import random import gradio as gr import numpy as np import spaces import torch from diffusers import AutoencoderKL from mixture_tiling_sdxl import StableDiffusionXLTilingPipeline MAX_SEED = np.iinfo(np.int32).max SCHEDULERS = [ "LMSDiscreteScheduler", "DEISMultistepScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "EulerDiscreteScheduler", "DPMSolverMultistepScheduler", "DPMSolverMultistepScheduler-Karras", "DPMSolverMultistepScheduler-Karras-SDE", "UniPCMultistepScheduler" ] vae = AutoencoderKL.from_pretrained( "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 ).to("cuda") model_id="stablediffusionapi/yamermix-v8-vae" pipe = StableDiffusionXLTilingPipeline.from_pretrained( model_id, torch_dtype=torch.float16, vae=vae, use_safetensors=False, #for yammermix #variant="fp16", ).to("cuda") pipe.enable_model_cpu_offload() #<< Enable this if you have limited VRAM pipe.enable_vae_tiling() pipe.enable_vae_slicing() #region functions def select_scheduler(scheduler_name): scheduler = scheduler_name.split("-") scheduler_class_name = scheduler[0] add_kwargs = {"beta_start": 0.00085, "beta_end": 0.012, "beta_schedule": "scaled_linear", "num_train_timesteps": 1000} if len(scheduler) > 1: add_kwargs["use_karras_sigmas"] = True if len(scheduler) > 2: add_kwargs["algorithm_type"] = "sde-dpmsolver++" import diffusers scheduler = getattr(diffusers, scheduler_class_name) scheduler = scheduler.from_config(pipe.scheduler.config, **add_kwargs) return scheduler @spaces.GPU def predict(left_prompt, center_prompt, right_prompt, negative_prompt, left_gs, center_gs, right_gs, overlap_pixels, steps, generation_seed, scheduler, tile_height, tile_width, target_height, target_width): global pipe # Set selected scheduler print(f"Using scheduler: {scheduler}...") pipe.scheduler = select_scheduler(scheduler) # Set seed generator = torch.Generator("cuda").manual_seed(generation_seed) target_height = int(target_height) target_width = int(target_width) tile_height = int(tile_height) tile_width = int(tile_width) # Mixture of Diffusers generation image = pipe( prompt=[ [ left_prompt, center_prompt, right_prompt, ] ], negative_prompt=negative_prompt, tile_height=tile_height, tile_width=tile_width, tile_row_overlap=0, tile_col_overlap=overlap_pixels, guidance_scale_tiles=[[left_gs, center_gs, right_gs]], height=target_height, width=target_width, generator=generator, num_inference_steps=steps, )["images"][0] return image def calc_tile_size(target_height, target_width, overlap_pixels, max_tile_width_size=1280): num_cols=3 num_rows=1 min_tile_dimension=8 reduction_step=8 max_tile_height_size=1024 best_tile_width = 0 best_tile_height = 0 best_adjusted_target_width = 0 best_adjusted_target_height = 0 found_valid_solution = False # Adjust Tile Width tile_width = max_tile_width_size tile_height = max_tile_height_size while tile_width >= min_tile_dimension: horizontal_borders = num_cols - 1 total_horizontal_overlap_pixels = (overlap_pixels * horizontal_borders) adjusted_target_width = tile_width * num_cols - total_horizontal_overlap_pixels vertical_borders = num_rows - 1 total_vertical_overlap_pixels = (overlap_pixels * vertical_borders) adjusted_target_height = tile_height * num_rows - total_vertical_overlap_pixels if tile_width <= max_tile_width_size and adjusted_target_width <= target_width: if adjusted_target_width > best_adjusted_target_width: best_tile_width = tile_width best_adjusted_target_width = adjusted_target_width found_valid_solution = True tile_width -= reduction_step # Adjust Tile Height if found_valid_solution: tile_width = best_tile_width tile_height = max_tile_height_size while tile_height >= min_tile_dimension: horizontal_borders = num_cols - 1 total_horizontal_overlap_pixels = (overlap_pixels * horizontal_borders) adjusted_target_width = tile_width * num_cols - total_horizontal_overlap_pixels vertical_borders = num_rows - 1 total_vertical_overlap_pixels = (overlap_pixels * vertical_borders) adjusted_target_height = tile_height * num_rows - total_vertical_overlap_pixels if tile_height <= max_tile_height_size and adjusted_target_height <= target_height: if adjusted_target_height > best_adjusted_target_height: best_tile_height = tile_height best_adjusted_target_height = adjusted_target_height tile_height -= reduction_step new_target_height = best_adjusted_target_height new_target_width = best_adjusted_target_width tile_width = best_tile_width tile_height = best_tile_height print("--- TILE SIZE CALCULATED VALUES ---") print(f"Overlap pixels (requested): {overlap_pixels}") print(f"Tile Height (divisible by 8, max {max_tile_height_size}): {tile_height}") print(f"Tile Width (divisible by 8, max {max_tile_width_size}): {tile_width}") print(f"Number of Columns (horizontal tiles): {num_cols}") print(f"Number of Rows (vertical tiles): {num_rows}") print(f"Original Target Height: {target_height}") print(f"Original Target Width: {target_width}") print(f"New Target Height (total covered height): {new_target_height}") print(f"New Target Width (total covered width): {new_target_width}\n") return new_target_height, new_target_width, tile_height, tile_width def do_calc_tile(target_height, target_width, overlap_pixels, max_tile_size): new_target_height, new_target_width, tile_height, tile_width = calc_tile_size(target_height, target_width, overlap_pixels, max_tile_size) return gr.update(value=tile_height), gr.update(value=tile_width), gr.update(value=new_target_height), gr.update(value=new_target_width) def clear_result(): return gr.update(value=None) def run_for_examples(left_prompt, center_prompt, right_prompt, negative_prompt, left_gs, center_gs, right_gs, overlap_pixels, steps, generation_seed, scheduler, tile_height, tile_width, target_height, target_width, max_tile_width): return predict(left_prompt, center_prompt, right_prompt, negative_prompt, left_gs, center_gs, right_gs, overlap_pixels, steps, generation_seed, scheduler, tile_height, tile_width, target_height, target_width) def randomize_seed_fn(generation_seed: int, randomize_seed: bool) -> int: if randomize_seed: generation_seed = random.randint(0, MAX_SEED) return generation_seed css = """ .gradio-container .fillable { width: 95% !important; max-width: unset !important; } """ title = """

Mixture-of-Diffusers for SDXL Tiling Pipeline🤗

This project implements a SDXL tiling pipeline based on the original project: Mixture-of-Diffusers. For more information, see the: 📜 paper
""" with gr.Blocks(css=css) as app: gr.Markdown(title) with gr.Row(): with gr.Column(scale=7): generate_button = gr.Button("Generate") with gr.Row(): with gr.Column(scale=1): gr.Markdown("### Left region") left_prompt = gr.Textbox(lines=4, label="Prompt for left side of the image") left_gs = gr.Slider(minimum=0, maximum=15, value=7, step=1, label="Left CFG scale") with gr.Column(scale=1): gr.Markdown("### Center region") center_prompt = gr.Textbox(lines=4, label="Prompt for the center of the image") center_gs = gr.Slider(minimum=0, maximum=15, value=7, step=1, label="Center CFG scale") with gr.Column(scale=1): gr.Markdown("### Right region") right_prompt = gr.Textbox(lines=4, label="Prompt for the right side of the image") right_gs = gr.Slider(minimum=0, maximum=15, value=7, step=1, label="Right CFG scale") with gr.Row(): negative_prompt = gr.Textbox(lines=2, label="Negative prompt for the image", value="nsfw, lowres, bad anatomy, bad hands, duplicate, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, blurry") with gr.Row(): result = gr.Image( label="Generated Image", show_label=True, format="png", interactive=False, # allow_preview=True, # preview=True, scale=1, ) with gr.Sidebar(label="Parameters", open=True): gr.Markdown("### General parameters") with gr.Row(): height = gr.Slider(label="Height", value=1024, step=8, visible=True, minimum=512, maximum=1024) width = gr.Slider(label="Width", value=1280, step=8, visible=True, minimum=512, maximum=3840) overlap = gr.Slider(minimum=0, maximum=512, value=128, step=8, label="Tile Overlap") max_tile_size = gr.Dropdown(label="Max. Tile Size", choices=[1024, 1280], value=1280) calc_tile = gr.Button("Calculate Tile Size") with gr.Row(): tile_height = gr.Textbox(label="Tile height", value=1024, interactive=False) tile_width = gr.Textbox(label="Tile width", value=1024, interactive=False) with gr.Row(): new_target_height = gr.Textbox(label="New image height", value=1024, interactive=False) new_target_width = gr.Textbox(label="New image width", value=1024, interactive=False) with gr.Row(): steps = gr.Slider(minimum=1, maximum=50, value=30, step=1, label="Inference steps") generation_seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) randomize_seed = gr.Checkbox(label="Randomize seed", value=False) with gr.Row(): scheduler = gr.Dropdown( label="Schedulers", choices=SCHEDULERS, value=SCHEDULERS[0], ) with gr.Row(): gr.Examples( examples=[ [ "Iron Man, repulsor rays blasting enemies in destroyed cityscape, sparks, energy trails, crumbling skyscrapers, smoke, debris, cinematic lighting, photorealistic, intense action. Focus: Iron Man.", "Captain America charging forward, vibranium shield deflecting energy blasts in destroyed cityscape, collapsing buildings, rubble streets, battle-damaged suit, determined expression, distant explosions, cinematic composition, realistic rendering. Focus: Captain America.", "Thor wielding Stormbreaker in destroyed cityscape, lightning crackling, powerful strike downwards, shattered buildings, burning debris, ground trembling, Asgardian armor, cinematic photography, realistic details. Focus: Thor.", negative_prompt.value, 5, 5, 5, 160, 30, 1328797844, "UniPCMultistepScheduler", 1024, 1280, 1024, 3840, 1024 ], [ "A charming house in the countryside, by jakub rozalski, sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece", "A dirt road in the countryside crossing pastures, by jakub rozalski, sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece", "An old and rusty giant robot lying on a dirt road, by jakub rozalski, dark sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece", negative_prompt.value, 7, 7, 7, 256, 30, 297984183, "DPMSolverMultistepScheduler-Karras-SDE", 1024, 1280, 1024, 3840, 1280 ], [ "Abstract decorative illustration, by joan miro and gustav klimt and marlina vera and loish, elegant, intricate, highly detailed, smooth, sharp focus, vibrant colors, artstation, stunning masterpiece", "Abstract decorative illustration, by joan miro and gustav klimt and marlina vera and loish, elegant, intricate, highly detailed, smooth, sharp focus, vibrant colors, artstation, stunning masterpiece", "Abstract decorative illustration, by joan miro and gustav klimt and marlina vera and loish, elegant, intricate, highly detailed, smooth, sharp focus, vibrant colors, artstation, stunning masterpiece", negative_prompt.value, 7, 7, 7, 128, 30, 580541206, "LMSDiscreteScheduler", 1024, 768, 1024, 2048, 1280 ], [ "Magical diagrams and runes written with chalk on a blackboard, elegant, intricate, highly detailed, smooth, sharp focus, artstation, stunning masterpiece", "Magical diagrams and runes written with chalk on a blackboard, elegant, intricate, highly detailed, smooth, sharp focus, artstation, stunning masterpiece", "Magical diagrams and runes written with chalk on a blackboard, elegant, intricate, highly detailed, smooth, sharp focus, artstation, stunning masterpiece", negative_prompt.value, 9, 9, 9, 128, 30, 12591765619, "LMSDiscreteScheduler", 1024, 768, 1024, 2048, 1280 ] ], inputs=[left_prompt, center_prompt, right_prompt, negative_prompt, left_gs, center_gs, right_gs, overlap, steps, generation_seed, scheduler, tile_height, tile_width, height, width, max_tile_size], fn=run_for_examples, outputs=result, cache_examples=True ) event_calc_tile_size={"fn": do_calc_tile, "inputs":[height, width, overlap, max_tile_size], "outputs":[tile_height, tile_width, new_target_height, new_target_width]} calc_tile.click(**event_calc_tile_size) generate_button.click( fn=clear_result, inputs=None, outputs=result, ).then(**event_calc_tile_size ).then( fn=randomize_seed_fn, inputs=[generation_seed, randomize_seed], outputs=generation_seed, queue=False, api_name=False, ).then( fn=predict, inputs=[left_prompt, center_prompt, right_prompt, negative_prompt, left_gs, center_gs, right_gs, overlap, steps, generation_seed, scheduler, tile_height, tile_width, new_target_height, new_target_width], outputs=result, ) app.launch(share=False)