File size: 4,085 Bytes
e9dc5bd
53ed89d
e9dc5bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65d7dba
e9dc5bd
 
 
 
 
 
 
 
4ca28a0
e9dc5bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
750c18c
 
e9dc5bd
 
 
 
 
ced4e42
 
e9dc5bd
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
from transformers.modeling_outputs import SequenceClassifierOutput
from transformers import AlbertForSequenceClassification, BertTokenizer
import torch
import torch.nn.functional as F
import numpy as np


class AlbertForMultilabelSequenceClassification(AlbertForSequenceClassification):
    def __init__(self, config):
        super().__init__(config)

    def forward(self,
                input_ids=None,
                attention_mask=None,
                token_type_ids=None,
                position_ids=None,
                head_mask=None,
                inputs_embeds=None,
                labels=None,
                output_attentions=None,
                output_hidden_states=None,
                return_dict=None):
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.albert(input_ids,
                              attention_mask=attention_mask,
                              token_type_ids=token_type_ids,
                              position_ids=position_ids,
                              head_mask=head_mask,
                              inputs_embeds=inputs_embeds,
                              output_attentions=output_attentions,
                              output_hidden_states=output_hidden_states,
                              return_dict=return_dict)

        pooled_output = outputs[1]
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

        loss = None
        if labels is not None:
            loss_fct = torch.nn.BCEWithLogitsLoss()
            loss = loss_fct(logits.view(-1, self.num_labels),
                            labels.float().view(-1, self.num_labels))

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(loss=loss,
                                        logits=logits,
                                        hidden_states=outputs.hidden_states,
                                        attentions=outputs.attentions)


class Model:
    def __init__(self):

        self.device = torch.device(
            "cuda:0" if torch.cuda.is_available() else "cpu")

        self.labels = ['Accessibility', 'Non-accessibility']
        self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True)
        classifier = AlbertForMultilabelSequenceClassification.from_pretrained(
            'albert-base-v2',
            output_attentions=False,
            output_hidden_states=False,
            num_labels=2
        )
        
        classifier.load_state_dict(
            torch.load("assets/pytorch_model.bin", map_location=self.device), strict=False)
        classifier = classifier.eval()
        self.classifier = classifier.to(self.device)

    def predict(self, text):
        encoded_text = self.tokenizer.encode_plus(
            text,
            max_length=30,
            add_special_tokens=True,
            return_token_type_ids=False,
            padding='longest',
            return_attention_mask=True,
            return_tensors="pt",
            truncation=True,

        )

        input_ids = encoded_text["input_ids"].to(self.device)
        attention_mask = encoded_text["attention_mask"].to(self.device)

        with torch.no_grad():
            probabilities = self.classifier(input_ids, attention_mask)

        prediction = F.softmax(probabilities.logits, dim=1).cpu().numpy().flatten().max()
        prediction_index = np.where(F.softmax(probabilities.logits, dim=1).cpu().numpy() == prediction)[1][0]
        label = self.labels[prediction_index]

        all_predictions = F.softmax(
            probabilities.logits, dim=1).cpu().numpy().flatten()

        accessibility_prediction = all_predictions[0]
        nonaccessibility_prediction = all_predictions[1]

        return (accessibility_prediction, nonaccessibility_prediction)


model = Model()
# model.predict("this is an impsorvement")


def get_model():
    return model