import torch import torchaudio from einops import rearrange from stable_audio_tools import get_pretrained_model from stable_audio_tools.inference.generation import generate_diffusion_cond import gradio as gr device = "cuda" if torch.cuda.is_available() else "cpu" # تحميل النموذج model, model_config = get_pretrained_model("stabilityai/stable-audio-open-small") sample_rate = model_config["sample_rate"] sample_size = model_config["sample_size"] model = model.to(device) def generate_audio(prompt, duration): conditioning = [{ "prompt": prompt, "seconds_total": duration }] output = generate_diffusion_cond( model, steps=8, conditioning=conditioning, sample_size=sample_size, sampler_type="pingpong", device=device ) output = rearrange(output, "b d n -> d (b n)") output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu() torchaudio.save("output.wav", output, sample_rate) return "output.wav" gr.Interface( fn=generate_audio, inputs=[ gr.Textbox(label="Prompt", placeholder="مثال: 128 BPM tech house drum loop"), gr.Slider(1, 11, step=1, label="مدة الصوت بالثواني") ], outputs=gr.Audio(label="الصوت الناتج"), title="تجربة Stable Audio Open Small", description="أدخل وصفًا صوتيًا، وجرب توليد مقطع صوتي من النموذج." ).launch()