
    model="nlpconnect/vit-gpt2-image-captioning",
    device=device_id
)

pipe = DiffusionPipeline.from_pretrained(
    "cvssp/audioldm2",
    use_auth_token=hf_token
)

@spaces.GPU(duration=120)
def analyze_image_with_free_model(image_file):
    try:
        with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as temp_file:
            temp_file.write(image_file)
            temp_image_path = temp_file.name

        results = captioning_pipeline(temp_image_path)
        if not results or not isinstance(results, list):
            return "Error: Could not generate caption.", True
        
        caption = results[0].get("generated_text", "").strip()
        if not caption:
            return "No caption was generated.", True
        return caption, False

    except Exception as e:
        return f"Error analyzing image: {e}", True

@spaces.GPU(duration=120)
def get_audioldm_from_caption(caption):
    try:
        pipe.to("cuda")
        audio_output = pipe(
            prompt=caption,
            num_inference_steps=50,
            guidance_scale=7.5
        )
        pipe.to("cpu")
        audio = audio_output.audios[0]

        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav:
            write(temp_wav.name, 16000, audio)
            return temp_wav.name

    except Exception as e:
        print(f"Error generating audio from caption: {e}")
        return None

with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column(scale=1):
            gr.Image(value="https://via.placeholder.com/150", interactive=False, label="App Logo", elem_id="app-logo")
        with gr.Column(scale=5):
            gr.HTML("""
            <div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 10px;">🎶 Image-to-Sound Generator</div>
            <div style="text-align: center; font-size: 16px; color: #6c757d;">Transform your images into descriptive captions and immersive soundscapes.</div>
            """)

    with gr.Row():
        with gr.Column():
            gr.Markdown("""
            ### How It Works
            1. **Upload an Image**: Select an image to analyze.
            2. **Generate Description**: Get a detailed caption describing your image.
            3. **Generate Sound**: Create an audio representation based on the caption.
            """)

    with gr.Row():
        with gr.Column(scale=1):
            image_upload = gr.File(label="Upload Image", type="binary")
            generate_description_button = gr.Button("Generate Description", variant="primary")
        with gr.Column(scale=2):
            caption_display = gr.Textbox(label="Generated Caption", interactive=False, placeholder="Your image caption will appear here.")
            generate_sound_button = gr.Button("Generate Sound", variant="primary")
        with gr.Column(scale=1):
            audio_output = gr.Audio(label="Generated Sound Effect", interactive=False)

    with gr.Row():
        gr.Markdown("""
        ## About This App
        This application uses advanced machine learning models to transform images into text captions and generate matching sound effects. It's a unique blend of visual and auditory creativity, powered by state-of-the-art AI technology.

        ### Powered By
        - [Hugging Face](https://huggingface.co)
        - [Diffusion Models](https://huggingface.co/models)

        For inquiries, contact us at [[email protected]](mailto:[email protected]).
        """)

    def update_caption(image_file):
        description, _ = analyze_image_with_free_model(image_file)
        return description

    def generate_sound(description):
        if not description or description.startswith("Error"):
            return None
        audio_path = get_audioldm_from_caption(description)
        return audio_path

    generate_description_button.click(
        fn=update_caption,
        inputs=image_upload,
        outputs=caption_display
    )

    generate_sound_button.click(
        fn=generate_sound,
        inputs=caption_display,
        outputs=audio_output
    )

demo.launch(debug=True, share=True)