File size: 226,090 Bytes
db5855f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "66dd36b3-e847-4a51-8d5b-db21505645d3",
   "metadata": {},
   "source": [
    "# SPEECH EMOTION DETECTION\n",
    "Speech Emotion Detection (SED) is the task of automatically recognizing and classifying emotions conveyed through speech signals. It involves the use of techniques from signal processing, machine learning, and natural language processing (NLP) to analyze vocal cues and identify the emotional state of a speaker.\r\n",
    "\r\n",
    "### Key Aspects of Speech Emotion Detection:\r\n",
    "\r\n",
    "- **Signal Processing**: Techniques such as feature extraction from audio signals (e.g., MFCC - Mel Frequency Cepstral Coefficients) to capture relevant characteristics related to pitch, intensity, and spectral content that correlate with emotions.\r\n",
    "\r\n",
    "- **Feature Engineering**: Selection and transformation of acoustic features that are relevant for distinguishing different emotional states.\r\n",
    "\r\n",
    "- **Machine Learning and Deep Learning**: Utilization of various models and algorithms, including traditional machine learning methods (e.g., Support Vector Machines, Random Forests) and deep learning architectures (e.g., Convolutional Neural Networks, Recurrent Neural Networks like LSTM), to classify emotions based on extracted features.\r\n",
    "\r\n",
    "- **Emotion Classification**: Assigning one or multiple predefined emotion labels (e.g., happiness, sadness, anger, neutrality) to audio segments based on the analysis of extracted features and model pr\n",
    "future directions.\r\n",
    "edictions.\r\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "86a9b89c-5976-4e93-96e6-5258ef696328",
   "metadata": {},
   "source": [
    "### RAVDESS Dataset Description\r\n",
    "\r\n",
    "The RAVDESS dataset contains 1440 audio files, structured as follows: 60 trials per actor multiplied by 24 actors, resulting in 1440 files. The dataset comprises recordings from 24 professional actors (12 female and 12 male), each vocalizing two lexically-matched statements in a neutral North American accent. The speech emotions included are calm, happy, sad, angry, fearful, surprise, and disgust, with each emotion expressed at two levels of emotional intensity (normal and strong), along with an additional neutral expression.\r\n",
    "\r\n",
    "#### File Naming Convention\r\n",
    "\r\n",
    "Each file in the dataset has a unique filename format: `03-01-06-01-02-01-12.wav`. Here's the breakdown of the filename identifiers:\r\n",
    "\r\n",
    "- **Modality**: `01` for full-AV (audiovisual), `02` for video-only, `03` for audio-only.\r\n",
    "- **Vocal Channel**: `01` for speech, `02` for song.\r\n",
    "- **Emotion**: \r\n",
    "  - `01` = neutral\r\n",
    "  - `02` = calm\r\n",
    "  - `03` = happy\r\n",
    "  - `04` = sad\r\n",
    "  - `05` = angry\r\n",
    "  - `06` = fearful\r\n",
    "  - `07` = disgust\r\n",
    "  - `08` = surprised\r\n",
    "- **Emotional Intensity**: `01` for normal, `02` for strong (Note: 'neutral' emotion has no strong intensity).\r\n",
    "- **Statement**: \r\n",
    "  - `01` = \"Kids are talking by the door\"\r\n",
    "  - `02` = \"Dogs are sitting by the door\"\r\n",
    "- **Repetition**: `01` for 1st repetition, `02` for 2nd repetition.\r\n",
    "- **Actor**: `01` to `24`. Odd-numbered actors are male, and even-numbered actors are female.\r\n",
    "\r\n",
    "#### Filename Example: `03-01-06-01-02-01-12.wav`\r\n",
    "\r\n",
    "- **Audio-only (03)**\r\n",
    "- **Speech (01)**\r\n",
    "- **Fearful (06)**\r\n",
    "- **Normal intensity (01)**\r\n",
    "- **Statement \"dogs\" (02)**\r\n",
    "- **1st Repetition (01)**\r\n",
    "- **12th Actor (12)** (Female, as the actor ID number is even)\r\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 92,
   "id": "6ce0fa5b-a908-4486-80c7-c07e46d98354",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define the path to your RAVDESS dataset\n",
    "DATASET_PATH = r'C:\\games\\audio'\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4a0f0509-02a2-44f9-8250-51518278af97",
   "metadata": {},
   "source": [
    "## DATA PREPROCESSING\r\n",
    "ing.\r\n",
    "\r\n",
    "### Function to Load an Audio File\r\n",
    "\r\n",
    "The `load_audio` function loads an audio file from the specified `file_path` and returns the audio waveform and its sample rate (`sr`). It utilizes the `librosa` library for audio loading and handles exceptions if the file loading fails.\r\n",
    "\r\n",
    "### Function to Extract MFCC Features\r\n",
    "\r\n",
    "The `extract_mfcc` function extracts Mel-Frequency Cepstral Coefficients (MFCC) features from the audio data. MFCCs are commonly used in speech and audio processing to capture the spectral characteristics of sound. This function computes the MFCCs and returns their mean values across time (`axis=0`).\r\n",
    "\r\n",
    "### Dummy Function to Extract Label from Filename\r\n",
    "\r\n",
    "The `extract_label_from_filename` function extracts the emotional label from a given filename based on predefined mappings (`emotion_dict`). It parses the filename and retrieves the emotion label using the third part of the filename (which corresponds to the emotion identifier).\r\n",
    "\r\n",
    "#### Emotion Dictionary:\r\n",
    "- `'01': 'neutral'`\r\n",
    "- `'02': 'calm'`\r\n",
    "- `'03': 'happy'`\r\n",
    "- `'04': 'sad'`\r\n",
    "- `'05': 'angry'`\r\n",
    "- `'06': 'fearful'`\r\n",
    "- `'07': 'disgust'`\r\n",
    "- `'08': 'surprised'`\r\n",
    "\r\n",
    "This function is used to map numeric identifiers from filenames to human-readable emotional labels, facilitating the labeling of audio data during the processing pipeline.\r\n",
    "\r\n",
    "g the processing pipeline.\r\n",
    "\r\n",
    "coder`.\r\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6810c70c-3f17-4f3a-8789-8bd848ba0cb4",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define the path to your RAVDESS dataset\n",
    "\n",
    "\n",
    "# Function to load an audio file\n",
    "def load_audio(file_path, sr=22050):\n",
    "    try:\n",
    "        audio, sample_rate = librosa.load(file_path, sr=sr)\n",
    "        return audio, sample_rate\n",
    "    except Exception as e:\n",
    "        print(f\"Error loading {file_path}: {e}\")\n",
    "        return None, None\n",
    "\n",
    "# Function to extract MFCC features\n",
    "def extract_mfcc(audio, sr, n_mfcc=40):\n",
    "    mfccs = np.mean(librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=n_mfcc).T, axis=0)\n",
    "    return mfccs\n",
    "\n",
    "# Dummy function to extract label from filename\n",
    "def extract_label_from_filename(file_name):\n",
    "    emotion_dict = {\n",
    "        '01': 'neutral', '02': 'calm', '03': 'happy', '04': 'sad',\n",
    "        '05': 'angry', '06': 'fearful', '07': 'disgust', '08': 'surprised'\n",
    "    }\n",
    "    parts = file_name.split('-')\n",
    "    emotion_label = emotion_dict[parts[2]]\n",
    "    return emotion_label\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "46240c96-c06b-4169-841b-19b0769faa72",
   "metadata": {},
   "source": [
    "## Loading and Processing Audio Dataset\n",
    "### Iterating Through Audio Files\n",
    "The code iterates through all `.wav` files located in the `DATASET_PATH` directory and its subdirectories using `os.walk`.\n",
    "### Extracting Features and Labels\n",
    "For each audio file:\n",
    "- **Label Extraction**: The label is extracted from the filename (`filename[7:8] - 1`). This assumes the label information is encoded in a specific position within the filename.  \n",
    "- **Loading Audio**: The `load_audio` function is called to load the audio file and obtain the audio waveform (`audio`) and its sampling rate (`sr`).\n",
    "- **Extracting MFCC Features**: If the audio loading is successful (`audio` is not `None`), the `extract_mfcc` function extracts Mel-Frequency Cepstral Coefficients (MFCC) features from the audio.\n",
    "- **Appending Features and Labels**: Extracted MFCC features (`mfcc_features`) and their corresponding labels (`label`) are appended to lists `X` and `y`, respectively.\n",
    "\n",
    "### Handling Errors\n",
    "\n",
    "- **Exception Handling**: If there is an error during any step (e.g., loading audio, extracting features), an error message is printed, and the file is skipped (`except Exception as e`).\n",
    "\n",
    "### Final Dataset Preparation\n",
    "\n",
    "- **Conversion to Numpy Arrays**: After processing all audio files, lists `X` and `y` are converted into NumPy arrays (`np.array(X)` and `np.array(y)`).\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "id": "358a2d96-be6c-4cec-9140-a453d665180c",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Finish Loading the Dataset\n",
      "X shape: (2880, 40)\n",
      "y shape: (2880,)\n"
     ]
    }
   ],
   "source": [
    "X=[]\n",
    "y=[]\n",
    "for dirname, _, filenames in os.walk(DATASET_PATH):\n",
    "    for filename in filenames:\n",
    "        if filename.endswith('.wav'):\n",
    "            try:\n",
    "                label = int(filename[7:8]) - 1  # Extract label from filename\n",
    "                wav_file_path = os.path.join(dirname, filename)\n",
    "                audio, sr = load_audio(wav_file_path)  # Load audio file\n",
    "                if audio is not None:\n",
    "                    mfcc_features = extract_mfcc(audio, sr)  # Extract MFCC features\n",
    "                    if mfcc_features is not None:\n",
    "                        X.append(mfcc_features)\n",
    "                        y.append(label)\n",
    "            except Exception as e:\n",
    "                print(f\"Error processing {filename}: {e}\")\n",
    "\n",
    "X = np.array(X)\n",
    "y = np.array(y)\n",
    "\n",
    "print(\"Finish Loading the Dataset\")\n",
    "print(\"X shape:\", X.shape)\n",
    "print(\"y shape:\", y.shape)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "3262162d-2945-4c0a-8c22-533ad367ccf0",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([0, 0, 0, ..., 7, 7, 7])"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "y"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "3730f074-a59d-476d-88ca-1ab2695e38b2",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[-6.9779260e+02,  5.4890041e+01,  6.6346520e-01, ...,\n",
       "        -1.7701062e+00, -3.5011320e+00, -1.5380874e+00],\n",
       "       [-6.9285577e+02,  5.5363899e+01, -1.5483192e+00, ...,\n",
       "        -3.0869722e+00, -3.2097483e+00, -2.3071594e+00],\n",
       "       [-6.9158789e+02,  5.8024662e+01,  1.5946463e-01, ...,\n",
       "        -2.7295372e+00, -3.5089064e+00, -2.2463746e+00],\n",
       "       ...,\n",
       "       [-5.4125165e+02,  2.9595709e+01, -1.8001362e+01, ...,\n",
       "        -3.8906682e-01, -9.7194743e-01, -3.9210208e-03],\n",
       "       [-4.9265253e+02,  2.3887981e+01, -6.0266590e+00, ...,\n",
       "         9.1637713e-01, -1.4326899e+00,  1.4300117e+00],\n",
       "       [-5.1798480e+02,  2.9571215e+01, -3.9096990e+00, ...,\n",
       "        -1.2455600e-01, -1.8519229e+00,  7.0855033e-01]], dtype=float32)"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "X"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 96,
   "id": "e345782b-935d-46d3-9a52-88cdcb3ed44c",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[0 0 0 ... 7 7 7]\n",
      "[[1. 0. 0. ... 0. 0. 0.]\n",
      " [1. 0. 0. ... 0. 0. 0.]\n",
      " [1. 0. 0. ... 0. 0. 0.]\n",
      " ...\n",
      " [0. 0. 0. ... 0. 0. 1.]\n",
      " [0. 0. 0. ... 0. 0. 1.]\n",
      " [0. 0. 0. ... 0. 0. 1.]]\n"
     ]
    }
   ],
   "source": [
    "### Label Encoding\n",
    "label_encoder = LabelEncoder()\n",
    "y_encoded = label_encoder.fit_transform(y)\n",
    "print(y_encoded)\n",
    "##One_hot encoding\n",
    "y_cat=to_categorical (y_encoded)\n",
    "print(y_cat)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c09420cf-a9a1-464e-969b-ebfcc3d828ae",
   "metadata": {},
   "source": [
    "## Train-Test Split"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 40,
   "id": "d25650c5-5681-4a24-ab42-380bb19f82a8",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Training set size: 2304 samples\n",
      "Testing set size: 576 samples\n",
      "X_train shape: (2304, 40)\n",
      "X_test shape: (576, 40)\n"
     ]
    }
   ],
   "source": [
    "\n",
    "X_train, X_test, y_train, y_test = train_test_split(X, y_cat, test_size=0.2, random_state=9)\n",
    "\n",
    "# Print shapes to verify\n",
    "print(f\"Training set size: {X_train.shape[0]} samples\")\n",
    "print(f\"Testing set size: {X_test.shape[0]} samples\")\n",
    "print(f\"X_train shape: {X_train.shape}\")\n",
    "print(f\"X_test shape: {X_test.shape}\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "498fc255-2b1c-4ff8-afdf-7f5b8998dd16",
   "metadata": {},
   "outputs": [],
   "source": [
    "X_train = X_train[..., np.newaxis]\n",
    "X_test=X_test[...,np.newaxis]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "69089f82-0783-441b-9800-01dbb591fa75",
   "metadata": {},
   "source": [
    "# Conv1D Model for Emotion Recognition\n",
    "\n",
    "### Model Architecture\n",
    "\n",
    "The Conv1D model is designed to classify emotions based on audio features extracted using Mel-Frequency Cepstral Coefficients (MFCCs). The architecture consists of:\n",
    "\n",
    "- **Conv1D Layer**: The first layer has 64 filters with a kernel size of 3 and uses the ReLU activation function. It takes input with a shape corresponding to the MFCC feature dimensions.\n",
    "- **MaxPooling1D Layer**: This layer with a pool size of 2 reduces the dimensionality of the feature maps.\n",
    "- **Dropout Layer**: A dropout rate of 0.3 is used to prevent overfitting.\n",
    "- **Conv1D Layer**: The second Conv1D layer has 128 filters with a kernel size of 3 and uses the ReLU activation function.\n",
    "- **MaxPooling1D Layer**: Another pooling layer with a pool size of 2.\n",
    "- **Dropout Layer**: Another dropout layer with a rate of 0.3.\n",
    "- **Flatten Layer**: Flattens the feature maps into a single vector.\n",
    "- **Dense Layer**: A dense layer with 128 units and ReLU activation.\n",
    "- **Dropout Layer**: Dropout with a rate of 0.3.\n",
    "- **Output Layer**: A dense layer with a number of units equal to the number of emotion classes, using the softmax activation function to output probability distributions for each class.\n",
    "\n",
    "### Model Compilation\n",
    "\n",
    "The model is compiled using the Adam optimizer and categorical cross-entropy loss function, which is suitable for multi-class classification problems. The performance metric used is accuracy."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 72,
   "id": "04b67f11-b07f-42f9-9f23-73eb9b66ddfd",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\KIIT\\anaconda3\\Lib\\site-packages\\keras\\src\\layers\\convolutional\\base_conv.py:107: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n",
      "  super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n"
     ]
    }
   ],
   "source": [
    "\n",
    "model = Sequential([\n",
    "    Conv1D(64, kernel_size=3, activation='relu', input_shape=(X.shape[1], 1)),\n",
    "    MaxPooling1D(pool_size=2),\n",
    "    Dropout(0.3),\n",
    "    Conv1D(128, kernel_size=3, activation='relu'),\n",
    "    MaxPooling1D(pool_size=2),\n",
    "    Dropout(0.3),\n",
    "    Flatten(),\n",
    "    Dense(128, activation='relu'),\n",
    "    Dropout(0.3),\n",
    "    Dense(len(label_encoder.classes_), activation='softmax')\n",
    "])\n",
    "\n",
    "# Compile the model\n",
    "model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3d38d1f3-80a9-4343-af19-afcd416c0017",
   "metadata": {},
   "source": [
    "### Adding Channel Dimension for Conv1D\r\n",
    "\r\n",
    "In Conv1D neural networks, adding an additional channel dimension (`np.newaxis`) to input data like MFCC features (`X_train` and `X_test`) is essential. This adjustment ensures compatibility with Conv1D layers, which expect input shapes in the form `(batch_size, sequence_length, num_channels)`. The channel dimension allows Conv1D to effectively apply filters across the temporal dimension of the data, facilitating feature extraction and learning temporal patterns.\r\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "19484b99-108b-4a2f-8606-85eb8effeb41",
   "metadata": {},
   "outputs": [],
   "source": [
    "X_train = X_train[..., np.newaxis]\n",
    "X_test=X_test[...,np.newaxis]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9d45be4e-fb81-4331-b40b-357490e9c6c5",
   "metadata": {},
   "source": [
    "### Training the Model\n",
    "\n",
    "The model is trained using the training data (`X_train` and `y_train`). The training process involves:\n",
    "\n",
    "- **Epochs**: The model is trained for 100 epochs.\n",
    "- **Batch Size**: A batch size of 32 is used for each training step.\n",
    "- **Validation Data**: The model's performance is validated on the validation set (`X_test` and `y_test`) during training to monitor and evaluate its accuracy and loss.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 74,
   "id": "aee62dc0-cf5b-47b6-ab28-029e63ae9f21",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 1/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 8ms/step - accuracy: 0.1157 - loss: 7.4988 - val_accuracy: 0.1441 - val_loss: 2.0782\n",
      "Epoch 2/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.1531 - loss: 2.1160 - val_accuracy: 0.1441 - val_loss: 2.0756\n",
      "Epoch 3/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.1892 - loss: 2.0787 - val_accuracy: 0.1181 - val_loss: 2.0707\n",
      "Epoch 4/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.1655 - loss: 2.0423 - val_accuracy: 0.1910 - val_loss: 1.9951\n",
      "Epoch 5/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.1787 - loss: 2.0074 - val_accuracy: 0.1823 - val_loss: 1.9416\n",
      "Epoch 6/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.1839 - loss: 1.9711 - val_accuracy: 0.1979 - val_loss: 1.9443\n",
      "Epoch 7/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.1942 - loss: 1.9733 - val_accuracy: 0.2153 - val_loss: 1.9185\n",
      "Epoch 8/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.1962 - loss: 1.9873 - val_accuracy: 0.2378 - val_loss: 1.8989\n",
      "Epoch 9/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.2008 - loss: 1.9777 - val_accuracy: 0.2674 - val_loss: 1.8965\n",
      "Epoch 10/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.2237 - loss: 1.9245 - val_accuracy: 0.3125 - val_loss: 1.8432\n",
      "Epoch 11/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.2363 - loss: 1.9118 - val_accuracy: 0.3351 - val_loss: 1.8177\n",
      "Epoch 12/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.2540 - loss: 1.8811 - val_accuracy: 0.3299 - val_loss: 1.8050\n",
      "Epoch 13/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.2626 - loss: 1.8602 - val_accuracy: 0.3229 - val_loss: 1.7773\n",
      "Epoch 14/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.2709 - loss: 1.8392 - val_accuracy: 0.3542 - val_loss: 1.7595\n",
      "Epoch 15/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.2832 - loss: 1.8347 - val_accuracy: 0.3837 - val_loss: 1.6992\n",
      "Epoch 16/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.3186 - loss: 1.7459 - val_accuracy: 0.3976 - val_loss: 1.6929\n",
      "Epoch 17/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.3391 - loss: 1.7321 - val_accuracy: 0.4115 - val_loss: 1.6606\n",
      "Epoch 18/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.3241 - loss: 1.7384 - val_accuracy: 0.3872 - val_loss: 1.6148\n",
      "Epoch 19/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.3558 - loss: 1.6897 - val_accuracy: 0.4358 - val_loss: 1.5433\n",
      "Epoch 20/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.3464 - loss: 1.6552 - val_accuracy: 0.4358 - val_loss: 1.5463\n",
      "Epoch 21/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.3539 - loss: 1.6739 - val_accuracy: 0.4375 - val_loss: 1.5155\n",
      "Epoch 22/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.3673 - loss: 1.6462 - val_accuracy: 0.4688 - val_loss: 1.5297\n",
      "Epoch 23/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.3828 - loss: 1.6084 - val_accuracy: 0.4809 - val_loss: 1.4706\n",
      "Epoch 24/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.4081 - loss: 1.5665 - val_accuracy: 0.4670 - val_loss: 1.4687\n",
      "Epoch 25/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.3772 - loss: 1.5951 - val_accuracy: 0.4809 - val_loss: 1.4169\n",
      "Epoch 26/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.4141 - loss: 1.5487 - val_accuracy: 0.4844 - val_loss: 1.3917\n",
      "Epoch 27/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.4212 - loss: 1.5296 - val_accuracy: 0.5069 - val_loss: 1.3467\n",
      "Epoch 28/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.4191 - loss: 1.4857 - val_accuracy: 0.5347 - val_loss: 1.3098\n",
      "Epoch 29/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.4203 - loss: 1.4929 - val_accuracy: 0.5278 - val_loss: 1.2994\n",
      "Epoch 30/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.4440 - loss: 1.4514 - val_accuracy: 0.5451 - val_loss: 1.2825\n",
      "Epoch 31/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.4556 - loss: 1.4015 - val_accuracy: 0.5642 - val_loss: 1.2389\n",
      "Epoch 32/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.4843 - loss: 1.3758 - val_accuracy: 0.5503 - val_loss: 1.2232\n",
      "Epoch 33/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.4633 - loss: 1.3930 - val_accuracy: 0.5590 - val_loss: 1.2229\n",
      "Epoch 34/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.4870 - loss: 1.3590 - val_accuracy: 0.5764 - val_loss: 1.2046\n",
      "Epoch 35/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.4817 - loss: 1.3551 - val_accuracy: 0.5938 - val_loss: 1.1620\n",
      "Epoch 36/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.5026 - loss: 1.2994 - val_accuracy: 0.6007 - val_loss: 1.1363\n",
      "Epoch 37/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.5011 - loss: 1.3065 - val_accuracy: 0.6181 - val_loss: 1.1233\n",
      "Epoch 38/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.5183 - loss: 1.2644 - val_accuracy: 0.5990 - val_loss: 1.0996\n",
      "Epoch 39/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.5373 - loss: 1.2638 - val_accuracy: 0.6372 - val_loss: 1.0709\n",
      "Epoch 40/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.5638 - loss: 1.1969 - val_accuracy: 0.6493 - val_loss: 1.0466\n",
      "Epoch 41/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.5522 - loss: 1.1764 - val_accuracy: 0.6510 - val_loss: 1.0343\n",
      "Epoch 42/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.5634 - loss: 1.1854 - val_accuracy: 0.6458 - val_loss: 0.9844\n",
      "Epoch 43/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.5634 - loss: 1.1475 - val_accuracy: 0.6875 - val_loss: 0.9832\n",
      "Epoch 44/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.5888 - loss: 1.0973 - val_accuracy: 0.6771 - val_loss: 0.9465\n",
      "Epoch 45/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.5933 - loss: 1.1037 - val_accuracy: 0.6944 - val_loss: 0.8992\n",
      "Epoch 46/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.5968 - loss: 1.0746 - val_accuracy: 0.6840 - val_loss: 0.9157\n",
      "Epoch 47/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.6292 - loss: 1.0097 - val_accuracy: 0.7222 - val_loss: 0.8362\n",
      "Epoch 48/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.6108 - loss: 1.0316 - val_accuracy: 0.7344 - val_loss: 0.8298\n",
      "Epoch 49/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.6361 - loss: 0.9816 - val_accuracy: 0.7483 - val_loss: 0.8078\n",
      "Epoch 50/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.6402 - loss: 0.9807 - val_accuracy: 0.7326 - val_loss: 0.7480\n",
      "Epoch 51/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.6390 - loss: 0.9621 - val_accuracy: 0.7691 - val_loss: 0.7645\n",
      "Epoch 52/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.6421 - loss: 0.9360 - val_accuracy: 0.7361 - val_loss: 0.7458\n",
      "Epoch 53/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.6702 - loss: 0.8742 - val_accuracy: 0.7778 - val_loss: 0.7248\n",
      "Epoch 54/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.6831 - loss: 0.8708 - val_accuracy: 0.7743 - val_loss: 0.7021\n",
      "Epoch 55/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.6895 - loss: 0.8408 - val_accuracy: 0.7691 - val_loss: 0.6989\n",
      "Epoch 56/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.6986 - loss: 0.8491 - val_accuracy: 0.7483 - val_loss: 0.7095\n",
      "Epoch 57/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.6966 - loss: 0.7870 - val_accuracy: 0.7986 - val_loss: 0.6644\n",
      "Epoch 58/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7010 - loss: 0.7923 - val_accuracy: 0.7830 - val_loss: 0.6632\n",
      "Epoch 59/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.6859 - loss: 0.8124 - val_accuracy: 0.7847 - val_loss: 0.6348\n",
      "Epoch 60/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.7143 - loss: 0.7737 - val_accuracy: 0.8003 - val_loss: 0.6152\n",
      "Epoch 61/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7154 - loss: 0.7969 - val_accuracy: 0.7934 - val_loss: 0.6460\n",
      "Epoch 62/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.7492 - loss: 0.7217 - val_accuracy: 0.7847 - val_loss: 0.6135\n",
      "Epoch 63/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7147 - loss: 0.7626 - val_accuracy: 0.8194 - val_loss: 0.5998\n",
      "Epoch 64/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7455 - loss: 0.6917 - val_accuracy: 0.8229 - val_loss: 0.5715\n",
      "Epoch 65/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.7447 - loss: 0.7022 - val_accuracy: 0.8316 - val_loss: 0.5726\n",
      "Epoch 66/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.7659 - loss: 0.6705 - val_accuracy: 0.8229 - val_loss: 0.5652\n",
      "Epoch 67/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.7592 - loss: 0.6647 - val_accuracy: 0.8281 - val_loss: 0.5232\n",
      "Epoch 68/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.7637 - loss: 0.6515 - val_accuracy: 0.8316 - val_loss: 0.5361\n",
      "Epoch 69/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.7422 - loss: 0.6811 - val_accuracy: 0.8351 - val_loss: 0.5108\n",
      "Epoch 70/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7770 - loss: 0.6319 - val_accuracy: 0.8403 - val_loss: 0.4960\n",
      "Epoch 71/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7674 - loss: 0.6403 - val_accuracy: 0.8455 - val_loss: 0.5008\n",
      "Epoch 72/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.7764 - loss: 0.6190 - val_accuracy: 0.8559 - val_loss: 0.4857\n",
      "Epoch 73/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.7797 - loss: 0.6008 - val_accuracy: 0.8385 - val_loss: 0.4882\n",
      "Epoch 74/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.7803 - loss: 0.5882 - val_accuracy: 0.8507 - val_loss: 0.4673\n",
      "Epoch 75/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.7957 - loss: 0.5663 - val_accuracy: 0.8472 - val_loss: 0.4710\n",
      "Epoch 76/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.7779 - loss: 0.6297 - val_accuracy: 0.8507 - val_loss: 0.4922\n",
      "Epoch 77/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.7996 - loss: 0.5509 - val_accuracy: 0.8681 - val_loss: 0.4591\n",
      "Epoch 78/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.7974 - loss: 0.5581 - val_accuracy: 0.8646 - val_loss: 0.4398\n",
      "Epoch 79/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 8ms/step - accuracy: 0.7955 - loss: 0.5555 - val_accuracy: 0.8663 - val_loss: 0.4259\n",
      "Epoch 80/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.8027 - loss: 0.5486 - val_accuracy: 0.8611 - val_loss: 0.4192\n",
      "Epoch 81/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.8128 - loss: 0.5246 - val_accuracy: 0.8750 - val_loss: 0.4238\n",
      "Epoch 82/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.8240 - loss: 0.4724 - val_accuracy: 0.8872 - val_loss: 0.4158\n",
      "Epoch 83/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.8174 - loss: 0.5094 - val_accuracy: 0.8854 - val_loss: 0.3948\n",
      "Epoch 84/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8240 - loss: 0.4929 - val_accuracy: 0.8958 - val_loss: 0.3806\n",
      "Epoch 85/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8212 - loss: 0.4963 - val_accuracy: 0.9028 - val_loss: 0.3706\n",
      "Epoch 86/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.8229 - loss: 0.4730 - val_accuracy: 0.8872 - val_loss: 0.4016\n",
      "Epoch 87/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.8183 - loss: 0.4667 - val_accuracy: 0.8906 - val_loss: 0.3899\n",
      "Epoch 88/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.8255 - loss: 0.4798 - val_accuracy: 0.8854 - val_loss: 0.3904\n",
      "Epoch 89/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.8397 - loss: 0.4399 - val_accuracy: 0.8941 - val_loss: 0.3561\n",
      "Epoch 90/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.8457 - loss: 0.4585 - val_accuracy: 0.9010 - val_loss: 0.3516\n",
      "Epoch 91/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8544 - loss: 0.4099 - val_accuracy: 0.8976 - val_loss: 0.3647\n",
      "Epoch 92/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8394 - loss: 0.4442 - val_accuracy: 0.9010 - val_loss: 0.3880\n",
      "Epoch 93/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.8546 - loss: 0.4011 - val_accuracy: 0.9062 - val_loss: 0.3315\n",
      "Epoch 94/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8570 - loss: 0.4066 - val_accuracy: 0.8837 - val_loss: 0.3517\n",
      "Epoch 95/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8570 - loss: 0.4290 - val_accuracy: 0.8993 - val_loss: 0.3558\n",
      "Epoch 96/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.8609 - loss: 0.3896 - val_accuracy: 0.8906 - val_loss: 0.3549\n",
      "Epoch 97/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8593 - loss: 0.4013 - val_accuracy: 0.9010 - val_loss: 0.3377\n",
      "Epoch 98/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.8638 - loss: 0.3873 - val_accuracy: 0.9115 - val_loss: 0.3193\n",
      "Epoch 99/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8615 - loss: 0.3948 - val_accuracy: 0.9010 - val_loss: 0.3076\n",
      "Epoch 100/100\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.8638 - loss: 0.3963 - val_accuracy: 0.9010 - val_loss: 0.3422\n"
     ]
    }
   ],
   "source": [
    "\n",
    "history = model.fit(X_train, y_train, epochs=100, batch_size=32, validation_data=(X_test, y_test))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "669a85fe-8a7b-438c-8524-ae3ccec2be1f",
   "metadata": {},
   "source": [
    "### Model Evaluation\n",
    "\n",
    "After training, the model is evaluated on the test set to determine its final accuracy. The test accuracy provides an indication of how well the model generalizes to unseen data."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 75,
   "id": "6141387a-448a-4ba5-a8c3-0957658002b3",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[1m18/18\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.9008 - loss: 0.3352\n",
      "Test accuracy: 0.9010416865348816\n",
      "\u001b[1m18/18\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step\n",
      "True label: 5, Predicted label: 5\n",
      "True label: 2, Predicted label: 2\n",
      "True label: 3, Predicted label: 3\n",
      "True label: 1, Predicted label: 1\n",
      "True label: 1, Predicted label: 1\n",
      "True label: 1, Predicted label: 1\n",
      "True label: 7, Predicted label: 7\n",
      "True label: 0, Predicted label: 0\n",
      "True label: 3, Predicted label: 1\n",
      "True label: 2, Predicted label: 2\n"
     ]
    }
   ],
   "source": [
    "\n",
    "test_loss, test_acc = model.evaluate(X_test, y_test)\n",
    "print(f\"Test accuracy: {test_acc}\")\n",
    "predictions = model.predict(X_test)\n",
    "predicted_labels = np.argmax(predictions, axis=1)\n",
    "true_labels = np.argmax(y_test, axis=1)\n",
    "\n",
    "# Print some predictions\n",
    "for i in range(10):\n",
    "    print(f\"True label: {true_labels[i]}, Predicted label: {predicted_labels[i]}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8c2536e4-e80a-4168-9cd4-6da3ff687b49",
   "metadata": {},
   "source": [
    "\n",
    "# Model Training and Test Accuracy\r\n",
    "\r\n",
    "The following plot shows the accuracy of the Conv1D model over 100 epochs for both the training and test datasets.ndt)\r\n",
    "\r\n",
    "### Description\r\n",
    "\r\n",
    "- **X-axis (Epoch)**: Represents the number of training epochs. Each epoch is one complete pass through the training dataset.\r\n",
    "- **Y-axis (Accuracy)**: Represents the accuracy of the model. Accuracy is the proportion of correctly predicted instances out of the total instances.\r\n",
    "\r\n",
    "### Observations\r\n",
    "\r\n",
    "- **Training Accuracy (Blue Line)**: The training accuracy shows a steady increase as the number of epochs increases. This indicates that the model is learning and improving its performance on the training data.\r\n",
    "- **Test Accuracy (Orange Line)**: The test accuracy also shows an increase and follows a similar trend to the training accuracy. This indicates that the model generalizes well to unseen data.\r\n",
    "- **Model Performance**: The model achieves over 90% accuracy on both the training and test datasets after 100 epochs, demonstrating its effectiveness in classifying emotions from auficant overfitting.\r\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 60,
   "id": "2d7647a2-cc62-4c55-9f04-8c1705c53f66",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.legend.Legend at 0x1e6d7d53a10>"
      ]
     },
     "execution_count": 60,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAGHCAYAAAB27LHEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB3P0lEQVR4nO3dd1xV9f/A8dflspGhIFNkuBUnuHfm3qWZlaO0MnNl06wss/TXMFtaVurXXGRqWdogNWcuxIl7gQgioAyRde/5/XEEvDJkX668n4/Hfdx7P/dzzvnck/G+n61RFEVBCCGEECbBzNgFEEIIIUTRSeAWQgghTIgEbiGEEMKESOAWQgghTIgEbiGEEMKESOAWQgghTIgEbiGEEMKESOAWQgghTIgEbiGEEMKESOAWopSWLVuGRqNBo9Hw77//5vlcURTq1q2LRqOhW7duZXptjUbDu+++W+zjLl26hEajYdmyZWVaHiFE+ZPALUQZsbe354cffsiTvn37ds6fP4+9vb0RSiWEeNBI4BaijIwYMYJ169aRlJRkkP7DDz/Qvn17ateubaSSVR2ZmZlkZWUZuxhClCsJ3EKUkZEjRwKwevXqnLTExETWrVvHM888k+8xCQkJTJw4ES8vLywtLfH392fmzJmkp6cb5EtKSuLZZ5/F2dmZatWq0adPH86cOZPvOc+ePcsTTzyBq6srVlZWNGrUiK+//rpE3yktLY2XX36ZFi1a4OjoSI0aNWjfvj2//vprnrx6vZ4vv/ySFi1aYGNjg5OTE+3atWPjxo0G+VatWkX79u2pVq0a1apVo0WLFgYtFb6+vowdOzbP+bt162bQ1fDvv/+i0Wj48ccfefnll/Hy8sLKyopz585x/fp1Jk6cSOPGjalWrRqurq489NBD7Ny5M89509PTmT17No0aNcLa2hpnZ2e6d+/Onj17AOjRowcNGzbk3v2YsrtA+vfvX5xbKkSpmRu7AEI8KBwcHBg2bBhLlizh+eefB9QgbmZmxogRI1iwYIFB/rS0NLp378758+d57733aNasGTt37mTu3LkcPnyYTZs2AWqAGDJkCHv27OGdd96hdevW7N69m759++YpQ3h4OB06dKB27dp8+umnuLu789dffzFlyhTi4uKYNWtWsb5Teno6CQkJvPLKK3h5eZGRkcE///zDI488wtKlSxk9enRO3rFjx7JixQrGjRvH7NmzsbS05NChQ1y6dCknzzvvvMP777/PI488wssvv4yjoyPHjx/n8uXLxSrX3WbMmEH79u355ptvMDMzw9XVlevXrwMwa9Ys3N3dSUlJYcOGDXTr1o0tW7bk/ADIysqib9++7Ny5k2nTpvHQQw+RlZXF3r17iYiIoEOHDkydOpXBgwezZcsWHn744Zzr/vHHH5w/f54vvviixGUXokQUIUSpLF26VAGUAwcOKNu2bVMA5fjx44qiKErr1q2VsWPHKoqiKE2aNFG6du2ac9w333yjAMpPP/1kcL7/+7//UwDl77//VhRFUf744w8FUD7//HODfB988IECKLNmzcpJ6927t1KrVi0lMTHRIO+kSZMUa2trJSEhQVEURbl48aICKEuXLi3Wd83KylIyMzOVcePGKS1btsxJ37FjhwIoM2fOLPDYCxcuKFqtVnnyyScLvYaPj48yZsyYPOldu3Y1uH/Z97pLly5FLnePHj2UoUOH5qQvX75cAZTvvvuuwGN1Op3i7++vDB482CC9b9++Sp06dRS9Xn/f6wtRlqSpXIgy1LVrV+rUqcOSJUs4duwYBw4cKLCZfOvWrdjZ2TFs2DCD9Oxm4i1btgCwbds2AJ588kmDfE888YTB+7S0NLZs2cLQoUOxtbUlKysr59GvXz/S0tLYu3dvsb/T2rVr6dixI9WqVcPc3BwLCwt++OEHTp48mZPnjz/+AODFF18s8DwhISHodLpC85TEo48+mm/6N998Q6tWrbC2ts4p95YtW/KU29rausD/RgBmZmZMmjSJ33//nYiICADOnz/Pn3/+ycSJE9FoNGX6fYS4HwncQpQhjUbD008/zYoVK/jmm2+oX78+nTt3zjdvfHw87u7uef7wu7q6Ym5uTnx8fE4+c3NznJ2dDfK5u7vnOV9WVhZffvklFhYWBo9+/foBEBcXV6zvs379eh577DG8vLxYsWIF//33X86PkbS0tJx8169fR6vV5inT3bKbr2vVqlWsMtyPh4dHnrT58+fzwgsv0LZtW9atW8fevXs5cOAAffr04fbt2wZl8vT0xMys8D+FzzzzDDY2NnzzzTcAfP3119jY2BQa8IUoL9LHLUQZGzt2LO+88w7ffPMNH3zwQYH5nJ2d2bdvH4qiGATv2NhYsrKycHFxycmXlZVFfHy8QfCOiYkxOF/16tXRarWMGjWqwFqtn59fsb7LihUr8PPzIzg42KCM9w6eq1mzJjqdjpiYmHwDaXYegCtXruDt7V3gNa2trfOcH9QfHdn35G751XhXrFhBt27dWLRokUF6cnJynjLt2rULvV5faPB2dHRkzJgxfP/997zyyissXbqUJ554AicnpwKPEaK8SI1biDLm5eXFq6++ysCBAxkzZkyB+Xr06EFKSgq//PKLQfry5ctzPgfo3r07ACtXrjTIt2rVKoP3tra2dO/enbCwMJo1a0ZQUFCex7219vvRaDRYWloaBMeYmJg8o8qzB8rdGyjv1qtXL7RabaF5QB1VfvToUYO0M2fOcPr06WKV28rKyiDt6NGj/Pfff3nKnZaWVqSFaLIH+A0bNoybN28yadKkIpdHiLIkNW4hysG8efPum2f06NF8/fXXjBkzhkuXLtG0aVN27drFhx9+SL9+/XJGMPfq1YsuXbrw2muvcevWLYKCgti9ezc//vhjnnN+/vnndOrUic6dO/PCCy/g6+tLcnIy586d47fffmPr1q3F+h4DBgxg/fr1TJw4kWHDhhEZGcn777+Ph4cHZ8+ezcnXuXNnRo0axZw5c7h27RoDBgzAysqKsLAwbG1tmTx5Mr6+vrz55pu8//773L59m5EjR+Lo6Eh4eDhxcXG89957AIwaNYqnnnqKiRMn8uijj3L58mU++uijnBp7Ucv9/vvvM2vWLLp27crp06eZPXs2fn5+BvO8R44cydKlS5kwYQKnT5+me/fu6PV69u3bR6NGjXj88cdz8tavX58+ffrwxx9/0KlTJ5o3b16seylEmTH26DghTN3do8oLc++ockVRlPj4eGXChAmKh4eHYm5urvj4+CgzZsxQ0tLSDPLdvHlTeeaZZxQnJyfF1tZW6dmzp3Lq1Kk8o8oVRR0x/swzzyheXl6KhYWFUrNmTaVDhw7KnDlzDPJQxFHl8+bNU3x9fRUrKyulUaNGynfffafMmjVLuffPh06nUz777DMlICBAsbS0VBwdHZX27dsrv/32m0G+5cuXK61bt1asra2VatWqKS1btjQoh16vVz766CPF399fsba2VoKCgpStW7cWOKp87dq1ecqcnp6uvPLKK4qXl5dibW2ttGrVSvnll1+UMWPGKD4+PgZ5b9++rbzzzjtKvXr1FEtLS8XZ2Vl56KGHlD179uQ577JlyxRAWbNmzX3vmxDlRaMo96wqIIQQIl+PPvooe/fu5dKlS1hYWBi7OKKKkqZyIYQoRHp6OocOHWL//v1s2LCB+fPnS9AWRiU1biGEKMSlS5fw8/PDwcGBJ554gq+++gqtVmvsYokqTAK3EEIIYUJkOpgQQghhQiRwCyGEECZEArcQQghhQqrcqHK9Xs/Vq1ext7eXzQGEEEJUCoqikJycXKS186tc4L569Wqh6yQLIYQQxhIZGXnfjXiqXOC2t7cH1Jvj4OBg5NIIIYQQkJSUhLe3d06MKkyVC9zZzeMODg4SuIUQQlQqRenClcFpQgghhAmRwC2EEEKYEAncQgghhAmpcn3cRaEoCllZWeh0OmMXxWRptVrMzc1lyp0QQpQxCdz3yMjIIDo6mtTUVGMXxeTZ2tri4eGBpaWlsYsihBAPDAncd9Hr9Vy8eBGtVounpyeWlpZSYywBRVHIyMjg+vXrXLx4kXr16t13QQEhhBBFI4H7LhkZGej1ery9vbG1tTV2cUyajY0NFhYWXL58mYyMDKytrY1dJCGEeCBINSgfUjssG3IfhRCi7MlfViGEEMKESOAWQghReSVFw7UTxi5FpSKBWxSoW7duTJs2zdjFEEJUVVnp8P3DsKgDLOkL57eCohi7VEYng9MeAPcb+T5mzBiWLVtW7POuX78eCwuLEpZKCCFKKXwjJF1RX0fsgR+HglcQdH0N6vWCKjrrRwL3AyA6OjrndXBwMO+88w6nT5/OSbOxsTHIn5mZWaSAXKNGjbIrpBBCFNfBH9TnNs+BRguhSyHqIKx6DDyaQ5dXoUF/qGIDYavWty0BRVFIzcgyykMpYpOQu7t7zsPR0RGNRpPzPi0tDScnJ3766Se6deuGtbU1K1asID4+npEjR1KrVi1sbW1p2rQpq1evNjjvvU3lvr6+fPjhhzzzzDPY29tTu3ZtFi9eXJa3WwghVNdOQMR/asDu9BL0nQfTjkGHKWBhB9FHIPgp+Kaj2oRehUiN+z5uZ+po/M5fRrl2+Oze2FqWzX+i119/nU8//ZSlS5diZWVFWloagYGBvP766zg4OLBp0yZGjRqFv78/bdu2LfA8n376Ke+//z5vvvkmP//8My+88AJdunShYcOGZVJOIYSRKQr88TpcOw4jVoCtkVreDi5Rnxv2AwdP9XU1V+j1PnScBnsXwv7FEBsOq0bAuL/Bs2XZliEtEW7fgOq+ZXveUpIadxUxbdo0HnnkEfz8/PD09MTLy4tXXnmFFi1a4O/vz+TJk+nduzdr164t9Dz9+vVj4sSJ1K1bl9dffx0XFxf+/fffivkSQojyt+8b2P8tXN4N/7yb93O9HvZ9C8fXlV8Z0lPgSLD6Omhc3s/tnKHH22oNvF5v0GXAT6MhNSFv3vu1XBb0eewp+Ko1fN4CwlbknyctEW5cKvz85UBq3PdhY6ElfHZvo127rAQFBRm81+l0zJs3j+DgYKKiokhPTyc9PR07O7tCz9OsWbOc19lN8rGxsWVWTiGEEUXsg7/fyn1/6H/Q4kmofVcr3O4FsOU99bWZBTQeVPblOPYTZCRDjTrg17XgfDZO8MhiWNxVDaAbJsDINWqfty4Tdi2APV+CT3u1P7zWXX8Hr4TCjo/h8h7oMEmtxZvf2Vch5jgsHwypcer7X19Uzxf0dO7xp/+E319SWwHGbwFtxYVTCdz3odFoyqy52pjuDciffvopn332GQsWLKBp06bY2dkxbdo0MjIyCj3PvYPaNBoNer2+zMsrhFGE/g+iD0OfeWBuZezSVKyU67B2LOizoMlQsLRTa5q/vwTPbwetBVzcAVvfzz3m1xfBrQk418lNizsL2/8PGvZXz1NcigIH7jSTBz1z/4FnNk7w2HL4viec/Qt2zYe6PeDXSWpzP8CZP9WHf3doPhKOrjHsF9/2AZz4BQZ/qfap/zhEbSL3aA5egWqz/e/T1OAd8IjalXD8Z/VYC2tIioLqPsX/riVk+hFJlMjOnTsZPHgwTz31FKBusHL27FkaNWpk5JIJYSRXD6t/nBU9uDczrF096PQ6WDcOkq+CS30Y9CVkZcCpzRB7Qm0+DxgGPz+j3p9mj8PNCHWK1k+jYVwIWNrC2RD4eRykJ8KxtXD7ZvHv45UDcO0YmFtDiyeKdoxHc+j/CWycrAbhbR+o5bSpAQ/NhKgwNVhf2KY+QA3QzR9Xa+Fb56jf8/uHwcIWMlLUaWdPrQNrR/VHzJ4v4Y9X1bzpiaAxg/YvQrc31e9egSRwV1F169Zl3bp17Nmzh+rVqzN//nxiYmIkcIsHmy4Lbl42rCGCGrh+f0n9Yw+wdxEEjq1c84RvxanBoiwGi2XeVgPk9dNw/RRcDYOoUDVoPbYcrOzBCug5GzZOgm1z4cQGuHUd3AJgwGdq/+63XdRa7aaXoWaDO33iCth7qj8CsmupbZ+7f5nSEuHMX/Df1+r7Jo8U77u2Gq029R++0x8d8Cj0+T+oVhNao8793r0Azm8D/67qSPXsQWeNBuXWojNSwLsdPLkWrB3Uz3u+D1or2PmJGrRdG8Pgr9TauBEYPXAvXLiQjz/+mOjoaJo0acKCBQvo3Llzgfm//vprvvrqKy5dukTt2rWZOXMmo0ePrsASPxjefvttLl68SO/evbG1teW5555jyJAhJCYmGrtoQhRdVgb89xXUbq/2Y97P3zPV2mPbCWpzeHZgDl0KVw+BlYPaVBt3Gs5vgboPF37t0KVqk6pLfajZUP1BUJImdl2WGhjjz6rNud5tc5uI48/DzvlqjdGmBrywRw1GBmVJV++DtRM0HAD2bnmvkZ4CZ/+G8F/VmnHmrXsyaGDgF+B614/3Fk/C4ZXqtKyoUPX+PLZcrWFa2sKwJbB8EBxZlXtMqzHQ72O1ST27lqrPVGund3/fG5fUHw1xpyFiL1z4Vx1kBmqQbDeh+Pex/yfqfwP3plCvp+Fn1X3UHxz5sXOBYT+ozehXw6DdC2BV7a5bo1EHwznXhfRk9Udddn+4EWiUok4WLgfBwcGMGjWKhQsX0rFjR7799lu+//57wsPDqV27dp78ixYt4vXXX+e7776jdevW7N+/n2effZZVq1YxcODAIl0zKSkJR0dHEhMTcXBwMPgsLS2Nixcv4ufnJ9tQlgG5n6Lc7fpMreVZOagBzcm74LxJ0fB5s9zgEPQM9PtUrUV+1VqtSfX7RA2U+xZBnR4wan3+58pMU5uIz94zVVSjVYNu40HQaCA41iq8/FkZakDeOR9uXMxNr+amBuD0JHX0tnLXOJLmI2HoN4bn+WumGrjVQqg/ZBr0haw0NTheP6MGSN1dY1gcvNQm5uwfHbWCwKVe3jJeC4dvO6t934/9mHcw2s756mA1M3P1x1Dr8WqgUxS1WXnnJ2o+87sWgtJlgKLLey2X+tB4MDQdrtbgy1nwgQi+3HqOzx9vSaBP9XK/XmEKi033Mmrgbtu2La1atWLRokU5aY0aNWLIkCHMnTs3T/4OHTrQsWNHPv7445y0adOmcfDgQXbt2lWka0rgrjhyP0W5uhUHX7RUgxuAXxcY9WvBg5myg5tDLXUwEQq0fEptNj6+Tp0DPH6L2nf7RUv184n7wPWeNQoyUiH4SXVwk7k1NB4CCefV4Jh+T4uVVxAMmK8GyHtd3AG/TITESPW9rTP4dIQL2/Oep15vaDQANk5RyzXmd/C70zJ5aRcsG6CmuzVV+4cLUsNfDYyNBqnft6hdARd3QmYq1M9nho1eD+G/qOf2bJH38+0fw78fGv74ADWQ17zzo8G1EdTvm/del6PE25l0/r+tJKVl0dDdnk1TOqM1y70fer3CxJWHCI9OYuX4tnjXyNuPnZapw8rc7L7LThdFcQK30ZrKMzIyCA0N5Y033jBI79WrF3v27Mn3mPT09DwBwMbGhv379xe4jGf2NKdsSUlJZVB6IYTR/TtXDdou9SHxihoID3wHbZ/Pmzc1AQ4uVV8P+AzSbsKG53Pn52rM1HQzLdTwU0dEn/pdrXkP/Dz3PBm31MU+Lu1U+4OfCFZ/MIBaw7wZAac3q83REXvV5Tl/fgYm7lVHZWdLT4F14yHlGti5QscpaguApZ1aC7+4HU7+ptZKWz+bGxCvHlaXAd00HSbsBl26GvxRoOUotd/1ZqR67MXtatN6zQa5j+p+Jeu39yu4+xIzM3WkdUG6vgqtx6l9xznHmEM1d6MuVbps9yWS0rIAOBWTTPCBSJ5om9vSu2LfZf48EQPAtODDBD/XDnNtbnnTMnU8vfQA/jXteH9wAGZmpQ/eRWW0uxYXF4dOp8PNzbAvxs3NjZiYmHyP6d27N99//z2hoaEoisLBgwdZsmQJmZmZxMXF5XvM3LlzcXR0zHl4exfSlCaEMA3XT+cG4v7z1UFUACGzIO5c3vz7v1P7dN3u9H02e0ztn9XcWSuh9XjDVbfaTVSfj6zJXdQjYi/8b6AatC3t4an1uUEb1IBY3UftH33mT3jpBNi6QPy53LJm2/OFGrSdfGDqYegwWQ3aoPad1usJg76AwV8b1mJ7vAN2NSHujHqOv99SB9s51obeH6p5nLyh/UT1R8XQRdBpmtpsXsPfeIPtbGuAU+3ch4OnUYN24u1Mvt91AYDO9VwA+PTv0ySlZQIQEZ/KvD9OAWCmgdDLN/hia+6/q4wsPRNXHuK/C/H8evgqlxNSK7T8Rl857d4mBkVRCmx2ePvtt+nbty/t2rXDwsKCwYMHM3bsWAC02vwXK5kxYwaJiYk5j8jIyDItvxDCCP5+W62NNuin1gaDxoF/N8i6rdakdVm5eTNuqQPSQA1i2X9fmgyF0b9C1zfg4XcNz+/TQZ0SlpUGf72pNkUv6X1ngJYjjNpw/8Fwjl7QfYb6+t+56tQogKSrsPsL9XXP93IDdlHYOOUG6H/nQegy9fWQr3NHQIv7WrLrIslpWdR3q8b3Y4KoU9OO+FsZfLX1HHq9wmvrjpCaoaOtXw0+G9ECgK+2nmX/xQR0eoWXfjrM1lOxWFuYsWRsa/xcivHfsAwYLXC7uLig1Wrz1K5jY2Pz1MKz2djYsGTJElJTU7l06RIRERH4+vpib2+Pi4tLvsdYWVnh4OBg8BBCmLDz29RBYWbmuTVtMzO1dmrlqDZPrx+vDjIDdVGV2wlqM3HjIYbn8uusBtd7g6dGkzsK+shqtZZtZqFOOZqwE7xbF62srcaCSwP1+js/VdO2zlF/YHi3zVueomg6XK3p69XaIW1fMKz5P4Bu3Mpgx5nrfL3tHC+sCOXdjSeITUor0bkSb2eyZLc6EHBqj/pYmWt5a0BjAJbuvsjcP06y90ICNhZaPhrWjMEtvBgWWAu9AtPWhPHK2iNsOhqNhVbDt6OCaONX8Wu5G62P29LSksDAQEJCQhg6NHd1nZCQEAYPHlzosRYWFtSqpY7WXLNmDQMGDMCsim3rJsQD4/Qfav90qzGFD07SZcHlXep8W1Br2XePgnasBf0/VYP2iQ1qP3PAMHXwFkDHqcVblrLJI3dGe19SA3bHqYWPWs+P1lzdFGPVY2qt37sNHL4zdarXByVrutZo1O6B7x5Sm50fnlX8c1RyaZk69l9M4N/T19l+Jpbz1++dugY/HYxkYrc6jO/sj3Uxlof+4U5tu4GbPX0D3AHo3sCVbg1q8u/p63y3Uw3qr/dpgI+z+oPuvUFNCL18g4txt9gQFoWZBr4c2ZKu9WsWeJ3yZNR53NOnT2fUqFEEBQXRvn17Fi9eTEREBBMmqPP3ZsyYQVRUFMuXLwfgzJkz7N+/n7Zt23Ljxg3mz5/P8ePH+d///mfMryGEKKlDP6qrXaGoi540HqSuKe3eVF24I+ECxJ6Ec//AqU1qzRXU1ay6vp73fM2Gq4PLtn+k1sqP/aSmV3Mv+ipc2cwt1aU+FX3xmrPvVa+Xut72xe3qFDIUdXGQotba8+NST91gw9wKLGzun78cXUtK45GFewjyrc6CES3ydHVGJqTy9bZz9GzsRo9G+bem3u3rbef4cutZ0jINR6H7u9jRtJYjjTwc+OtEDGERN/nk7zOs3h/JC93q0CfAHZdqhc+hT0zNZOmuO7Xth+sZDCh7q38jdp6NQ6dXaONbg9HtfXM+s7My54vHW/LIot1k6hQ+HtacPgEe9/0u5cWogXvEiBHEx8cze/ZsoqOjCQgIYPPmzfj4qGu+RkdHExERkZNfp9Px6aefcvr0aSwsLOjevTt79uzB19fXSN9ACFFiB+6MjgZ1Na5rx9Vacviv6opWiVfUucN3s3VWR3y3fUHdISo/tYLgyZ/UEdg7PlZX43p4VskWRimLoKjRQO8P4JvO6o8ArRX0KINaso1T6c9RBlbtiyDq5m2iDt8m0Ke6QcBLy9Tx7PKDnIpJZs2BSAY192TWwMY4FxBgt52K5eO/TgPg5mBFt/pqTbhDHRccbXNH5T/fxZ+NR67yf3+cIurmbd765Tjv/HqcNn416BvgwZAWXgb5QZ3e9c7G4ySnq9O/+jRxN/i8rqs9r/dpwKZjMXwyvHmeUeJNazny64udyNDpaeHtVIo7VnpGncdtDDKPu+LI/RQF2vsN/HmnxtxuojrgKjZc7Qc+vh6482fJspo6jcmzlbqgiU/H4u/CpCiVY+nSjVPU3bY6TX9gmrd1eoXO/7eVq4lqf7OVuRmbpnSirqs9ADPWH2X1/kjsrcy5lZGFXoHqtha8O6gJg5p7GtTO41LS6bNgB3EpGYzt4MusgY3vOz/6doaOFXsvs/HIVY5F5c5993S0ZvHoIAK8HAF10PPbvx5nxd4ItGYa/vd0GzrVy39clLGYzAIsxiCBu+LI/RR5KArs+AS2zVHfd5wKD79nGFgTLqr9yi711NW9KkPQLQu6TIjcB7U7GHUqVFn693QsY5cewMnWgiaeDuw+F08TTwc2TOzIH8ejmbrmMBoNrBjXFntrc177+SinYpIB6N/Ugw8faYqjjQWKovDs8lD+OXmN+m7V2DipU7H6rUFtkv/zeAwr9l3mcnwqVuZmfDSsGYOaezLvz1N8u/0CGg0sGNGCwS28yuN2lEpxAveD8a+nitNoNIU+sqfMlYSvry8LFiwos7KKKizjFvz8dG7Q7vJq3qANah91ne7qYLMHJWiDugCLbyeTC9qJqZnM+T2cDzaFo9Mb1vOCD6jTa4e29GL+Yy1wsrXgxNUk3lh3lDfXqyu4Te5el451XWhWy4nfJnfi5Z71MTfTsOlYNP0+30no5RusORDJPyevYak1Y8GIlsUO2gDeNWx5tos/Gyd1onuDmqRn6Zm65jBPfr+Pb7erc7Y/GNK0Ugbt4jL6JiOi9KKjo3NeBwcH884773D69OmcNBsb4w5eEVXMlYPqICznuupgs4YD1fnQa55Ul+M0s1A3oahK22aWgZ1nr6PTK3Rr4FrsYzOy9Ow4cx0rCzNq2FnibGdFDTtLLM0L/xHx5/EY3v71ONeT1dUnXapZ8XxXdWe1uJR0QsKvATCitTduDtbMe6QpE1YcYn1YFABt/GowpUfuyH8LrRmTe9Sjc/2aTFkdRkRCKo99+x/md/qTX+3dgMaepZuy62hjwfdjWvPJ36dZ9O959pyPB2Bmv0YGK6OZMgnc96Mo6hq9xmBhW6Qah7t77iALR0dHNBqNQdpvv/3Gu+++y4kTJ/D09GTMmDHMnDkTc3P1P/+7777LkiVLuHbtGs7OzgwbNowvvviCbt26cfnyZV566SVeeuklQO0rElXA/u/UzTc6v1L8XZB2fKKuBZ4UpY6k3vSK+m8585a66tdjPxZtJy+RY8+5OEb9sB+Ax1t78+6gJnlqpRlZeiy0mnwXtXp93VE23Amm2SzNzXi6oy9THqqHnZVhKIhNSuO938LZdEytFLhUsyIuJZ1P/z5DtwauNHC3Z/2hK2TpFVp4O9HQXQ22fQI8GB5Yi7WhV6hhZ8kXj7c0WCY0WwtvJ36f0om3Nhxn45Gr6PQK7f2dGdfJr3Q36g6tmYbX+zSkkYcDn4Wc4bEgb57t4l8m564MJHDfT2YqfOhpnGu/ebV001CAv/76i6eeeoovvviCzp07c/78eZ57Tt0bd9asWfz888989tlnrFmzhiZNmhATE8ORI0cAWL9+Pc2bN+e5557j2WefLfXXESYifCNsfkV9HX0Ehv8PLIo4RiE5Rt06EtRBWBe3q6uNZd5SN9oYsbL4c6GruOS0TF79+WjO+zUHIjkWlciiJwPxrmHD3gsJrNx3mb9OxNCprguLngo0COo/HYxkQ1gUWjMNdWtWI/5WBjdSM8jI0vPt9gv8dvgq7wxsQu8mbuy/mMDKfRH8cTyaTJ2C1kzD8138mdKjHhNXHmLrqVim/3SYDRM7suZOM/njrQ3/e743uAm1a9jSvaEr7o4F/7txsLbg88db0L1hTXafi+e13g3KfL3vQc09GdTcSH+/y5EE7gfcBx98wBtvvMGYMWMA8Pf35/333+e1115j1qxZRERE4O7uzsMPP4yFhQW1a9emTZs2ANSoUQOtVou9vb1BDV48wFJi4fdpue/P/AlrRsLjq4o2NerIanUpUu+2uSOnE6+oU7Pq9jD6nGNT9P7v4UTdvE3tGra81b8Rb6w/xomrSQz4cicu9lZcuGtxkm2nr/P8j6F8O0oN3qdjkpm18QQA03vW58XudQF1atTWU7G8+9sJrty4zYQVodS0t8ppEgdoWduJ9wcH5IzMnvdIU3ot2MGJq0k8/+NBLly/ha2llgH3BEZbS3Mm39U8XhiNRsPQlrUY2vI+258KAxK478fCVq35GuvapRQaGsqBAwf44IMPctJ0Oh1paWmkpqYyfPhwFixYgL+/P3369KFfv34MHDgwpxldVCGKAr9Ng9R4dV51z/cgeJS6feWqx2DYUjUIx51RN87w7Wy4a5Si5O621XJUbrpjrfvvS13FnItN4YddFzkVk8ScIQE08XTMN98/4df46eAVNBr4ZHhz2vjVoGktRyauPERYxE2S0rKws9QyuKUXgbWr89Yvx9l+5joTVx7is8da8OKqQ6Rl6ulSvyYv3OmbBjAz0/BwYzc61nXh623n+HbHea4np2NjoWVIS0+eaOND01qGZXJ1sGbOkAAmrQpj2+nrAAxs5kk1K/lbUdHkjt+PRlPq5mpj0uv1vPfeezzySN5t96ytrfH29ub06dOEhITwzz//MHHiRD7++GO2b9+e7zap4gF2ZDWc3qQOHhv6LbgHwFPrYOVwdUnSj+sY5t/zJUzYBc530iP3qQHdwg6aDKnw4hvbpbhbTA0+TDu/GrzSuwEW9/TtKorCf+fj+X7XRbaeis1JH7v0ABsmdqBWdcMf6gm3MnjjzsjsZzv756yJ7eFoQ/Bz7Vn+3yVsLc0Z1CI3eHo62fD0sv1sPRVLt0+2cSM1E1d7K+Y/lndBEQAbSy2v9G7A8KBanI5Jpl0dZxysC/7/fkAzT/46cY3fjqiVmRFtpNvDGCRwP+BatWrF6dOnqVu3boF5bGxsGDRoEIMGDeLFF1+kYcOGHDt2jFatWmFpaYlOp6vAEgujuBmZuwZ49xlq0AZ1l6xRG9Q9qG8nqCuXZW+acf0U/PICPP2Huo/1oR/VY5oMBSt743wPI3r/93CORN5UH1dusvDJQGrYqQP7zl9PYdavJ9h1Tt1+WKOBno3cuByfyulryYxdeoB1EzrkrPZ1PTmd6T8dJi4lnfpu1Zjes77BtSzNzRjfOe9gq/Z1nPl+dGvG/e8AN1IzMdPAFyNb3ncpUB9nu5x1ue/7PQc34cL1FDydbGhp5BXEqioJ3A+4d955hwEDBuDt7c3w4cMxMzPj6NGjHDt2jDlz5rBs2TJ0Oh1t27bF1taWH3/8ERsbm5xlZ319fdmxYwePP/44VlZWBe7CJkzc5lcgPQlqtYYOUw0/824Dr5yBtESwu/Pf/2YELOyg1rL3fKHuZ31ig/pZq1FUNf+dj2fLqVi0Zhqszc3YeyGBQV/t4ouRLdl2KpZvt18gQ6fH0tyMx1t783RHP/xc7IhOvM3Qr/dwLjaF5348yLKn2/BzaCQf/XWa5LQsLLQa5j/WoljzmjvVc+G70UHM2RTOqPa+tPMvYGnYEnKytWTTlM73zyjKjQTuB1zv3r35/fffmT17Nh999BEWFhY0bNiQ8ePHA+Dk5MS8efOYPn06Op2Opk2b8ttvv+HsrP7PPnv2bJ5//nnq1KlDenq6TAd7ECVcUAehoYHBC/NfUlRrkRu0Qd2Vqu88+PVF2PahOqgt8xY411MHpj2g0jJ1WGjN0N7V7KzXK8z94yQAT7Spzaj2Pjy7/CCX41N5ZOGenHzdGtRk9qAAajvnNol7ONqw9OnWPPbNf+y7mEC7uVtIvK1u1xng5cAHQ5rmDA4rji71a/J3/a4l/ZqikpMlT+8iS3SWLbmfJmLrHHUzjjoPqc3iRaUosHoknPkjN+3h96DTtDIvYmUQmZDKo4v2YKE147vRQTkLhWw8cpUpq8Ows9Ty76vdqWlvxc3UDCavDmPn2Tg8HK2ZdWe6VUFrb+8+F8eYJfvJ0ivYW5vzau8GPNnWx+AHgniwFWfJU6lxC1GV6XW5+0O3LGYTt0YDAz+HhfvUPm+NFpo/XvZlrASydHqmrgkj9s50qeHf7OHLJ1rSsa4LH/91CoDnu9ahpr3al+xka8myp9sQFnGDxp4O2FoW/qe2Y10Xloxtzb6L8Yzp4IurvfzQFQWTwC1EVXZ+m7rCmU11dbvM4rJ3U4P32jHqHtP2D+Z8/8+3nOVQxE3srcxp7OnAvosJjP/fQTrVq0lkwm1q2lsxvrPhql9aMw1BvjWKfI0u9WvSpX7Nsi66eACZ1mr3Qoj8RR2Cz5rC6ifU13e7dgLWPg2fNIAzfxt+FnZnJHjTx0q2XzWo65G/FA6Dvy7Z8ZXcf+fj+WrbOQA+fKQpK8a3ZUSQN3oFdpxR5zNP71n/vrVqIcqK/EsTwtTp9bDpZUiMUB+nN0Hdh6HlU3DsZzj1e27edePh+X+hhj/ciodTm9T00o4Ed/Ao3fGVQEp6FqGXb5BwKx1/l2rUca1GZpael4IPoyjwWFAtBt5ZJWzeo03xq2nHvD9OEeDlwPBAWWBGVBwJ3PmoYuP1yo3cxwpyfB1cPQSW1dTm7mM/w7l/1AcAGmg8WF31LOrOzl3jQuDYT6DPVNcQd29q1K9gLOevpxB8IJJ9F+I5fjUpz7aV1azMSUnPwt/FjncHNclJ12g0TOhahyEtvHCwMc93Iw0hyosE7rtkrxSWmpoqW2GWgdRUdVc1WYGtiDJvQ1Y62DgV75gt76mvO01T97ju9gbs+gzObQGfjtDlFajZABKj4NvOEHMMNr+a26Re3EFpJkSvV7iWnIarvXWeEdq/hEUxY/0xbmfmLjDkXcMGT0cbLsTd4npyOinpWVhqzfhiZMt8m8IL20RDiPIigfsuWq0WJycnYmPV5QhtbW0LnL4hCqYoCqmpqcTGxuLk5IRWW/TFI6q0FcMgYg80eUQNtq6N7n/M3kWQGAkOXtDuRTWthj8M+jJvXkcvePQH+HFobt+21gqaDiu771BJpGXq2BAWxfc7L3D++i18nW15ppMfwwJroTXT8P7v4azYGwFAO/8ajGjtTVs/Zzydcn+w30zN4FxsCjXsLPGvWc1YX0WIPGQe9z0URSEmJoabN29WfOEeME5OTri7u8uPn6JIT4G5XoZpjQZB19dzlx+9V8p1+KIlZCSra4sXdSrW9o9h2xz1ddPh8Oj3JS93JZOakcXiHRf48b/LxN/KyPO5k60FrvZWnLmWAsCUHvWY2qOezJcWRifzuEtBo9Hg4eGBq6srmZmZxi6OybKwsJCadnFcP60+21RXd906uVF9nPodOkyGbjPybon571w1aHu0UEeFF1XnlyH6sLpaWtsJZfUNKoSiKOy/mICjrQUN3Q3/uIVfTWLy6kOcv7PNpZeTDU939GVQc0/+OB7Dkt0XuRyfys3UTJxsLfhsRAu6N3A1xtcQolSkxi1EZRC2En6dqAbtsb9D7El1KdGTG9XPa9RRm7/dmqgBN3yjumKZooexm8G3Y/Gup9era5MXpz/dyE5GJzFnUzi7z8UD0KGOM8929qdr/Zr8uPcyH2w+SUaWHjcHK97q35i+Ae4Gg8Z0eoWQ8GuEXk5gdHtfvGuUfttcIcqK1LiFMDXX1bWuc/q1XRvBiB/h9B/w+0uQcB6W9VO33NTf1RLUanTxgzaAmZnJBO24lHQ+/fsMwQci0CtgqTVDpyjsOR/PnvPxONtZ5jSL92joysfDm+fsynU3rZmGPgHu9Al4MBeJEVWHBG4hKoPspvKaDQ3TG/RVt9b8+2049D81aNdspC560miQWgM3cSv3XWbLyVhe69MgT/P3gUsJPLf8IDdS1R8r/Zt68EbfhpiZaVi2+yJr9kcSfysDS60Zb/RtyNMdfWVMhXjgSVO5EJXBZ03VxVMKa/ZOuKA2cbsUvLd6ZbD/YgJPL93PjH6NeKqdT6F5z8Wm0GfBDrL0CtYWZsx9pClDW6qLmfwSFsVrPx8lQ6enobs9swcH0MbPcAnR5LRM/jweQ7NaTjRwr3p7gIsHhzSVC2FK0lPUoA2FTwGr4V8x5SmlFXsvcytDx4J/zjA8qBZW5gUPUvxgUzhZegU7Sy23MnS8FHyEg5du4FzNii+2nAWgTxN3PhvRAhvLvOext7ZgeJB3uX0XISojoy/3s3DhwpxtHwMDA9m5c2eh+VeuXEnz5s2xtbXFw8ODp59+mvj4+AoqrRDlIO5OM7ldTbAt+qYUlVGWTs/2O+t3x6VksPlYdIF5/z0dy7bT17HQatg4uRNTe9RDo4GV+yJygvbzXf1Z+GSrfIO2EFWVUQN3cHAw06ZNY+bMmYSFhdG5c2f69u1LREREvvl37drF6NGjGTduHCdOnGDt2rUcOHCA8ePHV3DJhShDseq2kHn6t01QWORNEm/nDp77357L+ebL1OmZs0kdkDe2gy91albjpZ71WTq2NU62FmjNNMx9pCkz+jbCTOZYC2HAqIF7/vz5jBs3jvHjx9OoUSMWLFiAt7c3ixYtyjf/3r178fX1ZcqUKfj5+dGpUyeef/55Dh48WMElF6IMXX9wAvfWU+qqg53qumCpNeNw5E2ORN7Mk2/VvoicVckmPVQvJ71bA1e2v9qdna91Z2Sb2hVVbCFMitECd0ZGBqGhofTq1csgvVevXuzZsyffYzp06MCVK1fYvHkziqJw7do1fv75Z/r3L3gf4fT0dJKSkgweQlQq2YHb1fQD97Y7gXtYYC0GNFN3DPvfnksGeW6mZvDZP2cAdTtMRxvDtewdbSwMlh4VQhgyWuCOi4tDp9Ph5uZmkO7m5kZMTEy+x3To0IGVK1cyYsQILC0tcXd3x8nJiS+/zGdd5jvmzp2Lo6NjzsPbWwayiErmAalxR928zamYZMw00LV+TUZ38AXg96PRxKWkA+qSpK/+fJSbqZk0dLfn8dby/6MQxWX0wWn3zrlUFKXAeZjh4eFMmTKFd955h9DQUP78808uXrzIhAkFL9s4Y8YMEhMTcx6RkZFlWn4hSiU9BW7eGdNRswibilRi2bXtlrWrU93OkhbeTjT3diJDp2fN/giu3Ehl2KL/CAm/hoVWw7uDmsh2mEKUgNGmg7m4uKDVavPUrmNjY/PUwrPNnTuXjh078uqrrwLQrFkz7Ozs6Ny5M3PmzMHDwyPPMVZWVlhZWZX9FxCiLMSpTcbY1QQ7Z+OWpYiS0zKZtuYwAV6OvNSzfk76v6fVwP1Qw9z1v8d28OGl4Jss23OJJbsvkXArA5dqlix6KpDWvqY9gl4IYzHaz11LS0sCAwMJCQkxSA8JCaFDhw75HpOamoqZmWGRszeyqGLryIgHhQk2ky/ecYEtp2L5fMtZ1h5UW7DSMnU5a4jfvXFHv6YeuFSzJC4lg4RbGQR4ObBxUicJ2kKUglHbqaZPn87333/PkiVLOHnyJC+99BIRERE5Td8zZsxg9OjROfkHDhzI+vXrWbRoERcuXGD37t1MmTKFNm3a4OnpaayvIUSuW/FQnB+RlTRwZ+r0pGZk5UmPS0nnh10Xc96/9ctxTkYnsfdCPLczdXg4WtPII3cFMytzLS90U1d6G9Tck7XPd5CBZ0KUklFXThsxYgTx8fHMnj2b6OhoAgIC2Lx5Mz4+6jKJ0dHRBnO6x44dS3JyMl999RUvv/wyTk5OPPTQQ/zf//2fsb6CELlO/gbBT0HHqdBzdtGOyZnD3aD8ylVMUTdvM3LxXm6lZxH8fDvquuYG4oXbzpOaoaNZLUeq21qy/cx1XlgRSiuf6oA6neveMSrjOvnxaCsvnGzzbvwhhCg+WatciLLy3UMQFQoaLUz8r2jBeEFTdXDa2E3g26n8y3jH8ahEtp6K5al2PgY7aSXcymD4N3ty9rT2dbbl1xc74WhrQdTN23T/+F8ydHp+HNeGAE9HBny5i6ibt3OO/250ED0b5z9GRQhRsOLEJhnSKURZuHpYDdoAig5C3rn/MRm37hpRXrFN5W9uOMb8kDP0XrCDraeuAXArPYtnlh3g/PVbeDpa4+Vkw6X4VCatPkSWTs+XW86SodPTzr8Gneq6UN3Okq+fbIWFVq1hW5qb0bGuaQywE8KUSeAWoiwc/EF99m4HZuZw5k+4sL3wY7K38rR1ATuX8i3f3ZdNTufolcSc188sO8iM9cd4YeUhDkfexMnWguXj2rB4dCA2Flp2no1jWvBh1oZeAeDV3g1ymsNbeDvxzkB1a9GHG7liayn7FglR3iRwC1FaaYlw7Gf19cOzIOgZ9fXfM0GvU18rChz6Ue0DP/m7uj1nduAubEewcrDzrLoJSEN3e8Z38kOjgdX7I9hx5jo2FlqWjm1NXVd7mng6Mv+x5oC6iIpOr9CjoSuBPoYjwke18+Hvl7rw8bDmFfo9hKiq5OexEKV1ZA1kpqoLqNRuDy4N4EgwxByDI6vBpyP8NgUu7lDzn/wNXJtAtZrq+woemJa9e1ePRq682rshPRq58craI1xPSWfRU61oWbt6Tt6+TT2Y2qMen9/ZrevlXvmXtb6b7IUtREWRwC1EaSgKHLjTTN56HGg06kIqXV5W+7n/fguy0tXAbm4DjQfDqU0QewJi75yjAvu3dXqFHXcCd9f66nzr9nWc+ffVbqSkZVHdLu/I76k96mFtocXZzpLGnjKgUwhjk8AtRGlc3q3up21hB81G5Ka3eV4N6DfvbGvp2xkGfg7OdSA1AfYvhr0LISMV/LpUWHGPRSVyIzUTe2tzWtV2ykm30JrlG7QBzMw0vNCtTgWVUAhxPxK4hSiN7Np2s+FgfVdt1MIahiyCLbOh+ePQagxkr/pnWwO6vQEdJqtrldtX3PSp7GVJO9V1kXXChTBREriFKKnka2p/NUDQuLyf+3aEcX8VfLylnfqoQNn9290a1KzQ6wohyo785BaipP58A/SZUKsNeDQzdmnySMvUGby/cSuDI5E3AehSXwK3EKZKArcQhUlLUvuh73V8HZxYr66S1ndexZfrPn787xLN3v2buZtP5mzAs/NcHHpFnQbm4SjrhQthqiRwC1GQtCT4spW6LOml3bnpyTGw6WX1deeXwSvQOOUrwLEricz+PZwMnZ5vd1xg4b/nAdh+Ons0udS2hTBlEriFKMipTXDrOqTGwfJB6kA0RYGNk+H2DXBvBl1eNXYpDdxKz2LKmjAydQp+Lmr/+cd/nWb1/oic/m0J3EKYNgncQhTkxHr12d4T9FmwaTos7Qtn/watJQz9Fswr145X7248wcW4W3g4WrNhYoecaVwz1h8jLiUdW0stQbIXthAmTQK3EPlJTYDzW9XXo3+BHrMADUT8p6Y99Ba4NS7XIuj0CgVt3qe/s5DKttOxXLmRil6vsPHIVdaGXsFMAwtGtMDJ1pLXejfgsaBaOcd1qOOCpbn8by+EKZPpYKJqO7IGLu+BPnMNp2ad/E2tZbs1VZckrdkA3JrAr5PUPu32k8q1WImpmQz/dg9Jt7OY3qs+w1rVwsxM3djjwvUUXl93lAOXbuTkt7XUkqVXg/ykh+rR1l/dpUuj0fDh0KbcTM3k7/BrDGrhWa7lFkKUPwncourKTFMHmWWkgL0HdJ+R+9nxdepzwNDctPq94eXT6rKmd3bHKg+KovDmhmOcuZYCwGs/H2X5f5d4s18jjkQm8tk/Z8jI0mNrqaVWdRsuxt0iNUOd+hXkU50pD9U1OJ+51oxvngok8kYqtWvYllu5hRAVQwK3qLoubFODNsDuzyFwDDh4QkosXNqppjd5xPAYs/JvZg4+EMmmY9GYm2kY18mPVfsjOB6VxBPf7cvJ06V+TT4cGkCt6rZk6fRcTkglMiGVQJ/q+a6IZmamwce5Yhd7EUKUD+nsElVX+Mbc11m3YeucO+m/gqIHz1ZQw69Ci3QuNpn3fgsH4JXeDZjRrxH/vtKNp9rVxkwDjjYWfDK8Of97ujW1qqu1Z3OtGXVqVqNbA1fsrS0qtLxCiIonNW5RNeky4fRm9XXP2epOXodXQdsJcPzOaPKARyu0SGmZOiavPsztTB2d6rrwXGd/AJyrWTFnSFMmda+HrZUWBwnOQlRpUuMWVdPFHZB2E+xqqgPNAoYBCmycBBF71DxNhlRokf7vz1OcjE6ihp0l8x9rnjMYLZu7o7UEbSGEBG5RRZ2800zesD+YaeHhWaC1gugjanrt9uBYq+Djy9jfJ2JYuvsSAJ8Mb4arg3WFXVsIYVokcIuqR69TV0UDaDRIfXaqDe1eyM1z76C0cnTlRiqvrFV/MIzr5MdDDStum08hhOmRwC2qnoj/1KVMrZ3Ar0tueufp6ippVg4V1kyeqdMzeXUYSWlZNPd24vU+DSvkukII0yWD00TVkz2avEE/0N7VZ2ztCBN2QlY6VHOtkKJ88tdpwiJuYm9tzlcjW8qqZkKI+5LALaoWvV5dFQ2g8aC8n9u5VFhRQsKv8e2OCwB8PKw53rI4ihCiCIz+837hwoX4+flhbW1NYGAgO3fuLDDv2LFj0Wg0eR5NmjSpwBILkxYVCslXwbIa+Hc3ShEysvT835+neP7HgwCM7eBLnwB3o5RFCGF6jBq4g4ODmTZtGjNnziQsLIzOnTvTt29fIiIi8s3/+eefEx0dnfOIjIykRo0aDB8+vIJLLkzWsbXqc71eYFHxI7dPxSQx+OvdLPr3PHoFHm1Vixn9pF9bCFF0GqWg7YcqQNu2bWnVqhWLFi3KSWvUqBFDhgxh7ty59z3+l19+4ZFHHuHixYv4+PgU6ZpJSUk4OjqSmJiIg4NDicsuTNC+b+GP19TXj69Sp4JVEL1eYcnui3z052kydHpq2Fny4dCmUtMWQgDFi01G6+POyMggNDSUN954wyC9V69e7Nmzp0jn+OGHH3j44YcLDdrp6emkp6fnvE9KSipZgYVp2/MV/D1Tfd1hijowrYLEp6TzytojbDt9HYAeDV2Z+2hTXO1lrrYQoviMFrjj4uLQ6XS4uRnOWXVzcyMmJua+x0dHR/PHH3+watWqQvPNnTuX9957r1RlFSZu56ewZbb6uvMr6l7a5bi71932nItjWvBhYpPTsTQ34+0BjXmqbW00FXR9IcSDx+ijyu/9A6YoSpH+qC1btgwnJyeGDBlSaL4ZM2Ywffr0nPdJSUl4e3uXqKzCBB1cmhu0u70J3V4v18udikni0OWbHIu6ydEriYRHJ6EoUNe1Gl890ZKG7tI9I4QoHaMFbhcXF7RabZ7adWxsbJ5a+L0URWHJkiWMGjUKS0vLQvNaWVlhZWVV6vIKE6TXqbVtgC6vlXvQ/u3IVSavDsuTPrKNN+8MaIKNpbZcry+EqBqMFrgtLS0JDAwkJCSEoUOH5qSHhIQwePDgQo/dvn07586dY9y4ceVdTGHKzoZAYqS6Qlrn6ffNXlprDqizIQK8HOhSrybNajnSrJYTnk425X5tIUTVYdSm8unTpzNq1CiCgoJo3749ixcvJiIiggkTJgBqM3dUVBTLly83OO6HH36gbdu2BAQEGKPYwlQcXKI+t3wKLMo3eMYmp/Hf+XgAFj0ZKIupCCHKjVED94gRI4iPj2f27NlER0cTEBDA5s2bc0aJR0dH55nTnZiYyLp16/j888+NUWRhKm5chrN/q6+Dnin3y20+Go1egRbeThK0hRDlyuiD0yZOnMjEiRPz/WzZsmV50hwdHUlNTS3nUgmTF7oMUMC/GzjXKffLbTxyFYBBzT3L/VpCiKrN6EueClHmsjIg7Ef1dVD5j4OITEjlUMRNzDQwoJlHuV9PCFG1SeAWD56TG9VtO+09ynyhldDLCUTdvG2Q9vvRaADa+Tvj6iCLqgghypcEbvHgyR6U1moMaMuuN+jP49E8uug/+izYwemY5Jz07GbygdJMLoSoABK4xYMl9hRc3g0aLQSOKbPTJqZm8tYvJwBITsvi6aX7uZaUxrnYZE5GJ2Gh1dBX1h0XQlQAow9OE6LMZNyCX+8MdGzQFxzKrgY8Z1M4cSnp+Ne0A+DC9VuMXXqADnWcAehSryZOtoUvBiSEEGVBArd4MOh1sG68ut+2TXXoObvMTr3z7HXWhl5Bo4GPHm2Gm4M1Qxfu5mR0Eiej1U1rpJlcCFFRpKlcmD5FUbfrPL0ZtFYwck2ZTQG7lZ7FjPXHABjT3pcg3xp417BlydjW2FioS5haW5jRs3Hhy/QKIURZkcAtTE9GKiRF5z52fgoHvgc08Oh3ULtdmV3q07/PcOXGbbycbHi1d4Oc9Ga1nPj6yZbYWmp5vHVt7Kyk8UoIUTHkr40wLQkXYFEnyLyV97PeH0Ljwte5L44DlxJYuuciAB8+0jRPcH6ooRuH3+mFpbn8/hVCVBwJ3MK0HAnODdqaO7ttaS2h41Ron/8KfCVxKz2Ll386gqLA8MBadK1fM998ErSFEBVNArcwLSc3qs9DFkGLJ8rtMh9sPklEQipeTja8M7BxuV1HCCGKS6oLwnTEnYPYcDAzV6d7lZN/T8eyap+6uc3Hw5thb21RbtcSQojiksAtTEd2bduvizrlqxwkpmby+rqjAIzt4EuHOi7lch0hhCgpaSoXpiM7cDcaVKanvZWexYmrSRy9cpM/jsdwLSkdfxc7Xu/TsEyvI4QQZUECtzANNyPgahiggYb9S3WquJR0DlxMYN+dx6mYJBQl93NzMw2fPtYcG0tt6coshBDlQAK3MA0nf1OffTpANdcSn+bLLWf5NORMnnQPR2uaejnSrJYjPRq50cjDocTXEEKI8iSBW1Quej2sfxYyUmDoN7l92eGlbyZXFIUf914GoJ5rNdrXcaatnzOtfavLdpxCCJMhgVtULmf+gOM/q6//NwhG/wq6DIjcp6Y1GljyU19LITY5HWsLM36b3AlrC2kKF0KYnmKPKvf19WX27NlERESUR3lEVaYosHN+7vuYo7BsAIQuAxTwCgJHrxKffufZ6wC09XOWoC2EMFnFDtwvv/wyv/76K/7+/vTs2ZM1a9aQnp5eHmUTVc2lnRB1EMytYcxvUM0NYk/Av3PVzxuXbjT5jrNxAHSuJ1O8hBCmq9iBe/LkyYSGhhIaGkrjxo2ZMmUKHh4eTJo0iUOHDpVHGUVVkV3bbvmUOld77Gawv2u7zFL0b6dl6th3IR6ALgUsXyqEEKagxAuwNG/enM8//5yoqChmzZrF999/T+vWrWnevDlLlixBuXt+jRD3czUMLmxT1x/vMEVNc6kLT28C96bQbATU8Cvx6Q9eukF6lh43ByvquVYro0ILIUTFK/HgtMzMTDZs2MDSpUsJCQmhXbt2jBs3jqtXrzJz5kz++ecfVq1aVZZlFQ+y7Np202FQ3Sc3vYY/TNhV+tPf6d/uXK8mGo2m1OcTQghjKXbgPnToEEuXLmX16tVotVpGjRrFZ599RsOGuatM9erViy5dupRpQcUD7PqZ3HnanV4ql0tI/7YQ4kFR7MDdunVrevbsyaJFixgyZAgWFnk3YGjcuDGPP/54mRRQVAG7PwcUaNAPXBuV+eljk9M4GZ0EQKe6EriFEKat2H3cFy5c4M8//2T48OH5Bm0AOzs7li5dWqTzLVy4ED8/P6ytrQkMDGTnzp2F5k9PT2fmzJn4+PhgZWVFnTp1WLJkSXG/hqgsrh6GI3e6VDpNL5dL7D6n1rYDvBxwrmZVLtcQQoiKUuwad2xsLDExMbRt29Ygfd++fWi1WoKCgop8ruDgYKZNm8bChQvp2LEj3377LX379iU8PJzatWvne8xjjz3GtWvX+OGHH6hbty6xsbFkZWUV92uIykCvg99fAkUPAcPAu3W5XGbnmexmchlNLoQwfcWucb/44otERkbmSY+KiuLFF18s1rnmz5/PuHHjGD9+PI0aNWLBggV4e3uzaNGifPP/+eefbN++nc2bN/Pwww/j6+tLmzZt6NChQ3G/hqgMDi6Bq4fAygF6f1gul1AUJad/u4sEbiHEA6DYgTs8PJxWrVrlSW/ZsiXh4eFFPk9GRgahoaH06tXLIL1Xr17s2bMn32M2btxIUFAQH330EV5eXtSvX59XXnmF27dvF3id9PR0kpKSDB6iEki+Bltmq697vAP2buVymVMxycSlpGNrqaWVj1O5XEMIISpSsZvKraysuHbtGv7+/gbp0dHRmJsX/XRxcXHodDrc3Az/YLu5uRETE5PvMRcuXGDXrl1YW1uzYcMG4uLimDhxIgkJCQX2c8+dO5f33nuvyOUSFeTvmZCeBJ4tIeiZcrlE1M3bLPr3PADt/J2xMpdlToUQpq/YNe6ePXsyY8YMEhMTc9Ju3rzJm2++Sc+ePYtdgHvn1CqKUuA8W71ej0ajYeXKlbRp04Z+/foxf/58li1bVmCtO7us2Y/8mvlFBTu/DY6tBY0ZDPgMzMouoCqKwrZTsYxbdoDO/7eVjUeuAjCwuUeZXUMIIYyp2DXuTz/9lC5duuDj40PLli0BOHz4MG5ubvz4449FPo+LiwtarTZP7To2NjZPLTybh4cHXl5eODo65qQ1atQIRVG4cuUK9erVy3OMlZUVVlYykrjS0GXCH6+pr1s/q9a4y9DCf8/z8V+nc953rOvMqHY+9AmQwC2EeDAUO3B7eXlx9OhRVq5cyZEjR7CxseHpp59m5MiRBU4Py4+lpSWBgYGEhIQwdOjQnPSQkBAGDx6c7zEdO3Zk7dq1pKSkUK2aumzlmTNnMDMzo1atWsX9KsIYQpdB3BmwdYaHZpbpqc9cS2bBP2cAeKpdbZ7u6EedmrK8qRDiwaJRjLioeHBwMKNGjeKbb76hffv2LF68mO+++44TJ07g4+PDjBkziIqKYvny5QCkpKTQqFEj2rVrx3vvvUdcXBzjx4+na9eufPfdd0W6ZlJSEo6OjiQmJuLg4FCeX0/cKy0RvmgJqfHQ7xNo82yZnVqnV3h00R4OR97k4UaufDc6SJY2FUKYjOLEphKvVR4eHk5ERAQZGRkG6YMGFX0HpxEjRhAfH8/s2bOJjo4mICCAzZs34+OjrlUdHR1tsO93tWrVCAkJYfLkyQQFBeHs7Mxjjz3GnDlzSvo1REXaOV8N2i71IfDpMj31//Zc4nDkTeytzHl/SIAEbSHEA6vYNe4LFy4wdOhQjh07hkajydkFLPsPpU6nK/tSliGpcRvJjcvwVWvQpcPIYGjQp8xOHZmQSq/PdnA7U8eHQ5vyRNv8F+8RQojKqlxr3FOnTsXPz49//vkHf39/9u/fT3x8PC+//DKffPJJiQstHnBbZqtB268L1O9d4tOcuJrImCX7MdNoaFbLkaZeTuw+F8ftTB3t/GvweGvvMiy0EEJUPsUO3P/99x9bt26lZs2amJmZYWZmRqdOnZg7dy5TpkwhLCysPMopTFnkfjj+M6CBXh9ACZux41LSeW55KHEpavfMPydj+edkLABW5mbMe6QZZmbSRC6EeLAVO3DrdLqcEd0uLi5cvXqVBg0a4OPjw+nTp+9ztKhS9DrY/13uCmktngCPZiU6VUaWnhdWhBJ18zZ+LnZ8MCSAUzHJHItK5FxsCmM7+OLrYleGhRdCiMqp2IE7ICCAo0eP4u/vT9u2bfnoo4+wtLRk8eLFeVZTE1XY9dOwcTJE7lPf+3SEnu+X6FSKovDOr8c5cOkG9lbmfDc6iLqu1eggW3QKIaqgYgfut956i1u3bgEwZ84cBgwYQOfOnXF2diY4OLjMCyhM0Jm/IPgp0GWApT30fE8dRW5W7IX6AFj+32XWHIhEo4EvnmhJXVeZmy2EqLqKHbh7984dWOTv7094eDgJCQlUr15dpuCI3JXRdBlQpwcM+gIcS744zvnrKcz+Xd28ZkbfhnRv4FpWJRVCCJNUrCpQVlYW5ubmHD9+3CC9Ro0aErSF6vAquHEJ7GrCiB9LFbQBvthyFp1eoXuDmjzbWbpihBCiWIHb3NwcHx+fSj9XWxhJVjrs+Fh93eklsCzdYLFzsSk5m4S83KuB/DgUQghKsDvYW2+9xYwZM0hISCiP8ghTdmg5JEaCvUeZbNX5xZazKAr0auxGgJfj/Q8QQogqoNh93F988QXnzp3D09MTHx8f7OwMa1WHDh0qs8KJSiolVh185hUE3d8Eq2qQeRt23FmAp/PLYGFTqkuci03mt6NqbXvqw3l3fRNCiKqq2IF7yJAh5VAMYVKOr1eneUXug5O/wcAFcP0UpMSAoze0Gl3qS3y+5RyKAr2buNHEU2rbQgiRrdiBe9asWeVRDmFKLu9Sn83MITECVjwC2jt7nnd5FcxLt//52WvJ/J5d2+5Rv1TnEkKIB03JJtaKqktR4PIe9fUTP0HbCYBGXYe8uq+6OlopfX6nb7tPE3cae8pGMEIIcbdi17jNzMwKHd0rI84fcNdPqVtzmtuAb2eo2wOaPAIHl6j7a2stSnX641GJ/H40GoApPaRvWwgh7lXswL1hwwaD95mZmYSFhfG///2P9957r8wKJiqpS3eayb3bgLml+rp2W/VRSoqiMGeTutjKkBaeUtsWQoh8FDtwDx48OE/asGHDaNKkCcHBwYwbN65MCiYqqcu71WffTmV+6n9OxrL3QgJW5ma82qdhmZ9fCCEeBGXWx922bVv++eefsjqdqIwUBS7dCdw+Hcv01Jk6PXM3nwRgXCc/vJxKN51MCCEeVGUSuG/fvs2XX35JrVqlW95SVHLx5+BWrDqC3CuwTE+9cu9lLsTdwqWaJS90q1Om5xZCiAdJsZvK791MRFEUkpOTsbW1ZcWKFWVaOFHJZPdv12oNFtZldtrE25l8vuUsAC/1rI+9dekGuAkhxIOs2IH7s88+MwjcZmZm1KxZk7Zt21K9evUyLZyoZHL6t8uumVxRFD4LOcON1EzquVZjRJB3mZ1bCCEeRMUO3GPHji2HYohKrxz6t29n6Ji54Rjrw6IAeLN/I8y1srSAEEIUptiBe+nSpVSrVo3hw4cbpK9du5bU1FTGjBlTZoUTlciNi5B8Fcws1KbyUroYd4sXVoRyKiYZMw28IXttCyFEkRS7ejNv3jxcXFzypLu6uvLhhx+WSaFEJZRd2/YKBEvbUp1qx5nrDPpyF6diknGpZsXK8e14rosMSBNCiKIodo378uXL+Pn55Un38fEhIiKiTAolKqEy6t/W6xVmrD9GcnoWbXxr8NUTLXF1KLuBbkII8aArdo3b1dWVo0eP5kk/cuQIzs7OZVIoUQmVUf/23ovxRN28jb21OcvHtZGgLYQQxVTswP34448zZcoUtm3bhk6nQ6fTsXXrVqZOncrjjz9eHmUUxhZ/Xt0FTKMF79Itbbr+kDoQbUAzT6wttGVROiGEqFKKHbjnzJlD27Zt6dGjBzY2NtjY2NCrVy8eeuihEvVxL1y4ED8/P6ytrQkMDGTnzp0F5v3333/RaDR5HqdOnSr2dUUx7JqvPvt3A6tqJT5NakYWfxxTNxB5tJVXGRRMCCGqnmL3cVtaWhIcHMycOXM4fPgwNjY2NG3aFB8fn2JfPDg4mGnTprFw4UI6duzIt99+S9++fQkPD6d27doFHnf69GkcHHI3oKhZs2axry2KKP48HF6tvu72RqlO9feJa9zK0FG7hi2BPjLnXwghSqLYgTtbvXr1qFevdNsuzp8/n3HjxjF+/HgAFixYwF9//cWiRYuYO3dugce5urri5ORUqmuLItr+f6DooF4vdUewUlh36AoAj7TyKnRrWCGEEAUrdlP5sGHDmDdvXp70jz/+OM/c7sJkZGQQGhpKr169DNJ79erFnj17Cj22ZcuWeHh40KNHD7Zt21Zo3vT0dJKSkgweoohiT8HRn9TX3d8s1aliEtPYfS4OgEdaypr2QghRUsUO3Nu3b6d///550vv06cOOHTuKfJ64uDh0Oh1ubm4G6W5ubsTExOR7jIeHB4sXL2bdunWsX7+eBg0a0KNHj0KvO3fuXBwdHXMe3t6ypGaR/TsXUKDhAPBsWapT/Xo4Cr0CrX2rU9u5dPPAhRCiKit2U3lKSgqWlpZ50i0sLEpUm723yVRRlAKbURs0aECDBg1y3rdv357IyEg++eQTunTpku8xM2bMYPr06Tnvk5KSJHgXRcwxCP8F0JS6tq0oyl3N5FLbFkKI0ih24A4ICCA4OJh33nnHIH3NmjU0bty4yOdxcXFBq9XmqV3HxsbmqYUXpl27doXuSmZlZYWVlVWRz1dlXdgOF/696/2d102GgluTUp36xNUkzlxLwdLcjP7NPEp1LiGEqOqKHbjffvttHn30Uc6fP89DDz0EwJYtW1i1ahU///xzkc9jaWlJYGAgISEhDB06NCc9JCSEwYMHF/k8YWFheHhIMCiVjFRY/Thkphqma8yg24xSnTrxdiYf/XUagF6N3XCQLTuFEKJUih24Bw0axC+//MKHH37Izz//jI2NDc2bN2fr1q0GU7SKYvr06YwaNYqgoCDat2/P4sWLiYiIYMKECYDazB0VFcXy5csBddS5r68vTZo0ISMjgxUrVrBu3TrWrVtX3K8h7nZxhxq07WpC07sGGNZuDzXrl/i0oZdvMGV1GFE3b2NupuHpjr6lL6sQQlRxJZoO1r9//5wBajdv3mTlypVMmzaNI0eOoNPpinyeESNGEB8fz+zZs4mOjiYgIIDNmzfnzAmPjo42WP88IyODV155haioKGxsbGjSpAmbNm2iX79+JfkaItvZv9TnxoOhT8HT8IpKr1dYtP0880POoNMr1K5hyxcjW9LC26nU5xZCiKpOoyiKUpIDt27dypIlS1i/fj0+Pj48+uijPProo7RsWbrRx+UtKSkJR0dHEhMTi91C8EBSFPgsAJKuwBNroX6v+x9zH/P+OMU3288DMLC5Jx8MDZAmciGEKERxYlOxatxXrlxh2bJlLFmyhFu3bvHYY4+RmZnJunXrijUwTVQiseFq0Da3Bt9OpT7d0Ss3WbxDDdrvD27CU+18ZLEVIYQoQ0Wex92vXz8aN25MeHg4X375JVevXuXLL78sz7KJinDmTjO5X5dS77OdqdPz2s9H0SswqLkno9r7StAWQogyVuQa999//82UKVN44YUXSr3UqahEzv6tPtcrfRP5t9vPcyommeq2FswaKC0wQghRHopc4965cyfJyckEBQXRtm1bvvrqK65fv16eZRPlLTUBIvepr+v3LtWpzsUm88WWcwDMGtgE52oyd14IIcpDkQN3+/bt+e6774iOjub5559nzZo1eHl5odfrCQkJITk5uTzLKcrD+a2g6KFmI3AqeDe2+9HpFV77+SgZOj3dG9RkcAvPMiykEEKIuxV7rXJbW1ueeeYZdu3axbFjx3j55ZeZN28erq6uDBo0qDzKKMpLdv92KUeSbwiL4lDETewstXwwtKn0awshRDkqduC+W4MGDfjoo4+4cuUKq1evLqsyiYqg18G5f9TX9UrXTL5mvzrX/oVudfB0siltyYQQQhSiVIE7m1arZciQIWzcuLEsTicqwpWDcDsBrB3Bu22JT3PhegoHL9/ATAPDg2TzFiGEKG9lEriFCcpeLa1OD9CWaAE9AH4OVXf96lq/Jm4O1mVRMiGEEIWQwF1V5fRvl7yZXKdXWH8oCpDathBCVBQJ3FVRwgW4dhw02lLN39559joxSWk42VrQo5FrGRZQCCFEQSRwV0Xhd8Yi+HYC2xolPs3aO83kQ1p4YWWuLYuSCSGEuA8J3FXRyTuBu3HJp+/dTM0g5MQ1AIYF1iqLUgkhhCgCCdxVTeIViAoFNNBwYIlPs/HIVTJ0ehq629PEU3ZZE0KIiiKBu6o5+bv6XLsd2LuV+DRrD6rN5MODvGXBFSGEqEASuKua7GbyRiVvJt9zLo5jUYmYm2kYIsubCiFEhZLAXZWkxMLlPerrRiVrJv/vfDzj/ncQULfulM1EhBCiYpV85Q1hek79Dijg2Qqcij/veufZ6zy7/CBpmXo613Phg6FNy76MQgghCiWBuyrJngZWjNq2Xq+QeDuTvRfimRp8mIwsPQ81dGXhk62wtpApYEIIUdEkcFcVqQlwaaf6uvHgQrPq9ApTVoex90I8N1Iz0Cu5n/Vq7MZXT7TC0lx6WYQQwhgkcFcVp/8AfRa4NgHnOoVm/fd0LJuORRuk2VubM7C5J+8NaoKFVoK2EEIYiwTuqkBR4PAq9XURFl1ZsfcyAE+2rc3UHvVwsrWUGrYQQlQSErirgjN/weVdoLWCFk8UmjUyIZV/z1wHYHxnf1xlxy8hhKhUpBr1oNNlQsjb6ut2E8CpNgAbwq7w2s9HSE7LNMi+an8EigKd67ng52JX0aUVQghxH1LjftCFLoO4M2DrDJ1fBkBRFN7//SQJtzJIz9KzYEQLNBoN6Vk6fjoQCcCTbX2MWGghhBAFMXqNe+HChfj5+WFtbU1gYCA7d+4s0nG7d+/G3NycFi1alG8BTVlaIvw7V33dbQZYOwJwMe4WCbcyAPj18NWcPbX/PB5D/K0M3B2seVi26RRCiErJqIE7ODiYadOmMXPmTMLCwujcuTN9+/YlIiKi0OMSExMZPXo0PXr0qKCSmqid8yE1HpzrQeDYnOSDl28AYHlndPjbvx7nYtwtVu5V7/vjbbwxl5HjQghRKRn1r/P8+fMZN24c48ePp1GjRixYsABvb28WLVpU6HHPP/88TzzxBO3bt6+gkpqgG5dg75372GsOaC1yPjp0J3CP7ehLW78apGboeGbZAfZfSkBrpuHx1rWNUGAhhBBFYbTAnZGRQWhoKL169TJI79WrF3v27CnwuKVLl3L+/HlmzZpVpOukp6eTlJRk8Hig3YqDf96DRZ1Alw5+XaB+b4MsoXcCd2vfGix4vAVOthZcjLsFQM9Gbrg7ykhyIYSorIwWuOPi4tDpdLi5GW4t6ebmRkxMTL7HnD17ljfeeIOVK1dibl60cXVz587F0dEx5+HtXfw1uk1CVgb8/RYsaAq75kNGMrgFwIAFcNe2mzdTMzgbmwJAq9pOeDja8H+PNsv5/Kl2MihNCCEqM6OPKr93L2dFUfLd31mn0/HEE0/w3nvvUb9+/SKff8aMGUyfPj3nfVJS0oMZvHcvgD1fqq89mkOX16BBPzAz/G0WFnETAH8Xu5ydvXo3ceeDoQHcuJVBx7rOFVhoIYQQxWW0wO3i4oJWq81Tu46Njc1TCwdITk7m4MGDhIWFMWnSJAD0ej2KomBubs7ff//NQw89lOc4KysrrKyqwNaTJ35Rn3vOhg5TDGrZd8tuJm/lU90gXaZ/CSGEaTBaU7mlpSWBgYGEhIQYpIeEhNChQ4c8+R0cHDh27BiHDx/OeUyYMIEGDRpw+PBh2rZtW1FFr3xuXILYE6DRQstRBQZtgIOXEwAIvCdwCyGEMA1GbSqfPn06o0aNIigoiPbt27N48WIiIiKYMGECoDZzR0VFsXz5cszMzAgICDA43tXVFWtr6zzpVc7pP9Tn2u3BtkaB2TJ1eo5EJgIQJIFbCCFMklED94gRI4iPj2f27NlER0cTEBDA5s2b8fFRm22jo6PvO6dbAKc2qc8N+xWeLTqZ25k6HKzNqVOzWgUUTAghRFnTKIqi3D/bgyMpKQlHR0cSExNxcHAwdnFKLzUBPq4Lig6mHIYafgVmXbb7Iu/+Fk63BjVZ9nSbiiujEEKIQhUnNsnyWKbu3D9q0HZtXGjQhtwV0wJrSzO5EEKYKgncpi67mbxB3/tmzV4xLdBXArcQQpgqCdymLCtdrXEDNOhfaNarN29zNTENrZmG5rWcyr9sQgghyoUEblN2cSdkpEA1d/BsWWjW7PnbjTzssbMy+ro7QgghSkgCtyk7vVl9btA3zwpp98oO3EE+BU8XE0IIUflJ4DZVipI7f7th4c3kAAcuqQuv3LtimhBCCNMigdtUXQ2D5KtgYQe+nQvNmng7k/BodVe0tn5S4xZCCFMmgdtUHVurPtfrCRaFb8N58FICigK+zra4OciWnUIIYcokcJuirAw4skZ93eLJ+2bfd1FtJm/rJzt/CSGEqZPAbYpOb4bbCWDvAXXy7oh2r+zA3a6ONJMLIYSpk8BtisJWqM8tngBt4VO7UtKzOB6lbiwiNW4hhDB9ErhNTWIUnN+ivi5CM3no5Rvo9AreNWzwdLIp58IJIYQobxK4Tc2RVaDowacjONe5b/Z9F+IBqW0LIcSDQgK3KdHrc5vJW44q0iG5A9Okf1sIIR4EErhNyeXdcOMSWNpD40H3zX47Q8fRKzcBaOcvNW4hhHgQSOA2JWE/qs9NHwVLu/tmPxRxg0ydgqejNbWqS/+2EEI8CGS3icosIxWunYDrpyDuNIT/qqYXtZk8u3/b3xmNRlNepRRCCFGBJHBXVmmJ8FVrSLlmmO7WFLwCi3SKvdK/LYQQDxwJ3JXVxR1q0LawBe82ULMhuNSHBv2gCLXntEwdhyNvAmqNWwghxINBAndldXGn+tziCej/abEPPxx5k4wsPa72Vvg625Zx4YQQQhiLBO7K6uIO9fk+O39l23U2jmnBYdzO0AGQqVcA6d8WQogHjQTuyiglFq6fVF8XIXCnZ+mY+csx4lIy8nzWv6lHWZdOCCGEEUngrowu3Wkmd2sKdvfvn162+xKX41Nxtbdi1bPtsNSqs/xsrbS4VLMqz5IKIYSoYBK4K6PsZnK/+9e2ryen8+XWcwC81qchdV2rlWfJhBBCGJkswFIZZQ9M8+ty36zzQ86Qkp5Fs1qOPNLSq5wLJoQQwtgkcJenrAx1ARVFKfoxiVGQcB40ZuDTodCs4VeTCD4QAcA7AxpjZiaD0IQQ4kFn9MC9cOFC/Pz8sLa2JjAwkJ07dxaYd9euXXTs2BFnZ2dsbGxo2LAhn332WQWWtpj+eRcWdYBTvxf9mOz+bY8WYO1YYDZFUZj9+wn0Cgxo5kGQryyyIoQQVYFR+7iDg4OZNm0aCxcupGPHjnz77bf07duX8PBwateunSe/nZ0dkyZNolmzZtjZ2bFr1y6ef/557OzseO6554zwDe7japj6HLEXGg0s2jE5/duFN5P/eTyGvRcSsDI3442+DUtRSCGEEKbEqDXu+fPnM27cOMaPH0+jRo1YsGAB3t7eLFq0KN/8LVu2ZOTIkTRp0gRfX1+eeuopevfuXWgtPT09naSkJINHhUmMVJ/jzuT/+aHl8NtUSLtTJkUpUuBOSc/ivd/CAXi+iz+1qssCK0IIUVUYLXBnZGQQGhpKr169DNJ79erFnj17inSOsLAw9uzZQ9euXQvMM3fuXBwdHXMe3t7epSp3kemyIOmq+vr66byf6/Xw55sQugx+HAK3b6hbdiZGgpkF1G5X4Kk/CzlDTFIatWvYMrF73fIovRBCiErKaIE7Li4OnU6Hm5ubQbqbmxsxMTGFHlurVi2srKwICgrixRdfZPz48QXmnTFjBomJiTmPyMjIMin/fSVfBUVdxYybEZB52/DzxAjISFZfR4XC8sG5u3/VCipw284TVxNZtucSALMHN8HaQlsOhRdCCFFZGX0e973LcSqKct8lOnfu3ElKSgp79+7ljTfeoG7duowcOTLfvFZWVlhZGWERkpt3/0BQIP48uAfkJl1Tm7px8IKsdIg+oj6gwGZyvV7hrV+Oo9Mr9G/qQbcGruVTdiGEEJWW0QK3i4sLWq02T+06NjY2Ty38Xn5+fgA0bdqUa9eu8e677xYYuI0m8Z6afdxpw8Ade0J99u0EnabD8kG5W3gWsMzpmgORhEXcpJqVOW8PaFwOhRZCCFHZGa2p3NLSksDAQEJCQgzSQ0JC6NCh8PnLd1MUhfT09LIuXundvDdwnzV8n13jdm0Mrg1h7GZwqg1OPlCrdZ7TJdzKYN4f6vrl03vWx93RujxKLYQQopIzalP59OnTGTVqFEFBQbRv357FixcTERHBhAkTALV/OioqiuXLlwPw9ddfU7t2bRo2VKc/7dq1i08++YTJkycb7TsUKFFdGAUrR0hPzDtALfZO4HZroj671IVJoepe21qLPKdbvT+CpLQsGrrbM7q9TzkWXAghRGVm1MA9YsQI4uPjmT17NtHR0QQEBLB582Z8fNTAFB0dTURERE5+vV7PjBkzuHjxIubm5tSpU4d58+bx/PPPG+srFCy7xu3fBU7+ZljjzkrPfe96V5O3uWW+p8rS6Vmx9zIAz3Xxx1xr9HVzhBBCGIlGUYqzHqfpS0pKwtHRkcTERBwcHMrvQl8GQfxZGLAAfp8G5tbwZjSYmUHMMfimk7oy2uuX1Vp2ITYfi2biykM421myZ8ZDWJnLSHIhhHiQFCc2SdWtPCgKJF5RX/t2Bq0lZKXlNp/n9G83uW/QBvjfnelfI9vUlqAthBBVnATu8nArDrJuAxp1wJnznUVSspvHs0eUu91/ZPjJ6CT2XUxAa6bhyXZ5l4EVQghRtUjgLg/ZNWt7d7Xf2qWe+j57gNrdI8rvY/l/lwDo3cQND0ebMi6oEEIIUyOBuzxkD0xzvLO8qksD9Tl7zfJ7R5QXIDE1kw1hUQCMae9bxoUUQghhiiRwl4fsxVcca6nPLvXV57iz6prkSWowxrVRoaf56WAkaZl6Grrb08ZPtu0UQghRCZY8fSBl17idsmvcd5rK405DrLqICo7eBe63rdMr/Hc+PmdN8jEdfO+7DKwQQoiqQQJ3eUi8t6n8TuBOjYdLu9TX+fRvRyaksmLfZX4Nu0pMUpp6aDVLhrTwKu8SCyGEMBESuMtDTo37zihwSzs1iCdG5u4Adk8zedTN2/T/YidJaVkAONpYMKCZB+M6+WFjKVPAhBBCqCRwl4d7a9yg1roTI+HacfX9XQPTFEXhjXVHc5Y0nfZwPbo3dJU520IIIfKQwWllLT0Z0m6qr53uDtwNDPPd1VQefCCSnWfjsDI34+snW9EnwEOCthBCiHxJ4C5r2c3k1k5gZZ+bnt3PDWBmnjPSPOrmbeZsUgesvdKrAXVqVqugggohhDBFErjLWuI9I8qz1byrxu1cD8wtURSFGeuPkZKeRavaTjzTya/iyimEEMIkSeAuazfvrJrmeE/gzp7LDTlLnf50MJIdZ65jaW7Gx8ObozWTKV9CCCEKJ4G7rOU3MA3ArmbuvG3Xxpy5lsx7v6krqL3Sq740kQshhCgSCdxl7d7FV7JpNODZEoCUmi15/sdQUjN0tPd3Zlwn/woupBBCCFMl08HKWkE1boDBX6O/epipe+25GHcdLycbvnqipTSRCyGEKDKpcZe1gmrcAI61+PxKfbacVvu1v3kqEOdqVhVbPiGEECZNAndZykqHlBj1tWPevbP/PB7N51vUPbk/HNqUprXyX6tcCCGEKIg0lZel7F2/zG3AziUnOVOn57OQMyzafh6A0e19GBZYyxglFEIIYeIkcJelm3dt53lnN6/IhFSmrAkjLOImACPb1ObtAXk3GBFCCCGKQgJ3WbpnH+69F+J5dvlBktOysLc2Z94jzejfzMOIBRRCCGHqJHCXpYQL6rOTN4qi8O7GEySnZdGythNfPN4S7xq2xi2fEEIIkyeBu6xkpcPhVepr77YcuZLIqZhkrMzNWDq2NU62lsYtnxBCiAeCjCovK0fWQHI02HtA0+Gs3qcufdqvqYcEbSGEEGVGAndZ0Otg9+fq6/aTSM4y47ejVwF1MJoQQghRVoweuBcuXIifnx/W1tYEBgayc+fOAvOuX7+enj17UrNmTRwcHGjfvj1//fVXBZa2AOG/QsJ5sKkOgWPZeOQqqRk66tS0o7VvdWOXTgghxAPEqIE7ODiYadOmMXPmTMLCwujcuTN9+/YlIiIi3/w7duygZ8+ebN68mdDQULp3787AgQMJCwur4JLfRVFg53z1ddsJYFWN1fvV8o9sUxuNRpYzFUIIUXY0iqIoxrp427ZtadWqFYsWLcpJa9SoEUOGDGHu3LlFOkeTJk0YMWIE77zzTpHyJyUl4ejoSGJiIg4ODiUqt4GzIbByGFjYwUvHOZagZeBXu7DUmrH3zR7UsJP+bSGEEIUrTmwyWo07IyOD0NBQevXqZZDeq1cv9uzZU6Rz6PV6kpOTqVGjRoF50tPTSUpKMniUqezadtDTYFuD1QfU2nafAHcJ2kIIIcqc0QJ3XFwcOp0ONzc3g3Q3NzdiYmKKdI5PP/2UW7du8dhjjxWYZ+7cuTg6OuY8vL3z2fyjpCL2QsQeMLOA9i9yKz2LX8PUZU8fb1OG1xFCCCHuMPrgtHv7gBVFKVK/8OrVq3n33XcJDg7G1dW1wHwzZswgMTEx5xEZGVnqMuc49bv63GIkOHjy+9Gr3MrQ4etsS3t/57K7jhBCCHGH0RZgcXFxQavV5qldx8bG5qmF3ys4OJhx48axdu1aHn744ULzWllZYWVVTltn9nwf6vXO2cJz1Z2524/LoDQhhBDlxGg1bktLSwIDAwkJCTFIDwkJoUOHDgUet3r1asaOHcuqVavo379/eRezcBoN+HWG6r4cj0rkyJVELLQahsvOX0IIIcqJUZc8nT59OqNGjSIoKIj27duzePFiIiIimDBhAqA2c0dFRbF8+XJADdqjR4/m888/p127djm1dRsbGxwdjbu39cp92YPSPHCuVk41fCGEEFWeUQP3iBEjiI+PZ/bs2URHRxMQEMDmzZvx8fEBIDo62mBO97fffktWVhYvvvgiL774Yk76mDFjWLZsWUUXP0dKehYbD6uD0p6QldKEEEKUI6PO4zaGMp/HDazcd5mZG47jX9OOLdO7Sv+2EEKIYjGJedwPCkVRWLlXbRV4QgalCSGEKGcSuEvpyJVEwqOTsDQ349FWMihNCCFE+ZLAXUqr9l0GoH9TD6rLSmlCCCHKmQTuUki8nclvR6IBeKKtDEoTQghR/iRwl8IvYVHcztRRz7UaQT6yfacQQojyZ9TpYKbO3dGapl6OPNLKSwalCSGEqBASuEuhdxN3ejdxR6evUjPqhBBCGJE0lZcBrZnUtoUQQlQMCdxCCCGECZHALYQQQpgQCdxCCCGECZHALYQQQpgQCdxCCCGECZHALYQQQpgQCdxCCCGECZHALYQQQpgQCdxCCCGECZHALYQQQpiQKrdWuaKo64onJSUZuSRCCCGEKjsmZceowlS5wJ2cnAyAt7e3kUsihBBCGEpOTsbR0bHQPBqlKOH9AaLX67l69Sr29vZlshVnUlIS3t7eREZG4uDgUAYlfPDJPSsZuW8lI/et+OSelUxp7puiKCQnJ+Pp6YmZWeG92FWuxm1mZkatWrXK/LwODg7yD7yY5J6VjNy3kpH7Vnxyz0qmpPftfjXtbDI4TQghhDAhEriFEEIIEyKBu5SsrKyYNWsWVlZWxi6KyZB7VjJy30pG7lvxyT0rmYq6b1VucJoQQghhyqTGLYQQQpgQCdxCCCGECZHALYQQQpgQCdxCCCGECZHAXQoLFy7Ez88Pa2trAgMD2blzp7GLVGnMnTuX1q1bY29vj6urK0OGDOH06dMGeRRF4d1338XT0xMbGxu6devGiRMnjFTiymnu3LloNBqmTZuWkyb3LX9RUVE89dRTODs7Y2trS4sWLQgNDc35XO6boaysLN566y38/PywsbHB39+f2bNno9frc/LIPYMdO3YwcOBAPD090Wg0/PLLLwafF+UepaenM3nyZFxcXLCzs2PQoEFcuXKl5IVSRImsWbNGsbCwUL777jslPDxcmTp1qmJnZ6dcvnzZ2EWrFHr37q0sXbpUOX78uHL48GGlf//+Su3atZWUlJScPPPmzVPs7e2VdevWKceOHVNGjBiheHh4KElJSUYseeWxf/9+xdfXV2nWrJkyderUnHS5b3klJCQoPj4+ytixY5V9+/YpFy9eVP755x/l3LlzOXnkvhmaM2eO4uzsrPz+++/KxYsXlbVr1yrVqlVTFixYkJNH7pmibN68WZk5c6aybt06BVA2bNhg8HlR7tGECRMULy8vJSQkRDl06JDSvXt3pXnz5kpWVlaJyiSBu4TatGmjTJgwwSCtYcOGyhtvvGGkElVusbGxCqBs375dURRF0ev1iru7uzJv3rycPGlpaYqjo6PyzTffGKuYlUZycrJSr149JSQkROnatWtO4Jb7lr/XX39d6dSpU4Gfy33Lq3///sozzzxjkPbII48oTz31lKIocs/yc2/gLso9unnzpmJhYaGsWbMmJ09UVJRiZmam/PnnnyUqhzSVl0BGRgahoaH06tXLIL1Xr17s2bPHSKWq3BITEwGoUaMGABcvXiQmJsbgHlpZWdG1a1e5h8CLL75I//79efjhhw3S5b7lb+PGjQQFBTF8+HBcXV1p2bIl3333Xc7nct/y6tSpE1u2bOHMmTMAHDlyhF27dtGvXz9A7llRFOUehYaGkpmZaZDH09OTgICAEt/HKrfJSFmIi4tDp9Ph5uZmkO7m5kZMTIyRSlV5KYrC9OnT6dSpEwEBAQA59ym/e3j58uUKL2NlsmbNGg4dOsSBAwfyfCb3LX8XLlxg0aJFTJ8+nTfffJP9+/czZcoUrKysGD16tNy3fLz++uskJibSsGFDtFotOp2ODz74gJEjRwLyb60oinKPYmJisLS0pHr16nnylDReSOAuhXu3BVUUpUy2Cn3QTJo0iaNHj7Jr1648n8k9NBQZGcnUqVP5+++/sba2LjCf3DdDer2eoKAgPvzwQwBatmzJiRMnWLRoEaNHj87JJ/ctV3BwMCtWrGDVqlU0adKEw4cPM23aNDw9PRkzZkxOPrln91eSe1Sa+yhN5SXg4uKCVqvN82spNjY2zy+vqm7y5Mls3LiRbdu2GWyn6u7uDiD38B6hoaHExsYSGBiIubk55ubmbN++nS+++AJzc/OceyP3zZCHhweNGzc2SGvUqBERERGA/HvLz6uvvsobb7zB448/TtOmTRk1ahQvvfQSc+fOBeSeFUVR7pG7uzsZGRncuHGjwDzFJYG7BCwtLQkMDCQkJMQgPSQkhA4dOhipVJWLoihMmjSJ9evXs3XrVvz8/Aw+9/Pzw93d3eAeZmRksH379ip9D3v06MGxY8c4fPhwziMoKIgnn3ySw4cP4+/vL/ctHx07dswz3fDMmTP4+PgA8u8tP6mpqZiZGYYArVabMx1M7tn9FeUeBQYGYmFhYZAnOjqa48ePl/w+lmhIm8iZDvbDDz8o4eHhyrRp0xQ7Ozvl0qVLxi5apfDCCy8ojo6Oyr///qtER0fnPFJTU3PyzJs3T3F0dFTWr1+vHDt2TBk5cmSVm2pSFHePKlcUuW/52b9/v2Jubq588MEHytmzZ5WVK1cqtra2yooVK3LyyH0zNGbMGMXLyytnOtj69esVFxcX5bXXXsvJI/dMneERFhamhIWFKYAyf/58JSwsLGfqb1Hu0YQJE5RatWop//zzj3Lo0CHloYcekulgxvL1118rPj4+iqWlpdKqVaucqU5CnTaR32Pp0qU5efR6vTJr1izF3d1dsbKyUrp06aIcO3bMeIWupO4N3HLf8vfbb78pAQEBipWVldKwYUNl8eLFBp/LfTOUlJSkTJ06Valdu7ZibW2t+Pv7KzNnzlTS09Nz8sg9U5Rt27bl+7dszJgxiqIU7R7dvn1bmTRpklKjRg3FxsZGGTBggBIREVHiMsm2nkIIIYQJkT5uIYQQwoRI4BZCCCFMiARuIYQQwoRI4BZCCCFMiARuIYQQwoRI4BZCCCFMiARuIYQQwoRI4BZCCCFMiARuIUSF02g0/PLLL8YuhhAmSQK3EFXM2LFj0Wg0eR59+vQxdtGEEEUg+3ELUQX16dOHpUuXGqRZWVkZqTRCiOKQGrcQVZCVlRXu7u4Gj+rVqwNqM/aiRYvo27cvNjY2+Pn5sXbtWoPjjx07xkMPPYSNjQ3Ozs4899xzpKSkGORZsmQJTZo0wcrKCg8PDyZNmmTweVxcHEOHDsXW1pZ69eqxcePG8v3SQjwgJHALIfJ4++23efTRRzly5AhPPfUUI0eO5OTJk4C6j3OfPn2oXr06Bw4cYO3atfzzzz8GgXnRokW8+OKLPPfccxw7doyNGzdSt25dg2u89957PPbYYxw9epR+/frx5JNPkpCQUKHfUwiTVPLNzoQQpmjMmDGKVqtV7OzsDB6zZ89WFEXdknXChAkGx7Rt21Z54YUXFEVRlMWLFyvVq1dXUlJScj7ftGmTYmZmpsTExCiKoiienp7KzJkzCywDoLz11ls571NSUhSNRqP88ccfZfY9hXhQSR+3EFVQ9+7dWbRokUFajRo1cl63b9/e4LP27dtz+PBhAE6ePEnz5s2xs7PL+bxjx47o9XpOnz6NRqPh6tWr9OjRo9AyNGvWLOe1nZ0d9vb2xMbGlvQrCVFlSOAWogqys7PL03R9PxqNBgBFUXJe55fHxsamSOezsLDIc6xery9WmYSoiqSPWwiRx969e/O8b9iwIQCNGzfm8OHD3Lp1K+fz3bt3Y2ZmRv369bG3t8fX15ctW7ZUaJmFqCqkxi1EFZSenk5MTIxBmrm5OS4uLgCsXbuWoKAgOnXqxMqVK9m/fz8//PADAE8++SSzZs1izJgxvPvuu1y/fp3JkyczatQo3NzcAHj33XeZMGECrq6u9O3bl+TkZHbv3s3kyZMr9osK8QCSwC1EFfTnn3/i4eFhkNagQQNOnToFqCO+16xZw8SJE3F3d2flypU0btwYAFtbW/766y+mTp1K69atsbW15dFHH2X+/Pk55xozZgxpaWl89tlnvPLKK7i4uDBs2LCK+4JCPMA0iqIoxi6EEKLy0Gg0bNiwgSFDhhi7KEKIfEgftxBCCGFCJHALIYQQJkT6uIUQBqT3TIjKTWrcQgghhAmRwC2EEEKYEAncQgghhAmRwC2EEEKYEAncQgghhAmRwC2EEEKYEAncQgghhAmRwC2EEEKYkP8HBpe8YpmQoRMAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 1200x400 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.figure(figsize=(12, 4))\n",
    "plt.subplot(1, 2, 1)\n",
    "plt.plot(history.history['accuracy'])\n",
    "plt.plot(history.history['val_accuracy'])\n",
    "plt.title('Model accuracy')\n",
    "plt.ylabel('Accuracy')\n",
    "plt.xlabel('Epoch')\n",
    "plt.legend(['Train', 'Test'], loc='upper left')"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "31f7b8ff-465e-4c9f-884b-86fe27d63f2f",
   "metadata": {},
   "source": [
    "### Conclusion\n",
    "\n",
    "The graph indicates that the Conv1D model is effective in learning and generalizing the task of emotion recognition from audio features. Both the training and test accuracies show a consistent improvement over the epochs, with the test accuracy closely following the training accuracy, suggesting that the model does not suffer from significant overfitting."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "187e8084-a43c-4b04-8eb8-1f155f8777b7",
   "metadata": {},
   "source": [
    "# Confusion Matrix\n",
    "\n",
    "The following plot shows the confusion matrix for the Conv1D model's predictions on the test dataset.\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 68,
   "id": "eed99318-753a-4196-a9ea-e41173335c57",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAG2CAYAAAAqWG/aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA73klEQVR4nO3de1xVVf7/8fcR8QgKlKYHyEuUmNfMpGFQC7vob7QxHWe6WROOXTStJCodsgmsBLXJrDBLzUs1jvXt4liTJpZRjeOEjjYOmdpIao2EFQkRHhT274++nW8nUM857s0+7F5PH/vxkLX3WfuzKuLDZ621t8swDEMAAAAhaGF3AAAAoPkikQAAACEjkQAAACEjkQAAACEjkQAAACEjkQAAACEjkQAAACEjkQAAACEjkQAAACEjkQAAACEjkQAAwIGOHj2qe++9V0lJSYqKitKZZ56p+++/X/X19b5rDMNQbm6uEhMTFRUVpSFDhqikpCSo+5BIAADgQLNnz9aTTz6pgoIC7dixQ3PmzNFDDz2kxx9/3HfNnDlzNHfuXBUUFKi4uFjx8fEaOnSoqqqqAr6Pi5d2AQDgPL/85S/l8Xj09NNP+9p+/etfKzo6Ws8++6wMw1BiYqIyMzM1bdo0SZLX65XH49Hs2bM1YcKEgO5DRQIAgGbC6/WqsrLS7/B6vY1eO3jwYL355pvatWuXJOmDDz7Qe++9pxEjRkiSSktLVVZWpmHDhvk+43a7lZ6ero0bNwYcU8uTGE/YWlK8z+4QTHHFOZ3sDgH/KzKCnBv4sSN19Se+qBmIcVv//R3V/1ZT+pk26jTNmDHDry0nJ0e5ubkNr502TYcOHVKPHj0UERGhuro6zZw5U9dcc40kqaysTJLk8Xj8PufxeLR3796AY3JkIgEAgBNlZ2crKyvLr83tdjd67fPPP6/nnntOK1asUO/evbVt2zZlZmYqMTFRGRkZvutcLpff5wzDaNB2PCQSAABYzWVO1cPtdh8zcfixu+++W7///e919dVXS5L69u2rvXv3Kj8/XxkZGYqPj5f0XWUiISHB97ny8vIGVYrjoV4LAIDVXC5zjiB8++23atHC/8d8RESEb/tnUlKS4uPjVVhY6DtfW1uroqIiDRw4MOD7UJEAAMBqJlUkgjFy5EjNnDlTXbp0Ue/evbV161bNnTtX48eP/y4kl0uZmZnKy8tTcnKykpOTlZeXp+joaI0dOzbg+5BIAADgQI8//rj+8Ic/aNKkSSovL1diYqImTJig++67z3fN1KlTVVNTo0mTJqmiokKpqalat26dYmJiAr6PI58jwa4NmI1dG0BD7NoIXNT5WSe+KAA1xXNN6cdMVCQAALCaDVMbTcW5IwMAAJajIgEAgNWC3HHRnJBIAABgNaY2AAAAGqIiAQCA1ZjaAAAAIWNqAwAAoCEqEgAAWI2pDQAAEDIHT22QSAAAYDUqEj89W9e/qq1vvqpDBz+XJJ3WqasG/uo6ndXvZ5IkwzD0t5ef1Qcb/qrD1d8o4aweGjruNnXodIaNUZ/Y0sULteHNQn1Sukdud2udc25/3ZZ5p85ISrI7tKA4ZRyS9Pyf/6RlS5/WFwcP6qxuyZr6+3t03oAUu8MKGuMIH819DE76/v4pcG6t5STFtDtN6VfdoIwH5ivjgfnq2utcvTw3Rwc//USS9I/Xnlfxmpd0acatuv7+ArU5pZ1emDVN3ppv7Q38BP65uVhXXD1WS59bqfkLn1Zd3VHdOvEG1Xwb3nH/mFPGsXbN65ozK1833XyLnn9xlc47b4AmTbhJB/77X7tDCwrjCB9OGINTvr/9uFqYc4Qh3v4ZhEcnjNGQa27SOem/0Pxbr1bKL36ln4+8WpJ09EitCiZfqSFX3ahzL/mlKfdrird/Vnz1lYYOGaSFS57ReSnnW34/q1g9Dqve/nnt1VeoZ69euve+Gb620SOH66KLL9WUO+605J5WYBzhoynH0FRv/7T6+7tJ3v6Zfr8p/dQU3Xfii5qYrenNp59+qunTp+uiiy5Sz5491atXL1100UWaPn269u/fb2dofurr6/Th3zfoiPewTk/upUMHy1R96Csl9f2/UmHLyFbq3OMcfbb7QxsjDd4331RJkmLj4myO5OQ0x3Ecqa3Vjg9LlDZwsF972sBB+mDbVpuiCh7jCB9OGENjmuP390+JbWsk3nvvPQ0fPlydO3fWsGHDNGzYMBmGofLycq1atUqPP/641qxZo0GDBh23H6/XK6/X69d2pNaryFbuk47x4P5SPZt7u44eqVWr1lH6VWaOTju9qz7dVSJJio47xe/6NnGn6tAXn5/0fZuKYRia+9Bsndt/gLold7c7nJA113FUfF2huro6tW/f3q+9ffvT9MUXB22KKniMI3w4YQw/1ly/vxtowWJL091xxx268cYb9cgjjxzzfGZmpoqLi4/bT35+vmbMmOHXdvmNmRp18x0nHWO7hE763cwndfjbb7Sr+D399amHNPbeh33nXfL/D8MwjAZt4WxO3gP6ePdOLV72J7tDOSnNfRwuVyP/HTXDFd6MI3w4YQzfa+7f3z5hur7BDLaN7N///rcmTpx4zPMTJkzQv//97xP2k52drUOHDvkdI8ZNMiXGiJaROjX+dCWcebbSr7pBHbucqc1rX1HbU9pJkqoPVfhd/23l12oTd6op97banPwH9c7bG/Tk4uXyxMfbHU7ImvM4Tj3lVEVEROiLL77wa//qqy/Vvv1pNkUVPMYRPpwwhh9qzt/fPyW2JRIJCQnauHHjMc///e9/V0JCwgn7cbvdio2N9TvMmNZolGGo7mit4jrEq01cO33y7y2+U3VHj2j/R//S6cm9rLm3SQzD0Oy8B7ThzUItWLxUp3eyfkGnFZwwjshWrdSzV29t2vg3v/ZNGzeq37n9bYoqeIwjfDhhDJIzvr8bcLnMOcKQbVMbd911lyZOnKgtW7Zo6NCh8ng8crlcKisrU2FhoRYvXqx58+bZFZ6Knn9aZ/b7mWLbd1Dt4Rrt+PsG7dvxL10xNU8ul0spv/iV/r76zzrVc7pOjT9df1/9Z0W2cqvnwIttizkQs2fer7Vr/qqHHy1QdJs2vnnTtm1j1Lp1a5ujC5xTxvHbjN9p+u+nqlefPurXr79e+p/ndeDAAV1x1dV2hxYUxhE+nDAGp3x/+3Hw1Iat2z+ff/55PfLII9qyZYvq6uokSRERERowYICysrJ05ZVXhtSvGds/X1/0sPaWbFX111/JHd1GHTonKfWXVymp7wBJ//dAqm1v/VWHv61S4lk9NDTjNnXobN4DU6zY/plyTs9G23MeyNPIUb8y/X5WaepxWLX9U/rfhwcteVoHD5arW3J33T0tWwOa4VZcxhE+mmoMVm3/bOrv7ybZ/nnpLFP6qVn/e1P6MVNYPEfiyJEjvjm90047TZGRkSfVn1XPkWhqTfEcCQTGykQCaK6a6jkSVmuSRGLobFP6qSmcZko/ZgqLR2RHRkYGtB4CAIBmycFTG2GRSAAA4GhhulDSDM5NkQAAgOWoSAAAYDWmNgAAQMiY2gAAAGiIigQAAFZjagMAAISMqQ0AAICGqEgAAGA1pjYAAEDIHJxIOHdkAADAclQkAACwGostAQBAyFwtzDmCcMYZZ8jlcjU4Jk+eLEkyDEO5ublKTExUVFSUhgwZopKSkqCHRiIBAIDVXC5zjiAUFxfrwIEDvqOwsFCSdMUVV0iS5syZo7lz56qgoEDFxcWKj4/X0KFDVVVVFdR9SCQAAHCgDh06KD4+3ne89tprOuuss5Seni7DMDRv3jxNnz5dY8aMUZ8+fbR8+XJ9++23WrFiRVD3IZEAAMBqJk1teL1eVVZW+h1er/eEt6+trdVzzz2n8ePHy+VyqbS0VGVlZRo2bJjvGrfbrfT0dG3cuDGooTlyseUV53SyOwRTdPz57XaHcNIqigvsDsEUVYeP2h2CKWJaO/JbHjaJjOB30YCZtNgyPz9fM2bM8GvLyclRbm7ucT+3atUqff311xo3bpwkqaysTJLk8Xj8rvN4PNq7d29QMfF/FQAAmons7GxlZWX5tbnd7hN+7umnn9bw4cOVmJjo1+76UYJjGEaDthMhkQAAwGLB/nA+FrfbHVDi8EN79+7V+vXr9fLLL/va4uPjJX1XmUhISPC1l5eXN6hSnAh1KQAALNbYNsxQjlAsXbpUHTt21GWXXeZrS0pKUnx8vG8nh/TdOoqioiINHDgwqP6pSAAA4FD19fVaunSpMjIy1LLl//3Id7lcyszMVF5enpKTk5WcnKy8vDxFR0dr7NixQd2DRAIAAKvZ9GDL9evXa9++fRo/fnyDc1OnTlVNTY0mTZqkiooKpaamat26dYqJiQnqHi7DMAyzAg4XVd56u0MwBbs2wge7NgDnaopvi7ZXLjOln29eGGdKP2ZijQQAAAgZv54AAGAxs3ZthCMSCQAALEYiAQAAQubkRII1EgAAIGRUJAAAsJpzCxIkEgAAWI2pDQAAgEZQkQAAwGJOrkiQSAAAYDEnJxJMbQAAgJBRkQAAwGJOrkiQSAAAYDXn5hFMbQAAgNBRkQAAwGJOntoI64rE/v37NX78+ONe4/V6VVlZ6Xd4vd4mihAAgBNzuVymHOEorBOJr776SsuXLz/uNfn5+YqLi/M7Hp4zq4kiBADgxJycSNg6tbF69erjnt+zZ88J+8jOzlZWVpZfW60iTyouAAAQGFsTidGjR8vlcskwjGNec6IMzO12y+12+7VVeetNiQ8AAFOEZzHBFLZObSQkJOill15SfX19o8c///lPO8MDAMAUTp7asDWRGDBgwHGThRNVKwAAgL1sndq4++67VV1dfczz3bp104YNG5owIgAAzBeu1QQz2JpIXHDBBcc936ZNG6WnpzdRNAAAWMPJiURYb/8EAADhjSdbAgBgMSdXJEgkAACwmnPzCKY2AABA6KhIAABgMaY2AABAyEgkAABAyJycSLBGAgAAhIyKBAAAVnNuQYJEAgAAqzG1AQAA0AgqEgAAWIyKBAAACJnL5TLlCNZnn32m6667Tu3bt1d0dLTOPfdcbdmyxXfeMAzl5uYqMTFRUVFRGjJkiEpKSoK6B4kEAAAOVFFRoUGDBikyMlJr1qzRhx9+qIcfflinnHKK75o5c+Zo7ty5KigoUHFxseLj4zV06FBVVVUFfB+mNgAAsJgdUxuzZ89W586dtXTpUl/bGWec4fu7YRiaN2+epk+frjFjxkiSli9fLo/HoxUrVmjChAkB3YeKBAAAVnOZdARh9erVSklJ0RVXXKGOHTuqf//+WrRoke98aWmpysrKNGzYMF+b2+1Wenq6Nm7cGPB9SCQAAGgmvF6vKisr/Q6v19votXv27NGCBQuUnJysN954QxMnTtTtt9+uZ555RpJUVlYmSfJ4PH6f83g8vnOBcOTURmSEM/KjiuICu0M4aclT/mJ3CKbY/egou0MwRU1tnd0hnLSoVhF2hwAEzaypjfz8fM2YMcOvLScnR7m5uQ2ura+vV0pKivLy8iRJ/fv3V0lJiRYsWKDrr7/+mLEZhhFUvM74iQsAQBgza9dGdna2Dh065HdkZ2c3es+EhAT16tXLr61nz57at2+fJCk+Pl6SGlQfysvLG1QpjodEAgAAi7lc5hxut1uxsbF+h9vtbvSegwYN0s6dO/3adu3apa5du0qSkpKSFB8fr8LCQt/52tpaFRUVaeDAgQGPzZFTGwAA/NTdcccdGjhwoPLy8nTllVfq/fff18KFC7Vw4UJJ31VJMjMzlZeXp+TkZCUnJysvL0/R0dEaO3ZswPchkQAAwGJ2bP88//zz9corryg7O1v333+/kpKSNG/ePF177bW+a6ZOnaqamhpNmjRJFRUVSk1N1bp16xQTExPwfVyGYRhWDMBOh4/aHQG+x2LL8MJiS6Ch1k3wK3X3qWtN6WfXnF+Y0o+ZWCMBAABCxtQGAAAWc/JLu0gkAACwmIPzCKY2AABA6KhIAABgsRYtnFuSIJEAAMBiTG0AAAA0gooEAAAWY9cGAAAImYPzCBIJAACs5uSKBGskAABAyKhIAABgMSdXJEgkAACwmIPzCKY2AABA6KhIAABgMSdPbdhekaipqdF7772nDz/8sMG5w4cP65lnnrEhKgAAzONymXOEI1sTiV27dqlnz5668MIL1bdvXw0ZMkQHDhzwnT906JB+97vfHbcPr9eryspKv8Pr9VodOgAAkM2JxLRp09S3b1+Vl5dr586dio2N1aBBg7Rv376A+8jPz1dcXJzf8dDsfAujBgAgOC6Xy5QjHNm6RmLjxo1av369TjvtNJ122mlavXq1Jk+erAsuuEAbNmxQmzZtTthHdna2srKy/NqMCLdVIQMAELQwzQFMYWsiUVNTo5Yt/UOYP3++WrRoofT0dK1YseKEfbjdbrnd/onD4aOmhgkAAI7B1kSiR48e2rx5s3r27OnX/vjjj8swDF1++eU2RQYAgHnCdVrCDLaukfjVr36lP//5z42eKygo0DXXXCPDMJo4KgAAzMWuDYtkZ2fr9ddfP+b5J554QvX19U0YEQAA5nPyYkvbnyMBAACaL55sCQCAxcK0mGAKEgkAACwWrtMSZmBqAwAAhIyKBAAAFnNwQYJEAgAAqzG1AQAA0AgqEgAAWMzBBQkSCQAArMbUBgAAQCOoSAAAYDEnVyRIJAAAsJiD8wgSCQAArObkigRrJAAAcKDc3NwGbw+Nj4/3nTcMQ7m5uUpMTFRUVJSGDBmikpKSoO9DIgEAgMVcLnOOYPXu3VsHDhzwHdu3b/edmzNnjubOnauCggIVFxcrPj5eQ4cOVVVVVVD3YGoDAACL2TW10bJlS78qxPcMw9C8efM0ffp0jRkzRpK0fPlyeTwerVixQhMmTAj4HlQkAABoJrxeryorK/0Or9d7zOt3796txMREJSUl6eqrr9aePXskSaWlpSorK9OwYcN817rdbqWnp2vjxo1BxURFIozV1NbZHcJJ25w/wu4QTNHxumfsDsEUny2/zu4Q8L+O1NXbHcJJi4zgd9FAmVWQyM/P14wZM/zacnJylJub2+Da1NRUPfPMM+revbs+//xzPfjggxo4cKBKSkpUVlYmSfJ4PH6f8Xg82rt3b1AxkUgAAGCxFiZlEtnZ2crKyvJrc7vdjV47fPhw39/79u2rtLQ0nXXWWVq+fLl+/vOfS2o45WIYRtDTMKSTAAA0E263W7GxsX7HsRKJH2vTpo369u2r3bt3+9ZNfF+Z+F55eXmDKsWJkEgAAGAxu3Zt/JDX69WOHTuUkJCgpKQkxcfHq7Cw0He+trZWRUVFGjhwYFD9MrUBAIDF7Ni1cdddd2nkyJHq0qWLysvL9eCDD6qyslIZGRlyuVzKzMxUXl6ekpOTlZycrLy8PEVHR2vs2LFB3YdEAgAAi7WwYffnp59+qmuuuUZffPGFOnTooJ///OfatGmTunbtKkmaOnWqampqNGnSJFVUVCg1NVXr1q1TTExMUPdxGYZhWDEAOx0+ancE5nDCro3ao81/ZbokJd/8Z7tDMIUTdm04ZacAuzbCR+sm+JV6+IJ/mNLPmltSTenHTFQkAACwmJPftUEiAQCAxRycR7BrAwAAhI6KBAAAFnPJuSUJEgkAACxmx66NpsLUBgAACBkVCQAALMauDQAAEDIH5xFMbQAAgNBRkQAAwGJmvUY8HJFIAABgMQfnESQSAABYzcmLLVkjAQAAQkZFAgAAizm4IEEiAQCA1VhsaaEdO3Zo06ZNSktLU48ePfTRRx/p0Ucfldfr1XXXXaeLL774uJ/3er3yer1+bUaEW26328qwAQCAbF4jsXbtWp177rm666671L9/f61du1YXXnihPv74Y+3bt0//7//9P7311lvH7SM/P19xcXF+x0Oz85toBAAAnJjLpCMc2ZpI3H///br77rv15ZdfaunSpRo7dqxuuukmFRYWav369Zo6dapmzZp13D6ys7N16NAhv+PuadlNNAIAAE7M5XKZcoQjWxOJkpISjRs3TpJ05ZVXqqqqSr/+9a9956+55hr961//Om4fbrdbsbGxfgfTGgAANA3b10h8r0WLFmrdurVOOeUUX1tMTIwOHTpkX1AAAJjAya8RDyiRWL16dcAdXn755QFfe8YZZ+jjjz9Wt27dJEl///vf1aVLF9/5/fv3KyEhIeD+AAAIR+E6LWGGgBKJ0aNHB9SZy+VSXV1dwDe/5ZZb/K7v06eP3/k1a9accNcGAACwT0CJRH19vSU3nzhx4nHPz5w505L7AgDQlBxckAifNRIAADjVT35q48eqq6tVVFSkffv2qba21u/c7bffbkpgAAA4xU9+seUPbd26VSNGjNC3336r6upqtWvXTl988YWio6PVsWNHEgkAAH5Cgn6OxB133KGRI0fqq6++UlRUlDZt2qS9e/dqwIAB+uMf/2hFjAAANGs8kOoHtm3bpjvvvFMRERGKiIiQ1+tV586dNWfOHN1zzz1WxAgAQLPGI7J/IDIy0pcVeTwe7du3T5IUFxfn+zsAAPhpCHqNRP/+/bV582Z1795dF110ke677z598cUXevbZZ9W3b18rYgQAoFlz8mvEg65I5OXl+Z42+cADD6h9+/a65ZZbVF5eroULF5oeIAAAzZ3LZc4RjoKuSKSkpPj+3qFDB73++uumBgQAAJoPHkgFAIDFwnXHhRmCTiSSkpKO+w9kz549JxUQAABO4+A8IvhEIjMz0+/rI0eOaOvWrVq7dq3uvvtus+ICAADNQNCJxJQpUxptnz9/vjZv3nzSAQEA4DThsGsjPz9f99xzj6ZMmaJ58+ZJkgzD0IwZM7Rw4UJVVFQoNTVV8+fPV+/evQPuN+hdG8cyfPhwvfTSS2Z1BwCAY9i9a6O4uFgLFy7UOeec49c+Z84czZ07VwUFBSouLlZ8fLyGDh2qqqqqgPs2LZF48cUX1a5dO7O6AwDAMex8RPY333yja6+9VosWLdKpp57qazcMQ/PmzdP06dM1ZswY9enTR8uXL9e3336rFStWBNx/SA+k+uFgDMNQWVmZDh48qCeeeCLY7gAAQIC8Xq+8Xq9fm9vtltvtPuZnJk+erMsuu0yXXnqpHnzwQV97aWmpysrKNGzYML++0tPTtXHjRk2YMCGgmIJOJEaNGuWXSLRo0UIdOnTQkCFD1KNHj2C7w3FEtYqwO4ST5oQxSFL5c9fbHYIpTr2w+b8Pp3zDgye+CE3iSF293SGYonVL04rzx2TWHfLz8zVjxgy/tpycHOXm5jZ6/cqVK/XPf/5TxcXFDc6VlZVJ+u51Fz/k8Xi0d+/egGMKOpE4VrAAAKBxZj1HIjs7W1lZWX5tx6pG7N+/X1OmTNG6devUunXrgGMzDCOoeINOkiIiIlReXt6g/csvv1REhDN++wQAIBy53W7Fxsb6HcdKJLZs2aLy8nINGDBALVu2VMuWLVVUVKTHHntMLVu29FUivq9MfK+8vLxBleJ4gk4kDMNotN3r9apVq1bBdgcAgOO1cJlzBOOSSy7R9u3btW3bNt+RkpKia6+9Vtu2bdOZZ56p+Ph4FRYW+j5TW1uroqIiDRw4MOD7BDy18dhjj0n6rgSyePFitW3b1neurq5O77zzDmskAABoRLBJgBliYmLUp08fv7Y2bdqoffv2vvbMzEzl5eUpOTlZycnJysvLU3R0tMaOHRvwfQJOJB555BFJ31UknnzySb9pjFatWumMM87Qk08+GfCNAQCAvaZOnaqamhpNmjTJ90CqdevWKSYmJuA+XMax5iqO4aKLLtLLL7/stxc13Bw+ancEQHhi1wbQUIzb+l0bd76605R+Hh55tin9mCnoXRsbNmywIg4AABzLjqmNphJ0Gvab3/xGs2bNatD+0EMP6YorrjAlKAAA0DwEnUgUFRXpsssua9D+i1/8Qu+8844pQQEA4CR2v2vDSkFPbXzzzTeNbvOMjIxUZWWlKUEBAOAk4fD2T6sEXZHo06ePnn/++QbtK1euVK9evUwJCgAAJ2lh0hGOgq5I/OEPf9Cvf/1r/ec//9HFF18sSXrzzTe1YsUKvfjii6YHCAAAwlfQicTll1+uVatWKS8vTy+++KKioqLUr18/vfXWW4qNjbUiRgAAmjUHz2wEn0hI0mWXXeZbcPn111/rT3/6kzIzM/XBBx+orq7O1AABAGjuWCPRiLfeekvXXXedEhMTVVBQoBEjRmjz5s1mxgYAAMJcUBWJTz/9VMuWLdOSJUtUXV2tK6+8UkeOHNFLL73EQksAAI7BwQWJwCsSI0aMUK9evfThhx/q8ccf13//+189/vjjVsYGAIAj2PH2z6YScEVi3bp1uv3223XLLbcoOTnZypgAAEAzEXBF4t1331VVVZVSUlKUmpqqgoICHTx40MrYAABwhBYulylHOAo4kUhLS9OiRYt04MABTZgwQStXrtTpp5+u+vp6FRYWqqqqypSAgnwZKQAAYc/Jj8gOetdGdHS0xo8fr/fee0/bt2/XnXfeqVmzZqljx466/PLLTzogt9utHTt2nHQ/AADAeiE9R+J7Z599tubMmaP8/Hy9+uqrWrJkScCfzcrKarS9rq5Os2bNUvv27SVJc+fOPW4/Xq9XXq/Xr82IcMvtdgccCwAAVgrXhZJmOKlE4nsREREaPXq0Ro8eHfBn5s2bp379+umUU07xazcMQzt27FCbNm3kCqCOk5+frxkzZvi1Tf9Dju69LzfgWAAAsJJLzs0kTEkkQjFz5kwtWrRIDz/8sO+dHdJ3bxFdtmxZwM+lyM7OblDdMCKoRgAAwgcVCQtkZ2fr0ksv1XXXXaeRI0cqPz9fkZGRQffjdjecxjh81KwoAQDA8dj6VtLzzz9fW7Zs0cGDB5WSkqLt27cHNJ0BAEBzwgOpLNS2bVstX75cK1eu1NChQ3npFwDAcZz8S7LticT3rr76ag0ePFhbtmxR165d7Q4HAAAEIGwSCUnq1KmTOnXqZHcYAACYKlynJcwQVokEAABO5OCZDXsXWwIAgOaNigQAABYL1xdumYFEAgAAizl5jQRTGwAAIGRUJAAAsJiDZzZIJAAAsFoLXtoFAABC5eSKBGskAABAyKhIAABgMSfv2iCRAADAYk5+jgRTGwAAIGQkEgAAWMzlMucIxoIFC3TOOecoNjZWsbGxSktL05o1a3znDcNQbm6uEhMTFRUVpSFDhqikpCTosZFIAABgsRYulylHMDp16qRZs2Zp8+bN2rx5sy6++GKNGjXKlyzMmTNHc+fOVUFBgYqLixUfH6+hQ4eqqqoquLEFdTUAAGgWRo4cqREjRqh79+7q3r27Zs6cqbZt22rTpk0yDEPz5s3T9OnTNWbMGPXp00fLly/Xt99+qxUrVgR1HxIJAAAsZtbUhtfrVWVlpd/h9XpPeP+6ujqtXLlS1dXVSktLU2lpqcrKyjRs2DDfNW63W+np6dq4cWNQY2PXBhCAI3X1dodgiop38uwO4aQlT/mL3SGYYucjl9sdwklr4eQ9jSYz67f2/Px8zZgxw68tJydHubm5jV6/fft2paWl6fDhw2rbtq1eeeUV9erVy5cseDwev+s9Ho/27t0bVEwkEgAANBPZ2dnKysrya3O73ce8/uyzz9a2bdv09ddf66WXXlJGRoaKiop8510/WndhGEaDthMhkQAAwGLB/nA+FrfbfdzE4cdatWqlbt26SZJSUlJUXFysRx99VNOmTZMklZWVKSEhwXd9eXl5gyrFibBGAgAAi7lMOk6WYRjyer1KSkpSfHy8CgsLfedqa2tVVFSkgQMHBtUnFQkAACxmx5Mt77nnHg0fPlydO3dWVVWVVq5cqbfffltr166Vy+VSZmam8vLylJycrOTkZOXl5Sk6Olpjx44N6j4kEgAAONDnn3+u3/72tzpw4IDi4uJ0zjnnaO3atRo6dKgkaerUqaqpqdGkSZNUUVGh1NRUrVu3TjExMUHdx2UYhmHFAOx0+KjdEcBpnLJrIzKi+c9msmsjfDhl10brJviV+k9bPjWln2sHdDKlHzNRkQAAwGIOfmcXiy0BAEDoqEgAAGAxs7Z/hiMSCQAALObk8r+TxwYAACxGRQIAAIsxtQEAAELm3DSCqQ0AAHASqEgAAGAxpjYAAEDInFz+J5EAAMBiTq5IODlJAgAAFqMiAQCAxZxbjyCRAADAcg6e2WBqAwAAhC6sKhIVFRVavny5du/erYSEBGVkZKhz587H/YzX65XX6/VrMyLccrvdVoYKAEDAWjh4csPWikRiYqK+/PJLSVJpaal69eql2bNna/fu3XrqqafUt29fffTRR8ftIz8/X3FxcX7HQ7PzmyJ8AAAC4nKZc4Qjl2EYhl03b9GihcrKytSxY0ddc801Kisr01//+ldFR0fL6/XqN7/5jVq3bq3/+Z//OWYfVCTQFI7U1dsdgikiI5r/bGbylL/YHYIpdj5yud0hnLQWLcL0J1uQWjdBbf61f39uSj+/7OMxpR8zhc3Uxj/+8Q8tXrxY0dHRkiS32617771Xv/nNb477Obe7YdJw+KhlYQIAEDSXg6c2bE8kvn9Ih9frlcfjn2l5PB4dPHjQjrAAADBNuE5LmMH2ROKSSy5Ry5YtVVlZqV27dql3796+c/v27dNpp51mY3QAAOB4bE0kcnJy/L7+flrje6+++qouuOCCpgwJAADTOXnXRlglEj/20EMPNVEkAABYh6kNAAAQMicnEs1/LxgAALANFQkAACzG9k8AABAyhzy7q1FMbQAAgJBRkQAAwGJMbQAAgJCxawMAAKARVCQAALAYUxsAACBk7NoAAABoBBUJAAAs5uSpDSoSAABYzOUy5whGfn6+zj//fMXExKhjx44aPXq0du7c6XeNYRjKzc1VYmKioqKiNGTIEJWUlAR1HxIJAAAs5jLpCEZRUZEmT56sTZs2qbCwUEePHtWwYcNUXV3tu2bOnDmaO3euCgoKVFxcrPj4eA0dOlRVVVWBj80wDCPI2MLe4aN2RwCnOVJXb3cIpoiMaP6/OyRP+YvdIZhi5yOX2x3CSWvhkBWErZtgkv9vuytM6WdQ8qkhf/bgwYPq2LGjioqKdOGFF8owDCUmJiozM1PTpk2TJHm9Xnk8Hs2ePVsTJkwIqN/m/38VAADCXAuXy5TD6/WqsrLS7/B6vQHFcOjQIUlSu3btJEmlpaUqKyvTsGHDfNe43W6lp6dr48aNAY+NxZZAAJzwm7zkjMrK7kdH2R2CKU4ds8DuEE5axcu32B1Cs2FW7SY/P18zZszwa8vJyVFubu5xP2cYhrKysjR48GD16dNHklRWViZJ8ng8ftd6PB7t3bs34JhIJAAAaCays7OVlZXl1+Z2u0/4uVtvvVX/+te/9N577zU45/rRKk7DMBq0HQ+JBAAAVjOpJOF2uwNKHH7otttu0+rVq/XOO++oU6dOvvb4+HhJ31UmEhISfO3l5eUNqhTH44x6LQAAYcxl0p9gGIahW2+9VS+//LLeeustJSUl+Z1PSkpSfHy8CgsLfW21tbUqKirSwIEDA74PFQkAABxo8uTJWrFihf7yl78oJibGtyYiLi5OUVFRcrlcyszMVF5enpKTk5WcnKy8vDxFR0dr7NixAd+HRAIAAIvZ8RrxBQu+W9A7ZMgQv/alS5dq3LhxkqSpU6eqpqZGkyZNUkVFhVJTU7Vu3TrFxMQEfB+eIwH8hDhh14ZTdtCwayN8NMVzJIr3HDKln/PPjDOlHzM54zsSAADYgqkNAACs5oyHgDaKRAIAAIs5+e2fJBIAAFjMjsWWTYU1EgAAIGRUJAAAsJiDCxIkEgAAWM7BmQRTGwAAIGRUJAAAsBi7NgAAQMjYtQEAANAIKhIAAFjMwQUJEgkAACzn4EyCqQ0AABAyKhIAAFjMybs2bK1IbN26VaWlpb6vn3vuOQ0aNEidO3fW4MGDtXLlyhP24fV6VVlZ6Xd4vV4rwwYAICgulzlHOLI1kbjhhhv0ySefSJIWL16sm2++WSkpKZo+fbrOP/983XTTTVqyZMlx+8jPz1dcXJzf8dDs/CaIHgCAwLhMOsKRyzAMw66bt2nTRjt27FCXLl103nnnaeLEibr55pt951esWKGZM2eqpKTkmH14vd4GFQgjwi23221Z3EBzdaSu3u4QTlpkhDOWdp06ZoHdIZy0ipdvsTsEU7Rugkn+f3/6jSn99OnU1pR+zGTrGomoqCgdPHhQXbp00WeffabU1FS/86mpqX5TH41xuxsmDYePmh4qAAChC9dygglsTe2HDx+uBQu+y8rT09P14osv+p1/4YUX1K1bNztCAwDANC6T/oQjWysSs2fP1qBBg5Senq6UlBQ9/PDDevvtt9WzZ0/t3LlTmzZt0iuvvGJniAAA4DhsrUgkJiZq69atSktL09q1a2UYht5//32tW7dOnTp10t/+9jeNGDHCzhABADhpTt61YetiS6uwRgJoHIstwweLLcNHUyy23PHfalP66ZnYxpR+zOSM70gAAGALnmwJAIDVwnRawgwkEgAAWCxcd1yYgakNAAAQMioSAABYLFx3XJiBRAIAAIs5OI8gkQAAwHIOziRYIwEAAEJGRQIAAIs5edcGiQQAABZz8mJLpjYAAEDIqEgAAGAxBxckqEgAAGA5l0lHkN555x2NHDlSiYmJcrlcWrVqld95wzCUm5urxMRERUVFaciQISopKQnqHiQSAAA4VHV1tfr166eCgoJGz8+ZM0dz585VQUGBiouLFR8fr6FDh6qqqirgezC1AQCAxezatTF8+HANHz680XOGYWjevHmaPn26xowZI0lavny5PB6PVqxYoQkTJgR0DyoSAABYzOUy5zBTaWmpysrKNGzYMF+b2+1Wenq6Nm7cGHA/VCQAAGgmvF6vvF6vX5vb7Zbb7Q66r7KyMkmSx+Pxa/d4PNq7d2/A/ZBIwFI1tXV2h2CKqFYRdodgisgIipDhouLlW+wO4aSdev6tdodgipqtja8fMJNZxYT8/HzNmDHDry0nJ0e5ubkh9+n6UanDMIwGbcdDIgEAgNVMyiSys7OVlZXl1xZKNUKS4uPjJX1XmUhISPC1l5eXN6hSHA+/ngAAYDGXSX/cbrdiY2P9jlATiaSkJMXHx6uwsNDXVltbq6KiIg0cODDgfqhIAADgUN98840+/vhj39elpaXatm2b2rVrpy5duigzM1N5eXlKTk5WcnKy8vLyFB0drbFjxwZ8DxIJAAAsZte7NjZv3qyLLrrI9/X30yIZGRlatmyZpk6dqpqaGk2aNEkVFRVKTU3VunXrFBMTE/A9XIZhGKZHbrPDR+2OAN9jsSXgXCy2DNz+r7wnvigAnduFNo1hJdZIAACAkDG1AQCAxZz8GnESCQAALOfcTIKpDQAAEDIqEgAAWIypDQAAEDIH5xFMbQAAgNBRkQAAwGJMbQAAgJC5HDy5QSIBAIDVnJtHsEYCAACEjooEAAAWc3BBgkQCAACrOXmxJVMbAAAgZFQkAACwmJN3bdhakbjtttv07rvv2hkCAADWc5l0hCFbE4n58+dryJAh6t69u2bPnq2ysrKg+/B6vaqsrPQ7vF6vBdECAIAfs32NxLp16zRixAj98Y9/VJcuXTRq1Ci99tprqq+vD+jz+fn5iouL8zsemp1vcdQAAATOwQUJuQzDMOy6eYsWLVRWVqaOHTvqyJEjeuWVV7RkyRKtX79eHo9H48aN0+9+9zt169btmH14vd4GFQgjwi232211+AhATW2d3SGYIqpVhN0hAGHn1PNvtTsEU9RsLbD8Hl9WHzWln/Ztwm9pY9gkEj+0b98+LVmyRMuWLdP+/ftVVxfcD6PD5vz7gglIJADnIpEInJMTCdunNhrTpUsX5ebmqrS0VGvXrrU7HAAATorLpD/hyNbUpmvXroqIOPZvei6XS0OHDm3CiAAAMJ+TH0hlayJRWlpq5+0BAMBJCsupDQAA0DyE36oNAAAchqkNAAAQsnBdKGkGpjYAAEDIqEgAAGAxpjYAAEDIHJxHMLUBAABCR0UCAACrObgkQSIBAIDF2LUBAADQCCoSAABYjF0bAAAgZA7OI0gkAACwnIMzCdZIAADgYE888YSSkpLUunVrDRgwQO+++66p/ZNIAABgMZdJf4L1/PPPKzMzU9OnT9fWrVt1wQUXaPjw4dq3b595YzMMwzCttzBx+KjdEeB7NbV1dodgiqhWEXaHAISdU8+/1e4QTFGztcDye5j1c6l1kAsSUlNTdd5552nBggW+tp49e2r06NHKz883JSYqEgAANBNer1eVlZV+h9frbfTa2tpabdmyRcOGDfNrHzZsmDZu3GheUAaCdvjwYSMnJ8c4fPiw3aGcFCeMwwljMAxnjMMJYzAMxhFOnDAGs+Xk5BiS/I6cnJxGr/3ss88MScbf/vY3v/aZM2ca3bt3Ny0mR05tWK2yslJxcXE6dOiQYmNj7Q4nZE4YhxPGIDljHE4Yg8Q4wokTxmA2r9fboALhdrvldrsbXPvf//5Xp59+ujZu3Ki0tDRf+8yZM/Xss8/qo48+MiUmtn8CANBMHCtpaMxpp52miIgIlZWV+bWXl5fL4/GYFhNrJAAAcKBWrVppwIABKiws9GsvLCzUwIEDTbsPFQkAABwqKytLv/3tb5WSkqK0tDQtXLhQ+/bt08SJE027B4lECNxut3JycgIuL4UrJ4zDCWOQnDEOJ4xBYhzhxAljsNtVV12lL7/8Uvfff78OHDigPn366PXXX1fXrl1NuweLLQEAQMhYIwEAAEJGIgEAAEJGIgEAAEJGIgEAAEJGIhECq1/JarV33nlHI0eOVGJiolwul1atWmV3SEHLz8/X+eefr5iYGHXs2FGjR4/Wzp077Q4raAsWLNA555yj2NhYxcbGKi0tTWvWrLE7rJOSn58vl8ulzMxMu0MJSm5urlwul98RHx9vd1hB++yzz3Tdddepffv2io6O1rnnnqstW7bYHVZQzjjjjAb/LlwulyZPnmx3aGgEiUSQmuKVrFarrq5Wv379VFBg/RvvrFJUVKTJkydr06ZNKiws1NGjRzVs2DBVV1fbHVpQOnXqpFmzZmnz5s3avHmzLr74Yo0aNUolJSV2hxaS4uJiLVy4UOecc47doYSkd+/eOnDggO/Yvn273SEFpaKiQoMGDVJkZKTWrFmjDz/8UA8//LBOOeUUu0MLSnFxsd+/h+8fqHTFFVfYHBkaZdpbO34ifvaznxkTJ070a+vRo4fx+9//3qaITo4k45VXXrE7jJNWXl5uSDKKiorsDuWknXrqqcbixYvtDiNoVVVVRnJyslFYWGikp6cbU6ZMsTukoOTk5Bj9+vWzO4yTMm3aNGPw4MF2h2G6KVOmGGeddZZRX19vdyhoBBWJIDTZK1kRtEOHDkmS2rVrZ3Mkoaurq9PKlStVXV3t94Kd5mLy5Mm67LLLdOmll9odSsh2796txMREJSUl6eqrr9aePXvsDikoq1evVkpKiq644gp17NhR/fv316JFi+wO66TU1tbqueee0/jx4+VyuewOB40gkQjCF198obq6ugYvO/F4PA1eioKmYxiGsrKyNHjwYPXp08fucIK2fft2tW3bVm63WxMnTtQrr7yiXr162R1WUFauXKl//vOfys/PtzuUkKWmpuqZZ57RG2+8oUWLFqmsrEwDBw7Ul19+aXdoAduzZ48WLFig5ORkvfHGG5o4caJuv/12PfPMM3aHFrJVq1bp66+/1rhx4+wOBcfAI7JD8OOs2DAMMmUb3XrrrfrXv/6l9957z+5QQnL22Wdr27Zt+vrrr/XSSy8pIyNDRUVFzSaZ2L9/v6ZMmaJ169apdevWdocTsuHDh/v+3rdvX6Wlpemss87S8uXLlZWVZWNkgauvr1dKSory8vIkSf3791dJSYkWLFig66+/3uboQvP0009r+PDhSkxMtDsUHAMViSA01StZEbjbbrtNq1ev1oYNG9SpUye7wwlJq1at1K1bN6WkpCg/P1/9+vXTo48+andYAduyZYvKy8s1YMAAtWzZUi1btlRRUZEee+wxtWzZUnV1dXaHGJI2bdqob9++2r17t92hBCwhIaFBAtqzZ89mtRj8h/bu3av169frxhtvtDsUHAeJRBCa6pWsODHDMHTrrbfq5Zdf1ltvvaWkpCS7QzKNYRjyer12hxGwSy65RNu3b9e2bdt8R0pKiq699lpt27ZNERERdocYEq/Xqx07dighIcHuUAI2aNCgBtugd+3aZeoLmprS0qVL1bFjR1122WV2h4LjYGojSE3xSlarffPNN/r44499X5eWlmrbtm1q166dunTpYmNkgZs8ebJWrFihv/zlL4qJifFVieLi4hQVFWVzdIG75557NHz4cHXu3FlVVVVauXKl3n77ba1du9bu0AIWExPTYG1KmzZt1L59+2a1ZuWuu+7SyJEj1aVLF5WXl+vBBx9UZWWlMjIy7A4tYHfccYcGDhyovLw8XXnllXr//fe1cOFCLVy40O7QglZfX6+lS5cqIyNDLVvyoyqs2btppHmaP3++0bVrV6NVq1bGeeed1+y2HG7YsMGQ1ODIyMiwO7SANRa/JGPp0qV2hxaU8ePH+/5b6tChg3HJJZcY69atszusk9Yct39eddVVRkJCghEZGWkkJiYaY8aMMUpKSuwOK2ivvvqq0adPH8Ptdhs9evQwFi5caHdIIXnjjTcMScbOnTvtDgUnwGvEAQBAyFgjAQAAQkYiAQAAQkYiAQAAQkYiAQAAQkYiAQAAQkYiAQAAQkYiAQAAQkYiAThQbm6uzj33XN/X48aN0+jRo5s8jk8++UQul0vbtm1r8nsDaBokEkATGjdunFwul1wulyIjI3XmmWfqrrvuUnV1taX3ffTRR7Vs2bKAruWHP4Bg8ABzoIn94he/0NKlS3XkyBG9++67uvHGG1VdXa0FCxb4XXfkyBFFRkaacs+4uDhT+gGAH6MiATQxt9ut+Ph4de7cWWPHjtW1116rVatW+aYjlixZojPPPFNut1uGYejQoUO6+eab1bFjR8XGxuriiy/WBx984NfnrFmz5PF4FBMToxtuuEGHDx/2O//jqY36+nrNnj1b3bp1k9vtVpcuXTRz5kxJ8r1JtX///nK5XBoyZIjvc0uXLlXPnj3VunVr9ejRQ0888YTffd5//331799frVu3VkpKirZu3WriPzkA4YiKBGCzqKgoHTlyRJL08ccf64UXXtBLL73ke/32ZZddpnbt2un1119XXFycnnrqKV1yySXatWuX2rVrpxdeeEE5OTmaP3++LrjgAj377LN67LHHdOaZZx7zntnZ2Vq0aJEeeeQRDR48WAcOHNBHH30k6btk4Gc/+5nWr1+v3r17q1WrVpKkRYsWKScnRwUFBerfv7+2bt2qm266SW3atFFGRoaqq6v1y1/+UhdffLGee+45lZaWasqUKRb/0wNgO5tfGgb8pGRkZBijRo3yff2Pf/zDaN++vXHllVcaOTk5RmRkpFFeXu47/+abbxqxsbHG4cOH/fo566yzjKeeesowDMNIS0szJk6c6Hc+NTXV6NevX6P3raysNNxut7Fo0aJGYywtLTUkGVu3bvVr79y5s7FixQq/tgceeMBIS0szDMMwnnrqKaNdu3ZGdXW17/yCBQsa7QuAczC1ATSx1157TW3btlXr1q2VlpamCy+8UI8//rgkqWvXrurQoYPv2i1btuibb75R+/bt1bZtW99RWlqq//znP5KkHTt2KC0tze8eP/76h3bs2CGv16tLLrkk4JgPHjyo/fv364YbbvCL48EHH/SLo1+/foqOjg4oDgDOwNQG0MQuuugiLViwQJGRkUpMTPRbUNmmTRu/a+vr65WQkKC33367QT+nnHJKSPePiooK+jP19fWSvpveSE1N9Tv3/RSMYRghxQOgeSORAJpYmzZt1K1bt4CuPe+881RWVqaWLVvqjDPOaPSanj17atOmTbr++ut9bZs2bTpmn8nJyYqKitKbb76pG2+8scH579dE1NXV+do8Ho9OP/107dmzR9dee22j/fbq1UvPPvusampqfMnK8eIA4AxMbQBh7NJLL1VaWppGjx6tN954Q5988ok2btyoe++9V5s3b5YkTZkyRUuWLNGSJUu0a9cu5eTkqKSk5Jh9tm7dWtOmTdPUqVP1zDPP6D//+Y82bdqkp59+WpLUsWNHRUVFae3atfr888916NAhSd895Co/P1+PPvqodu3ape3bt2vp0qWaO3euJGns2LFq0aKFbrjhBn344Yd6/fXX9cc//tHif0IA7EYiAYQxl8ul119/XRdeeKHGjx+v7t276+qrr9Ynn3wij8cjSbrqqqt03333adq0aRowYID27t2rW2655bj9/uEPf9Cdd96p++67Tz179tRVV12l8vJySVLLli312GOP6amnnlJiYqJGjRolSbrxxhu1ePFiLVu2TH379lV6erqWLVvm2y7atm1bvfrqq/rwww/Vv39/TZ8+XbNnz7bwnw6AcOAymNgEAAAhoiIBAABCRiIBAABCRiIBAABCRiIBAABCRiIBAABCRiIBAABCRiIBAABCRiIBAABCRiIBAABCRiIBAABCRiIBAABCRiIBAABC9v8BVK+ra5pLY1YAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 640x480 with 2 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import seaborn as sns\n",
    "from sklearn.metrics import confusion_matrix\n",
    "\n",
    "# Compute confusion matrix\n",
    "conf_matrix = confusion_matrix(true_labels, predicted_labels)\n",
    "sns.heatmap(conf_matrix, annot=True, fmt=\"d\", cmap=\"Blues\", xticklabels=label_encoder.classes_, yticklabels=label_encoder.classes_)\n",
    "plt.ylabel('Actual')\n",
    "plt.xlabel('Predicted')\n",
    "plt.show()\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "75016e46-b833-4114-95c6-212bed312c57",
   "metadata": {},
   "source": [
    "\n",
    "\n",
    "### Description\n",
    "\n",
    "- **X-axis (Predicted)**: Represents the predicted emotion labels by the model.\n",
    "- **Y-axis (Actual)**: Represents the actual emotion labels.\n",
    "- **Color Scale**: The intensity of the color represents the number of instances classified in each category, with darker colors indicating a higher number of instances.\n",
    "\n",
    "### Emotion Labels\n",
    "The numerical labels correspond to the following emotions:\n",
    "- 0: Neutral\n",
    "- 1: Calm\n",
    "- 2: Happy\n",
    "- 3: Sad\n",
    "- 4: Angry\n",
    "- 5: Fearful\n",
    "- 6: Disgust\n",
    "- 7: Surprised\n",
    "\n",
    "### Observations\n",
    "\n",
    "- **High Accuracy**: Most predictions are concentrated along the diagonal, indicating correct classifications.\n",
    "- **Misclassifications**: Some off-diagonal elements show misclassifications, such as a few instances where 'Neutral' is predicted as 'Calm' or 'Happy'.\n",
    "- **Confusion**: Specific emotions like 'Sad' and 'Angry' show some level of confusion with other emotions, as indicated by the lighter cells off the diagonal.\n",
    "\n",
    "### Conclusion\n",
    "\n",
    "The confusion matrix indicates that the Conv1D model performs well in classifying most of the emotions correctly, with a high number of correct predictions for 'Neutral', 'Sad', and 'Angry'. Some emotions like 'Calm' and 'Happy' have slight confusion with other emotions, but overall, the model demonstrates strong performance in emotion recognition."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 61,
   "id": "4dc5b551-0161-4b65-80a6-95572d58486e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Save the model in the recommended Keras format\n",
    "model.save('emotion_recognition_model.keras')\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "16a6eed0-1f41-4865-a630-fb5947b5627c",
   "metadata": {},
   "source": [
    "\n",
    "# LSTM Model for Emotion Classification\r\n",
    "\r\n",
    "## Model Architecture\r\n",
    "\r\n",
    "- **Input Layer**: The model accepts input with the shape (40, 1), where 40 represents the number of MFCC features extracted from the audio signals.\r\n",
    "- **LSTM Layer**: A Long Short-Term Memory (LSTM) layer with 128 units is used. This layer processes the input sequence and outputs the last hidden state.\r\n",
    "- **Dense Layer 1**: A fully connected layer with 64 units.\r\n",
    "- **Dropout Layer 1**: A dropout layer with a dropout rate of 0.4 is added after the first dense layer to reduce overfitting by randomly setting 40% of the input units to 0 during training.\r\n",
    "- **Activation Layer 1**: A ReLU activation function is applied to introduce non-linearity.\r\n",
    "- **Dense Layer 2**: Another fully connected layer with 32 units.\r\n",
    "- **Dropout Layer 2**: Another dropout layer with a dropout rate of 0.4 is added after the second dense layer to further reduce overfitting.\r\n",
    "- **Activation Layer 2**: Another ReLU activation function is applied.\r\n",
    "- **Output Layer**: The final output layer consists of 8 units, corresponding to the 8 emotion categories. A softmax activation function is used to output a probability distribution over the emotion categories.\r\n",
    "\r\n",
    "## Model Compilation\r\n",
    "\r\n",
    "- **Loss Function**: The model uses `categorical_crossentropy` as the loss function, which is suitable for multi-class classification problems.\r\n",
    "- **Optimizer**: The `Adam` optimizer is used to update the model weights during training. Adam is known for its efficiency and effectiveness in training deep learning models.\r\n",
    "- **Metrics**: The `accuracy` metric is used to evaluate the model's performance on the training and validation datasets.\r\n",
    "\r\n",
    "## Usage\r\n",
    "\r\n",
    "The function `create_model_LSTM` initializes and compiles the LSTM model based on the defined architecture. This function can be called to get a compiled model ready for training on the preprocessed dataset.\r\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 53,
   "id": "bc569d3f-f20f-4a5e-a4d2-91de0d483ce8",
   "metadata": {},
   "outputs": [],
   "source": [
    "def create_model_LSTM():\n",
    "  model = Sequential()\n",
    "  model.add(LSTM(128, return_sequences=False, input_shape=(40, 1)))\n",
    "  model.add (Dense (64))\n",
    "  model.add(Dropout (0.4))\n",
    "  model.add(Activation('relu'))\n",
    "  model.add(Dense(32))\n",
    "  model.add(Dropout (0.4))\n",
    "  model.add(Activation('relu'))\n",
    "  model.add(Dense(8))\n",
    "  model.add(Activation('softmax'))\n",
    "  # Configures the model for training\n",
    "  model.compile(loss='categorical_crossentropy', optimizer='Adam', metrics=['accuracy'])\n",
    "  return model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 76,
   "id": "eda58f26-9557-4d6f-872b-a4fcdb0b1fd2",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(2880, 40)"
      ]
     },
     "execution_count": 76,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "X.shape"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d50bc884-a1c6-48f1-8327-0950ea81ecb4",
   "metadata": {},
   "source": [
    "## Data Preparation for Model Training\r\n",
    "\r\n",
    "### Splitting the Dataset\r\n",
    "\r\n",
    "1. **Determine the Number of Samples**: \r\n",
    "   - `X.shape[0]` gives the total number of samples in the dataset.\r\n",
    "\r\n",
    "2. **Calculate the Number of Training, Validation, and Test Samples**:\r\n",
    "   - **Training Samples**: 80% of the total samples are allocated for training.\r\n",
    "   - **Validation Samples**: 10% of the total samples are allocated for validation.\r\n",
    "   - **Test Samples**: 10% of the total samples are allocated for tef_samples * 0.1)\r\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 77,
   "id": "e54f28e0-43a4-42e5-ab72-818b97a8b4d5",
   "metadata": {},
   "outputs": [],
   "source": [
    "number_of_samples = X.shape[0]\n",
    "training_samples = int(number_of_samples * 0.8)\n",
    "validation_samples = int(number_of_samples * 0.1)\n",
    "test_samples = int(number_of_samples * 0.1)\r\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "00ccfac3-a63b-4949-ac64-ec0ca3399897",
   "metadata": {},
   "source": [
    "#### Reshaping the Training Data\n",
    "\n",
    "**Expand Dimensions of Training Data**:\n",
    "\n",
    "- **Reshape the Training Data**: \n",
    "  - The training data, `X[:training_samples]`, is reshaped by adding an additional dimension using `np.expand_dims`.\n",
    "  - This step is crucial to match the input shape required by the LSTM model, which expects a 3D input.\n",
    "  - The reshaped data ensures compatibility with the LSTM model's input requirements.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 81,
   "id": "57738349-717f-443d-8480-2f51640b5a18",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(2304, 40, 1)"
      ]
     },
     "execution_count": 81,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "w = np.expand_dims(X[:training_samples],-1)\n",
    "w.shape"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7db51c95-8f30-4578-90f2-5f732a803b10",
   "metadata": {},
   "source": [
    "#### Training the LSTM Model\r\n",
    "\r\n",
    "**Model Initialization**:\r\n",
    "- Create the LSTM model by calling the `create_model_LSTM()` function and assign it to `model_A`.\r\n",
    "\r\n",
    "**Model Training**:\r\n",
    "- Train the model using the `fit` method:\r\n",
    "  - **Training Data**: `w`, which is the reshaped training data.\r\n",
    "  - **Training Labels**: `y_cat[:training_samples]`, which are the categorical labels for the training data.\r\n",
    "  - **Validation Data**: \r\n",
    "    - Inputs: `np.expand_dims(X[training_samples:training_samples + validation_samples], -1)`, reshaped validation data.\r\n",
    "    - Labels: `y_cat[training_samples:training_samples + validation_samples]`, categorical labels for the validation data.\r\n",
    "  - **Epochs**: Train the model for 130 epochs.\r\n",
    "  - **Shuffle**: Enable shuffling of training data at each epoch to improve generalization.\r\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 83,
   "id": "9b377dbb-d02c-42f7-8082-6de1aba76985",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\KIIT\\anaconda3\\Lib\\site-packages\\keras\\src\\layers\\rnn\\rnn.py:204: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n",
      "  super().__init__(**kwargs)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 1/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 30ms/step - accuracy: 0.1385 - loss: 2.0760 - val_accuracy: 0.2014 - val_loss: 2.0433\n",
      "Epoch 2/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 22ms/step - accuracy: 0.1759 - loss: 2.0426 - val_accuracy: 0.2326 - val_loss: 1.9693\n",
      "Epoch 3/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 21ms/step - accuracy: 0.2172 - loss: 1.9757 - val_accuracy: 0.2465 - val_loss: 1.9313\n",
      "Epoch 4/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 21ms/step - accuracy: 0.2460 - loss: 1.9279 - val_accuracy: 0.3264 - val_loss: 1.8912\n",
      "Epoch 5/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 21ms/step - accuracy: 0.2609 - loss: 1.8951 - val_accuracy: 0.3194 - val_loss: 1.8512\n",
      "Epoch 6/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 22ms/step - accuracy: 0.2863 - loss: 1.8695 - val_accuracy: 0.3264 - val_loss: 1.8080\n",
      "Epoch 7/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 22ms/step - accuracy: 0.2855 - loss: 1.8637 - val_accuracy: 0.2986 - val_loss: 1.8396\n",
      "Epoch 8/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 23ms/step - accuracy: 0.2954 - loss: 1.8291 - val_accuracy: 0.3056 - val_loss: 1.8039\n",
      "Epoch 9/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 22ms/step - accuracy: 0.3015 - loss: 1.8223 - val_accuracy: 0.3264 - val_loss: 1.7575\n",
      "Epoch 10/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 18ms/step - accuracy: 0.2902 - loss: 1.8003 - val_accuracy: 0.3021 - val_loss: 1.7344\n",
      "Epoch 11/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.3098 - loss: 1.7580 - val_accuracy: 0.3125 - val_loss: 1.7068\n",
      "Epoch 12/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.3321 - loss: 1.7474 - val_accuracy: 0.3125 - val_loss: 1.7494\n",
      "Epoch 13/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.2942 - loss: 1.7550 - val_accuracy: 0.3299 - val_loss: 1.7023\n",
      "Epoch 14/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.3294 - loss: 1.7053 - val_accuracy: 0.3299 - val_loss: 1.6989\n",
      "Epoch 15/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.3304 - loss: 1.6865 - val_accuracy: 0.3438 - val_loss: 1.6837\n",
      "Epoch 16/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.3505 - loss: 1.6672 - val_accuracy: 0.3507 - val_loss: 1.6803\n",
      "Epoch 17/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.3555 - loss: 1.6649 - val_accuracy: 0.3785 - val_loss: 1.6393\n",
      "Epoch 18/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 15ms/step - accuracy: 0.3635 - loss: 1.6090 - val_accuracy: 0.3611 - val_loss: 1.6099\n",
      "Epoch 19/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.3768 - loss: 1.6106 - val_accuracy: 0.3681 - val_loss: 1.5997\n",
      "Epoch 20/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.3791 - loss: 1.5797 - val_accuracy: 0.3681 - val_loss: 1.5913\n",
      "Epoch 21/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.3745 - loss: 1.5890 - val_accuracy: 0.4062 - val_loss: 1.5238\n",
      "Epoch 22/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.4029 - loss: 1.5232 - val_accuracy: 0.4340 - val_loss: 1.4941\n",
      "Epoch 23/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.3985 - loss: 1.5467 - val_accuracy: 0.4132 - val_loss: 1.5048\n",
      "Epoch 24/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.4359 - loss: 1.4789 - val_accuracy: 0.3958 - val_loss: 1.5107\n",
      "Epoch 25/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.4214 - loss: 1.5054 - val_accuracy: 0.4167 - val_loss: 1.4671\n",
      "Epoch 26/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.4240 - loss: 1.4624 - val_accuracy: 0.4167 - val_loss: 1.4613\n",
      "Epoch 27/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.4437 - loss: 1.4796 - val_accuracy: 0.4375 - val_loss: 1.4436\n",
      "Epoch 28/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.4420 - loss: 1.4239 - val_accuracy: 0.4340 - val_loss: 1.5034\n",
      "Epoch 29/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.4631 - loss: 1.4298 - val_accuracy: 0.4653 - val_loss: 1.4203\n",
      "Epoch 30/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.4888 - loss: 1.3788 - val_accuracy: 0.4236 - val_loss: 1.4395\n",
      "Epoch 31/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.4805 - loss: 1.3585 - val_accuracy: 0.4375 - val_loss: 1.4169\n",
      "Epoch 32/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.4768 - loss: 1.3328 - val_accuracy: 0.4340 - val_loss: 1.4245\n",
      "Epoch 33/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.4883 - loss: 1.3612 - val_accuracy: 0.4444 - val_loss: 1.3808\n",
      "Epoch 34/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 15ms/step - accuracy: 0.5091 - loss: 1.2764 - val_accuracy: 0.4549 - val_loss: 1.3646\n",
      "Epoch 35/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.4976 - loss: 1.2810 - val_accuracy: 0.4653 - val_loss: 1.3463\n",
      "Epoch 36/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.5108 - loss: 1.2716 - val_accuracy: 0.4653 - val_loss: 1.3406\n",
      "Epoch 37/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.5464 - loss: 1.1851 - val_accuracy: 0.4688 - val_loss: 1.3320\n",
      "Epoch 38/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.5583 - loss: 1.1685 - val_accuracy: 0.4583 - val_loss: 1.3303\n",
      "Epoch 39/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.5531 - loss: 1.1702 - val_accuracy: 0.4861 - val_loss: 1.3228\n",
      "Epoch 40/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.5678 - loss: 1.1451 - val_accuracy: 0.4965 - val_loss: 1.2761\n",
      "Epoch 41/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.5576 - loss: 1.1225 - val_accuracy: 0.5035 - val_loss: 1.2133\n",
      "Epoch 42/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.6005 - loss: 1.0755 - val_accuracy: 0.4722 - val_loss: 1.2877\n",
      "Epoch 43/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.5999 - loss: 1.0849 - val_accuracy: 0.5486 - val_loss: 1.1625\n",
      "Epoch 44/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.6124 - loss: 1.0376 - val_accuracy: 0.5139 - val_loss: 1.2740\n",
      "Epoch 45/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.5941 - loss: 1.0931 - val_accuracy: 0.5243 - val_loss: 1.2551\n",
      "Epoch 46/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.6204 - loss: 1.0023 - val_accuracy: 0.5382 - val_loss: 1.2210\n",
      "Epoch 47/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 15ms/step - accuracy: 0.6260 - loss: 0.9726 - val_accuracy: 0.5486 - val_loss: 1.1852\n",
      "Epoch 48/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 15ms/step - accuracy: 0.6579 - loss: 0.9275 - val_accuracy: 0.5590 - val_loss: 1.1390\n",
      "Epoch 49/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.6578 - loss: 0.9323 - val_accuracy: 0.5625 - val_loss: 1.1475\n",
      "Epoch 50/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.6344 - loss: 1.0003 - val_accuracy: 0.5938 - val_loss: 1.0751\n",
      "Epoch 51/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.6757 - loss: 0.8811 - val_accuracy: 0.5903 - val_loss: 1.1043\n",
      "Epoch 52/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.6650 - loss: 0.9288 - val_accuracy: 0.5972 - val_loss: 1.0543\n",
      "Epoch 53/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.6940 - loss: 0.8132 - val_accuracy: 0.6146 - val_loss: 0.9922\n",
      "Epoch 54/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.6904 - loss: 0.8325 - val_accuracy: 0.5833 - val_loss: 1.1041\n",
      "Epoch 55/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.6828 - loss: 0.8567 - val_accuracy: 0.6319 - val_loss: 0.9416\n",
      "Epoch 56/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 18ms/step - accuracy: 0.6997 - loss: 0.8117 - val_accuracy: 0.6215 - val_loss: 1.0143\n",
      "Epoch 57/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 19ms/step - accuracy: 0.7020 - loss: 0.8106 - val_accuracy: 0.6319 - val_loss: 0.9540\n",
      "Epoch 58/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 18ms/step - accuracy: 0.7438 - loss: 0.7429 - val_accuracy: 0.6215 - val_loss: 0.9677\n",
      "Epoch 59/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.7177 - loss: 0.7774 - val_accuracy: 0.6597 - val_loss: 0.9305\n",
      "Epoch 60/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.7146 - loss: 0.7585 - val_accuracy: 0.6528 - val_loss: 0.9641\n",
      "Epoch 61/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.7481 - loss: 0.6814 - val_accuracy: 0.6910 - val_loss: 0.7954\n",
      "Epoch 62/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.7523 - loss: 0.6655 - val_accuracy: 0.6806 - val_loss: 0.8791\n",
      "Epoch 63/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.7756 - loss: 0.6341 - val_accuracy: 0.6771 - val_loss: 0.8422\n",
      "Epoch 64/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.7310 - loss: 0.7380 - val_accuracy: 0.7083 - val_loss: 0.8076\n",
      "Epoch 65/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 19ms/step - accuracy: 0.7553 - loss: 0.6756 - val_accuracy: 0.7396 - val_loss: 0.6976\n",
      "Epoch 66/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 18ms/step - accuracy: 0.8022 - loss: 0.5456 - val_accuracy: 0.7257 - val_loss: 0.6977\n",
      "Epoch 67/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 19ms/step - accuracy: 0.7832 - loss: 0.6260 - val_accuracy: 0.7014 - val_loss: 0.7721\n",
      "Epoch 68/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 21ms/step - accuracy: 0.7536 - loss: 0.6623 - val_accuracy: 0.7396 - val_loss: 0.7405\n",
      "Epoch 69/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 22ms/step - accuracy: 0.7990 - loss: 0.6290 - val_accuracy: 0.7188 - val_loss: 0.8257\n",
      "Epoch 70/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 22ms/step - accuracy: 0.7708 - loss: 0.6380 - val_accuracy: 0.7812 - val_loss: 0.6389\n",
      "Epoch 71/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 23ms/step - accuracy: 0.8145 - loss: 0.5247 - val_accuracy: 0.7049 - val_loss: 0.8497\n",
      "Epoch 72/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 18ms/step - accuracy: 0.7706 - loss: 0.6614 - val_accuracy: 0.7326 - val_loss: 0.7003\n",
      "Epoch 73/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.8195 - loss: 0.5402 - val_accuracy: 0.7847 - val_loss: 0.5694\n",
      "Epoch 74/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.8498 - loss: 0.4310 - val_accuracy: 0.8125 - val_loss: 0.5392\n",
      "Epoch 75/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.8564 - loss: 0.4021 - val_accuracy: 0.8090 - val_loss: 0.5493\n",
      "Epoch 76/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 18ms/step - accuracy: 0.8385 - loss: 0.4566 - val_accuracy: 0.8160 - val_loss: 0.4707\n",
      "Epoch 77/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.8703 - loss: 0.3916 - val_accuracy: 0.8125 - val_loss: 0.5303\n",
      "Epoch 78/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.8670 - loss: 0.4032 - val_accuracy: 0.8229 - val_loss: 0.5355\n",
      "Epoch 79/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.7980 - loss: 0.5889 - val_accuracy: 0.8090 - val_loss: 0.5217\n",
      "Epoch 80/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.8532 - loss: 0.4392 - val_accuracy: 0.7465 - val_loss: 0.7366\n",
      "Epoch 81/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 18ms/step - accuracy: 0.8216 - loss: 0.5801 - val_accuracy: 0.8542 - val_loss: 0.4492\n",
      "Epoch 82/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 20ms/step - accuracy: 0.8776 - loss: 0.3518 - val_accuracy: 0.8611 - val_loss: 0.4665\n",
      "Epoch 83/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 21ms/step - accuracy: 0.8704 - loss: 0.3913 - val_accuracy: 0.8681 - val_loss: 0.3597\n",
      "Epoch 84/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 21ms/step - accuracy: 0.8794 - loss: 0.3654 - val_accuracy: 0.8819 - val_loss: 0.3734\n",
      "Epoch 85/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 19ms/step - accuracy: 0.9052 - loss: 0.2984 - val_accuracy: 0.8924 - val_loss: 0.3333\n",
      "Epoch 86/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.9122 - loss: 0.2744 - val_accuracy: 0.8854 - val_loss: 0.3645\n",
      "Epoch 87/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.8811 - loss: 0.3982 - val_accuracy: 0.8507 - val_loss: 0.4365\n",
      "Epoch 88/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.8503 - loss: 0.4938 - val_accuracy: 0.8472 - val_loss: 0.4148\n",
      "Epoch 89/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.8694 - loss: 0.4349 - val_accuracy: 0.8507 - val_loss: 0.4137\n",
      "Epoch 90/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.8829 - loss: 0.3551 - val_accuracy: 0.8889 - val_loss: 0.3069\n",
      "Epoch 91/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.9086 - loss: 0.2807 - val_accuracy: 0.9271 - val_loss: 0.2338\n",
      "Epoch 92/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.8819 - loss: 0.3671 - val_accuracy: 0.8611 - val_loss: 0.4722\n",
      "Epoch 93/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.8720 - loss: 0.4260 - val_accuracy: 0.8750 - val_loss: 0.3514\n",
      "Epoch 94/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.9211 - loss: 0.2517 - val_accuracy: 0.9410 - val_loss: 0.2341\n",
      "Epoch 95/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.9250 - loss: 0.2363 - val_accuracy: 0.8750 - val_loss: 0.4733\n",
      "Epoch 96/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 19ms/step - accuracy: 0.8295 - loss: 0.7536 - val_accuracy: 0.7812 - val_loss: 0.7854\n",
      "Epoch 97/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 18ms/step - accuracy: 0.8780 - loss: 0.3910 - val_accuracy: 0.8819 - val_loss: 0.3962\n",
      "Epoch 98/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 18ms/step - accuracy: 0.9286 - loss: 0.2540 - val_accuracy: 0.9097 - val_loss: 0.2751\n",
      "Epoch 99/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 18ms/step - accuracy: 0.9195 - loss: 0.2469 - val_accuracy: 0.8889 - val_loss: 0.2868\n",
      "Epoch 100/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.9285 - loss: 0.2064 - val_accuracy: 0.9340 - val_loss: 0.2146\n",
      "Epoch 101/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.9480 - loss: 0.1748 - val_accuracy: 0.9375 - val_loss: 0.2259\n",
      "Epoch 102/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.9600 - loss: 0.1475 - val_accuracy: 0.9201 - val_loss: 0.2264\n",
      "Epoch 103/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.9378 - loss: 0.1833 - val_accuracy: 0.9722 - val_loss: 0.1391\n",
      "Epoch 104/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.9416 - loss: 0.2220 - val_accuracy: 0.8889 - val_loss: 0.3331\n",
      "Epoch 105/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 18ms/step - accuracy: 0.8693 - loss: 0.4806 - val_accuracy: 0.8958 - val_loss: 0.4250\n",
      "Epoch 106/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 19ms/step - accuracy: 0.8749 - loss: 0.3716 - val_accuracy: 0.9479 - val_loss: 0.1862\n",
      "Epoch 107/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 19ms/step - accuracy: 0.9430 - loss: 0.1981 - val_accuracy: 0.9479 - val_loss: 0.1678\n",
      "Epoch 108/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 18ms/step - accuracy: 0.9491 - loss: 0.1635 - val_accuracy: 0.9583 - val_loss: 0.1308\n",
      "Epoch 109/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 19ms/step - accuracy: 0.9563 - loss: 0.1434 - val_accuracy: 0.9236 - val_loss: 0.2487\n",
      "Epoch 110/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 18ms/step - accuracy: 0.9105 - loss: 0.2958 - val_accuracy: 0.9340 - val_loss: 0.2683\n",
      "Epoch 111/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.9358 - loss: 0.2196 - val_accuracy: 0.9549 - val_loss: 0.1811\n",
      "Epoch 112/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.9491 - loss: 0.2278 - val_accuracy: 0.9549 - val_loss: 0.1639\n",
      "Epoch 113/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 18ms/step - accuracy: 0.9447 - loss: 0.1797 - val_accuracy: 0.9271 - val_loss: 0.2196\n",
      "Epoch 114/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.9286 - loss: 0.2494 - val_accuracy: 0.9167 - val_loss: 0.3452\n",
      "Epoch 115/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.9184 - loss: 0.3099 - val_accuracy: 0.8646 - val_loss: 0.4911\n",
      "Epoch 116/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 19ms/step - accuracy: 0.8553 - loss: 0.6096 - val_accuracy: 0.9097 - val_loss: 0.3920\n",
      "Epoch 117/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.9028 - loss: 0.3418 - val_accuracy: 0.9132 - val_loss: 0.3387\n",
      "Epoch 118/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.9131 - loss: 0.3048 - val_accuracy: 0.9514 - val_loss: 0.1927\n",
      "Epoch 119/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.9506 - loss: 0.1871 - val_accuracy: 0.9722 - val_loss: 0.1258\n",
      "Epoch 120/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 18ms/step - accuracy: 0.9440 - loss: 0.2410 - val_accuracy: 0.9653 - val_loss: 0.1218\n",
      "Epoch 121/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 18ms/step - accuracy: 0.9566 - loss: 0.1540 - val_accuracy: 0.9896 - val_loss: 0.0646\n",
      "Epoch 122/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 18ms/step - accuracy: 0.9664 - loss: 0.1116 - val_accuracy: 0.9861 - val_loss: 0.0637\n",
      "Epoch 123/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.9732 - loss: 0.0885 - val_accuracy: 0.9826 - val_loss: 0.0530\n",
      "Epoch 124/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.9746 - loss: 0.1062 - val_accuracy: 0.9792 - val_loss: 0.0599\n",
      "Epoch 125/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.9544 - loss: 0.1428 - val_accuracy: 0.9340 - val_loss: 0.1840\n",
      "Epoch 126/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.9577 - loss: 0.1525 - val_accuracy: 0.9653 - val_loss: 0.1477\n",
      "Epoch 127/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.9581 - loss: 0.1310 - val_accuracy: 0.9896 - val_loss: 0.0937\n",
      "Epoch 128/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.9600 - loss: 0.1122 - val_accuracy: 0.9792 - val_loss: 0.0769\n",
      "Epoch 129/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.9633 - loss: 0.1239 - val_accuracy: 0.9583 - val_loss: 0.2492\n",
      "Epoch 130/130\n",
      "\u001b[1m72/72\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.9667 - loss: 0.1483 - val_accuracy: 0.9618 - val_loss: 0.1356\n"
     ]
    }
   ],
   "source": [
    "model_A = create_model_LSTM()\n",
    "history = model_A.fit(w, y_cat[:training_samples], validation_data=(np.expand_dims(X[training_samples: training_samples+validation_samples], -1),y_cat[training_samples: training_samples+validation_samples]), epochs=130, shuffle=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bb3bf8c7-1d41-464b-83c9-9926ceee4d62",
   "metadata": {},
   "source": [
    "### Model Evaluation\n",
    "\n",
    "After training, the model is evaluated on the test set to determine its final accuracy. The test accuracy provides an indication of how well the model generalizes to unseen data."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 85,
   "id": "74caa6ca-d114-4d23-bf42-a80728f81ae8",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[1m81/81\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 12ms/step - accuracy: 0.9899 - loss: 0.0427\n",
      "Evaluation Metrics:\n",
      "Loss: 0.05488839000463486\n",
      "Accuracy: 0.9868826866149902\n",
      "\u001b[1m18/18\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 12ms/step\n",
      "True label: 5, Predicted label: 2\n",
      "True label: 2, Predicted label: 2\n",
      "True label: 3, Predicted label: 3\n",
      "True label: 1, Predicted label: 1\n",
      "True label: 1, Predicted label: 1\n",
      "True label: 1, Predicted label: 1\n",
      "True label: 7, Predicted label: 7\n",
      "True label: 0, Predicted label: 0\n",
      "True label: 3, Predicted label: 3\n",
      "True label: 2, Predicted label: 2\n"
     ]
    }
   ],
   "source": [
    "\n",
    "\n",
    "# Evaluation on test data\n",
    "evaluation = model_A.evaluate(\n",
    "    np.expand_dims(X[test_samples:], -1),  # Test data (assuming X is your test data)\n",
    "    y_cat[test_samples:],  # Test labels in categorical format (assuming y_cat is your test labels)\n",
    ")\n",
    "\n",
    "# Printing evaluation metrics\n",
    "print(\"Evaluation Metrics:\")\n",
    "print(\"Loss:\", evaluation[0])\n",
    "print(\"Accuracy:\", evaluation[1])\n",
    "\n",
    "predictions = model_A.predict(X_test)\n",
    "predicted_labels = np.argmax(predictions, axis=1)\n",
    "true_labels = np.argmax(y_test, axis=1)\n",
    "\n",
    "# Print some predictions\n",
    "for i in range(10):\n",
    "    print(f\"True label: {true_labels[i]}, Predicted label: {predicted_labels[i]}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "afb7c218-949d-4729-9beb-63516a267d7e",
   "metadata": {},
   "source": [
    "\n",
    "# Model Training and Test Accuracy\n",
    "\n",
    "The following plot shows the accuracy of the Conv1D model over 100 epochs for both the training and test datasets.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 88,
   "id": "0c09a48c-9541-48b7-a14d-255d02d6feb4",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.legend.Legend at 0x1e6e7111350>"
      ]
     },
     "execution_count": 88,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAGHCAYAAAB27LHEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6DElEQVR4nO3deVxU5f7A8c/MAMO+78jqiruC+66pqWVW5lYurddsM6tbXn83yyy7dStbtcX0lpVmWVlZilru+4r7DiggArLLMjPn98eBgRFQ0EEEvu/Xa15z5sxzznkeF748u0ZRFAUhhBBC1Ana2s6AEEIIIapOArcQQghRh0jgFkIIIeoQCdxCCCFEHSKBWwghhKhDJHALIYQQdYgEbiGEEKIOkcAthBBC1CESuIUQQog6RAK3EDdo0aJFaDQaNBoNf//9d7nvFUWhSZMmaDQa+vbta9VnazQaXnnllWpfd/bsWTQaDYsWLbJqfoQQNU8CtxBW4uLiwoIFC8qdX79+PadOncLFxaUWciWEqG8kcAthJaNHj+bHH38kKyvL4vyCBQvo1q0bISEhtZSzhqOoqAiDwVDb2RCiRkngFsJKxo4dC8B3331nPpeZmcmPP/7IQw89VOE16enpTJkyhaCgIOzs7IiIiGDGjBkUFBRYpMvKyuLRRx/Fy8sLZ2dnbr/9do4fP17hPU+cOMG4cePw9fVFr9cTGRnJxx9/fF1lys/P57nnnqN9+/a4ubnh6elJt27d+OWXX8qlNZlMfPjhh7Rv3x4HBwfc3d3p2rUrK1assEj37bff0q1bN5ydnXF2dqZ9+/YWLRVhYWFMmjSp3P379u1r0dXw999/o9Fo+Prrr3nuuecICgpCr9dz8uRJLl68yJQpU2jZsiXOzs74+vrSv39/Nm7cWO6+BQUFzJo1i8jISOzt7fHy8qJfv35s2bIFgAEDBtCiRQuu3I+ppAtk2LBh1fkjFeKG2dR2BoSoL1xdXRk5ciRffvkl//jHPwA1iGu1WkaPHs3cuXMt0ufn59OvXz9OnTrFq6++Stu2bdm4cSNz5sxh3759/P7774AaIEaMGMGWLVt4+eWX6dSpE5s3b2bIkCHl8nD48GG6d+9OSEgI77zzDv7+/qxatYqnn36a1NRUZs6cWa0yFRQUkJ6ezvPPP09QUBCFhYWsWbOGe+65h4ULFzJhwgRz2kmTJrF48WIefvhhZs2ahZ2dHXv27OHs2bPmNC+//DKvvfYa99xzD8899xxubm4cPHiQuLi4auWrrOnTp9OtWzfmz5+PVqvF19eXixcvAjBz5kz8/f3Jycnhp59+om/fvqxdu9b8C4DBYGDIkCFs3LiRqVOn0r9/fwwGA9u2bSM+Pp7u3bvzzDPPcNddd7F27Vpuu+0283P/+OMPTp06xQcffHDdeRfiuihCiBuycOFCBVB27typ/PXXXwqgHDx4UFEURenUqZMyadIkRVEUpVWrVkqfPn3M182fP18BlO+//97ifv/5z38UQFm9erWiKIryxx9/KIDy/vvvW6R7/fXXFUCZOXOm+dzgwYOVRo0aKZmZmRZpn3zyScXe3l5JT09XFEVRzpw5owDKwoULq1VWg8GgFBUVKQ8//LDSoUMH8/kNGzYogDJjxoxKrz19+rSi0+mU+++//6rPCA0NVSZOnFjufJ8+fSz+/Er+rHv37l3lfA8YMEC5++67zee/+uorBVA+//zzSq81Go1KRESEctddd1mcHzJkiNK4cWPFZDJd8/lCWJM0lQthRX369KFx48Z8+eWXxMbGsnPnzkqbydetW4eTkxMjR460OF/STLx27VoA/vrrLwDuv/9+i3Tjxo2z+Jyfn8/atWu5++67cXR0xGAwmF9Dhw4lPz+fbdu2VbtMy5Yto0ePHjg7O2NjY4OtrS0LFizgyJEj5jR//PEHAE888USl94mJicFoNF41zfW49957Kzw/f/58OnbsiL29vTnfa9euLZdve3v7Sv+OALRaLU8++SS//fYb8fHxAJw6dYo///yTKVOmoNForFoeIa5FArcQVqTRaHjwwQdZvHgx8+fPp1mzZvTq1avCtGlpafj7+5f7we/r64uNjQ1paWnmdDY2Nnh5eVmk8/f3L3c/g8HAhx9+iK2trcVr6NChAKSmplarPMuXL2fUqFEEBQWxePFitm7dav5lJD8/35zu4sWL6HS6cnkqq6T5ulGjRtXKw7UEBASUO/fuu+/y+OOP06VLF3788Ue2bdvGzp07uf3227l8+bJFngIDA9Fqr/6j8KGHHsLBwYH58+cD8PHHH+Pg4HDVgC9ETZE+biGsbNKkSbz88svMnz+f119/vdJ0Xl5ebN++HUVRLIJ3SkoKBoMBb29vczqDwUBaWppF8E5OTra4n4eHBzqdjvHjx1daqw0PD69WWRYvXkx4eDhLly61yOOVg+d8fHwwGo0kJydXGEhL0gCcO3eO4ODgSp9pb29f7v6g/tJR8mdSVkU13sWLF9O3b1/mzZtncT47O7tcnjZt2oTJZLpq8HZzc2PixIl88cUXPP/88yxcuJBx48bh7u5e6TVC1BSpcQthZUFBQbzwwgvceeedTJw4sdJ0AwYMICcnh59//tni/FdffWX+HqBfv34AfPPNNxbpvv32W4vPjo6O9OvXj71799K2bVuio6PLva6stV+LRqPBzs7OIjgmJyeXG1VeMlDuykBZ1qBBg9DpdFdNA+qo8gMHDlicO378OMeOHatWvvV6vcW5AwcOsHXr1nL5zs/Pr9JCNCUD/EaOHElGRgZPPvlklfMjhDVJjVuIGvDmm29eM82ECRP4+OOPmThxImfPnqVNmzZs2rSJN954g6FDh5pHMA8aNIjevXvzz3/+k9zcXKKjo9m8eTNff/11uXu+//779OzZk169evH4448TFhZGdnY2J0+e5Ndff2XdunXVKscdd9zB8uXLmTJlCiNHjiQhIYHXXnuNgIAATpw4YU7Xq1cvxo8fz+zZs7lw4QJ33HEHer2evXv34ujoyFNPPUVYWBj/+te/eO2117h8+TJjx47Fzc2Nw4cPk5qayquvvgrA+PHjeeCBB5gyZQr33nsvcXFxvPXWW+Yae1Xz/dprrzFz5kz69OnDsWPHmDVrFuHh4RbzvMeOHcvChQuZPHkyx44do1+/fphMJrZv305kZCRjxowxp23WrBm33347f/zxBz179qRdu3bV+rMUwmpqe3ScEHVd2VHlV3PlqHJFUZS0tDRl8uTJSkBAgGJjY6OEhoYq06dPV/Lz8y3SZWRkKA899JDi7u6uODo6KgMHDlSOHj1ablS5oqgjxh966CElKChIsbW1VXx8fJTu3bsrs2fPtkhDFUeVv/nmm0pYWJii1+uVyMhI5fPPP1dmzpypXPnjw2g0Ku+9957SunVrxc7OTnFzc1O6deum/PrrrxbpvvrqK6VTp06Kvb294uzsrHTo0MEiHyaTSXnrrbeUiIgIxd7eXomOjlbWrVtX6ajyZcuWlctzQUGB8vzzzytBQUGKvb290rFjR+Xnn39WJk6cqISGhlqkvXz5svLyyy8rTZs2Vezs7BQvLy+lf//+ypYtW8rdd9GiRQqgLFmy5Jp/bkLUFI2iXLGqgBBCiArde++9bNu2jbNnz2Jra1vb2RENlDSVCyHEVRQUFLBnzx527NjBTz/9xLvvvitBW9QqqXELIcRVnD17lvDwcFxdXRk3bhwfffQROp2utrMlGjAJ3EIIIUQdItPBhBBCiDpEArcQQghRh0jgFkIIIeqQBjeq3GQykZiYiIuLi2wOIIQQ4pagKArZ2dlVWju/wQXuxMTEq66TLIQQQtSWhISEa27E0+ACt4uLC6D+4bi6utZyboQQQgjIysoiODjYHKOupsEF7pLmcVdXVwncQgghbilV6cKVwWlCCCFEHSKBWwghhKhDJHALIYQQdUit9nFv2LCBt99+m927d5OUlMRPP/3EiBEjrnrN+vXrmTZtGocOHSIwMJB//vOfTJ482ar5UhQFg8GA0Wi06n0bEp1Oh42NjUy5E0IIK6vVwJ2bm0u7du148MEHuffee6+Z/syZMwwdOpRHH32UxYsXs3nzZqZMmYKPj0+Vrq+KwsJCkpKSyMvLs8r9GjJHR0cCAgKws7Or7awIIUS9UauBe8iQIQwZMqTK6efPn09ISAhz584FIDIykl27dvHf//7XKoHbZDJx5swZdDodgYGB2NnZSY3xOiiKQmFhIRcvXuTMmTM0bdr0mgsKCCGEqJo6NR1s69atDBo0yOLc4MGDWbBgAUVFRRXukVtQUEBBQYH5c1ZWVqX3LywsxGQyERwcjKOjo/Uy3gA5ODhga2tLXFwchYWF2Nvb13aWhBCiXqhT1aDk5GT8/Pwszvn5+WEwGEhNTa3wmjlz5uDm5mZ+VWXVNKkdWof8OQohhPXVuZ+sVzZdl2wnXlmT9vTp08nMzDS/EhISajyPQgghRE2pU03l/v7+JCcnW5xLSUnBxsYGLy+vCq/R6/Xo9fqbkT0hhBC1LSsJcpIhoD3cyBiltFOg1YFHmLVyZjV1qsbdrVs3YmJiLM6tXr2a6OjoCvu3xY3p27cvU6dOre1sCCFE1RiLYMEg+KwvfNgRNr6jBvLqyk2DT/vAJ93g/B6rZ/NG1WrgzsnJYd++fezbtw9Qp3vt27eP+Ph4QG3mnjBhgjn95MmTiYuLY9q0aRw5coQvv/ySBQsW8Pzzz9dG9m8ZGo3mqq9JkyZd132XL1/Oa6+9Zt3MCiFETTm5FjLV+EH6aVg7C95rBd+OgaO/q4G9Kg7+CIXZUJQH342BjPiay/N1qNWm8l27dtGvXz/z52nTpgEwceJEFi1aRFJSkjmIA4SHh7Ny5UqeffZZPv74YwIDA/nggw+sNoe7rkpKKv2NcunSpbz88sscO3bMfM7BwcEifWUj8K/k6elpvUwKIURN2/+d+h71IDSKhj1fQ8I2OP6H+nLyhfZjocME8G5ylft8q77bOEDOBfh2NDz0J9i71XwZqqBWa9x9+/ZFUZRyr0WLFgGwaNEi/v77b4tr+vTpw549eygoKODMmTNWXzXtSoqikFdoqJVXycC7a/H39ze/3Nzc0Gg05s/5+fm4u7vz/fff07dvX+zt7Vm8eDFpaWmMHTuWRo0a4ejoSJs2bfjuu+8s7ntlU3lYWBhvvPEGDz30EC4uLoSEhPDZZ59Z849bCCGuz+VLcGylehz9EHR4AB5eBU/shO5Pg5MP5KbA5vfhoyj4bhyYTOXvk3IUEveC1kYN1s7+kHIYfngYqvgzuabVqcFpteFykZGWL6+qlWcfnjUYRzvr/BW9+OKLvPPOOyxcuBC9Xk9+fj5RUVG8+OKLuLq68vvvvzN+/HgiIiLo0qVLpfd55513eO211/jXv/7FDz/8wOOPP07v3r1p0aKFVfIphBDX5dBPYCwE31bg36b0vE8zGPQaDHgZjq+CPV/BidVw7HdIPQ6+V/zsOrBEfW8yEALbw7ilar/5yRhI2AEhlf98vFnq1OA0cf2mTp3KPffcQ3h4OIGBgQQFBfH888/Tvn17IiIieOqppxg8eDDLli276n2GDh3KlClTaNKkCS+++CLe3t7lWkWEEHVA9gXYNFcdiFUXJexUm8JL+q33FbcYth9b4WjyxGwDKwo78oH/65x2aA2AkrjXMpHJCPuXlt4H1ODd9j71ePt8Kxfi+kiN+xocbHUcnjW41p5tLdHR0RafjUYjb775JkuXLuX8+fPmFeacnJyuep+2bduaj0ua5FNSUqyWTyHETbLpPdg+D4ouQ7/ptZ2b6snPgsX3QEEW7F0MA/4N53aARgtt7rNIejIlh0/+Pskv+xIxmtSmbhebQCJsYrlwbDv+JQEa4MwGyE4Ee3dodnvp+S6T1ecc/gUyz4Nb0E0oZOUkcF+DRqOxWnN1bboyIL/zzju89957zJ07lzZt2uDk5MTUqVMpLCy86n2uHNSm0WgwVdRPJIS4tSUfUN8vnandfFyP/d+pQRvUwWeL7lCPGw8AF38ALmYXMGflEX7ad97cNd2ukRtN/VzIPdcGMleRc3ZX+fsCtL4XbMqs/+HfBkJ7Qtwm2LVAbXavRXU/IonrsnHjRu666y4eeOABQN1g5cSJE0RGRtZyzoQQNU5R1AFXAFmJtZuX6jKZYPun6nH3p9UpYCmH1M/txmAyKXy/K4E5fxwl87LajH5bpB9P9W9Cu2B3AE4eLIAf/ktA3nEuZOTi5+4EhXlw5Ff1Pu3HlXtsTvuHcY7bxOVtC/i8aAT2jk64afPxNSTRt8+Am7ohlQTuBqpJkyb8+OOPbNmyBQ8PD959912Sk5MlcAvREORcUEdhQ90L3KfWQvop0LtBnxeh73SIeVldLS3yTp5espffDqhTZFsFuvLG3W3MAbtEk5ZR5Gv0OFHAD+s3MfGuwXB2kzpv2y0YgqLYG3+JDcdTOZiYyeHELJIzbFiv96ZRUSp2m97CU5PJUO12UvBA0+foTf0jkMDdQP373//mzJkzDB48GEdHRx577DFGjBhBZmZmbWdNCFHTSmrbANlJag28OjXGbfNg5xcwejH43uRf9ksGiHUcD3pn9XjYfwE4nJjFbweSsNFqeGlICyZ1D8NGV8EYbK2OPI+W2Kfv5eSBzRQOG4jdidUAFEUM4JWfD/LN9isXXdHxm91QJhd9xWSbX81n9bZ2kJ0MrgHWLmmlJHDXM5MmTbJYKS0sLKzC+eCenp78/PPPV73XlaPFz549Wy5Nyap3Qog6JOVI6XFRHuRngINH1a49sAz+fAkAZc/XaG5/o+J0h3+BLR+BYlQ/O3rDiHngVPG+ElWSegJOrgE00OmRcl8v2akG28Gt/HmkV8RVb+XWuBOk7yW04Dh/HkzijhMxaIF/HwpgSZZ6n6Ft/IkO9aRVoCstA11xMXWDeTHq4LjWd0OHCQQEd76xNdGvgwRuIYRoaMrWuEFdz7sqgTtuK8ovUygJUxcOxOBfUeA2FMDvz6sLnpS19yvo+ex1ZRmAHcULPjUfAp7hFl9dLjTy097zAIztHHLNW+mCOsBOaKM9w+yfVjNcc5YCxYYVWU0Jcnfg7ZFt6d7E+4qrPOHpvYAGbO2vvxw3SAK3EELUc5l5RRxKzORQYhbnMy4zPfEQFnsmZiWCX8vyF+akwIGlaiBWFNj2CRpjIRuMbeiti8U/7zhrdx9hQNQVzeWHflaDtksA3DEXzm6ErR/B4RXXH7hNJoj9QT3u/Gi5r3+PTSI730CwpwPdG1ehVh/QHoBWmjg6G3aCLezXtmR0jxZMG9gMF/tKloW2daj4/E0kgVsIIeqxX/cn8tz3+yk0qtM2NZh40b64qdwjDC6dhazzFV+8bjbs+Z/FqX2mCB4rmkaM/lWCDWf5fcX3NAl7nlCv4imniqLODwfo9DA0vx2COsLWjyFxD2QkgHtw9QuSdgIup6vrh4f25MSFbM6k5jIg0g+dVsN3O9Tm7TGdQtBqq9B07d0MbBxwNlxmmtsGyIPOA0fTuXur6uftJpOV04QQ4laSm2a1NbFTcwr4v58PUmg0EeTuwJDW/rR3ycaBfIqwRQntoSbMrmTry5KVxZoMJLvlOD5XRvBQ4T+Z2CeSwI7qwlQdjAd4fPEe8ouK+7LP7VKv0+k5EzaK99ecYNDnR9ilNAcgdu035BQYql+Y+K3qe6No8hUdYz/fxmNf72bMZ1tZfSiZ3XGXsNFquC+6UdXup7MxL43qlJegnms6qPr5qgUSuIUQ4lYRvx3ebgyr/mWV272x8giZl4toFejK+hf6Mu+BKN7pawfACVMg29OLR2VXVOM2GeFi8S6DQ/7Dy8o/eL1gFE3Cw3hhUHN0EX0A6GlzmMNJWaWjsItHfR/xGUy/Tw7y3prjHL+Qw++GTgDk7f+JHm+u4+D5as5gid+mvod0ZdWhZFJz1MWidp69xGNf7wZgQKQvvi7V6HsOaFd67B4C3k2rl6daIoFbCCFuFXGbAEXtE75BW08kkbPvZxbYvs2K7LHYHF4OQIQpDoBjSiN+OlW86mFWBTXu9DNgLFCbpj3C2B2nzvt+qn8TdYpVaA/QaAknET/SWbozHiXzPBz+GYAZ57sD0LuZD/+9rx33PfA4AJ20x7C9nMrUpftKa+lVEbdFfQ/pam4WH9s5mK4RpdsPj6nCoDQLge1Lj5sOuumjw6+X9HELIcStIr14+dFLcdWfW11GYfxOmn17H5/ZFS+yUoRai28+1DwVzDGoNUnx7gBkX4zH5cqblIw892nOpctG4tPzAGgbpF6Dg7s6wCtxD33sDvP9BU9SYubiZzKQ7N6RPckhNPdz4X8PdipeVawRBHZEm7iHexz38VmKG2+vOsa/76hgUNyVshIhIw40Ws44tGLb6T1oNfBk/6YEuNqzfO95cgsM9G3mU70/qOIBaoC6G1gdITVuIYS4VVw6q74XZEFe+nXf5tgf8/FSLpGGGwVdngL3UHW1tJ2fmwP3bX360qyp2u9syDjP38eumLpVMtfbtyWxxc3aYV6OuDmWGW0d3huAkR6nGaLdjt9BdbrWJ/lq//cD3UItlwJtORyAyT4HAViw6QxbTqVeu0AlzeR+rVmyPwOAvs19CXJ3QKvVMDKqERO7h1V/2VGfFuARDq5BEN6retfWIgncQghxMygK7PrScvGTK5UEbrjuzT/i0nIxFQ8qOxP9b/RDZkNfdcEUNr2n7kEN6AJa8+Ko/gB4aHJ4+ustxJ4r0+9cUuP2jeTAuQwA2jZyt3xYceDumL+N92w/ASC+yXi+ymiDk52OuztcsYtWpBq4PS9u56GO6r1eWHaAC1n5Vy9UceA2Bnflh93nABjT6TpGpl9JZwP/2ACPbwa7q++MeCuRwC2EEDfDkRXw27Pw+3MVf28ogMxzpZ/Tqx+4FUXh1Z/30wK1Dziqaz/1izajwKupuj65sRDsnMEtGFtHdxRbNWB5GlP5LbbMuuVlatz7iwN620Zulg8M6QpaW2wKMrDXFBFj7MhdJ4cBcHfHIJz1V/TGejUGv9ZgMvAv5XPCPO05n3GZYR9sZOupq+wLXjyifL8mkrTcQnxd9PRv4VvtP58K2btWfdW4W4QE7npAo9Fc9VV2CdTqCgsLY+7cuVbLqxAN1pniAWeV1bgz4oHSaWCL//iLR/63kz3xlyq95eVCI19sPM2mE6mYTAorY5NJOrkPvaYIk50LGs/iZT91NpZ7bvtGqv3nGg2a4jW2/TWXSMkqUL83FEDaSfXYr2XlNW47J2ikjha/6NyCZ4qe5FK+OuDtga6hFWf69jdBa4PNkZ/4peXftPB3ITWnkPu/2MZnG06VT5+fBRfUpvVFCX4AjO4UXPEa5A2EDE6rB5KSSkeELl26lJdffpljx46Zzzk41P5KP0I0eCX9tJfTIT8T7K+ovV5Rw9ZnJ7Dmktrv/MXEThXe8pO/T/LhOjXANvJw4HKhkf5a9T7awPagLRPcWt4Nfu+qQdCnRel510BIO4k/6aVN1qkn1DXG7d24oHhwIasArQZaB7mWz8Sg2XBgCdoOT1H44UEwKXQO86SFfwVpQe1LvvMD+GUKbrs+YMWwJrx0ph3L95znjZVH6RzuRfuyu3md2wmKCZN7KCvjNIDCvR2rOFe7nmq4v7JUlaJAYW7tvKq4CIO/v7/55ebmhkajsTi3YcMGoqKisLe3JyIigldffRWDoXQBhFdeeYWQkBD0ej2BgYE8/fTTAPTt25e4uDieffZZc+1dCHEd8jPNtUag4mbw4v7tIkUHQHfPbAAuZhdUeEtFUfh1v9q0bavTcO7SZdJyC+nuUNzcXnaOMqhBfPgHENHXcslQl0AA/DVlAncFzeRNfV1wtKugrtcoCoa+jVdACMPbqfd6pFd4+XRldbgfer8AgN0f03innyO9i0eEl9TuzYp/4Ulx74DBpBDs6UCYd93pj64JUuO+lqI8eCOwdp79r8QbHjCxatUqHnjgAT744AN69erFqVOneOyxxwCYOXMmP/zwA++99x5LliyhVatWJCcns3//fgCWL19Ou3bteOyxx3j00fJrAwshqihhJ2Wbwbl01nIOMaCkn0YD7FGa0kVzFB+DGpRLFhq50qHELM6m5WFvq2XTi/3ZcPwim0+mMTg1GVKAwA7lLwqKggm/WJ5zLRu4i39JsBiYVkn/dgXeuKcNT/RvQmMf52umpd8MtfsgYRuauE1EBnRjw/GLnEzJUb8vzFV3GNu/BIA9xSuv9Wh85cYfDY8E7nru9ddf56WXXmLixIkARERE8Nprr/HPf/6TmTNnEh8fj7+/P7fddhu2traEhITQuXNnQN36U6fT4eLigr+/f20WQ4i6rWS5zhIVjBjPTzmFA7DZ1IYu2qPY5V1ATyFpuVoURSnX4vXbgSQaaS7yiesSvNPcuadjN+5p5w9zimvLZecoX405cF8ip8BAToEB57I17tgMANqWbb6uhL2trmpBG9Q+9uDOkLANUo7QxFedR33qYo661/eaV9VpcQA2Dnx/SQ3c5XfsangkcF+LraNa862tZ9+g3bt3s3PnTl5//XXzOaPRSH5+Pnl5edx3333MnTuXiIgIbr/9doYOHcqdd96JjY380xDCWkxxW9ECiYongZp08i6c5Mr/3YbU0wBkeLSFwlVQkEWwJoWTRY3IKzTiVGaEtqIo/HYgkcd1K2ibuxV+nwaPb4HUY2C4DHYuUDIw7VqKA3eQVp03npKVj3PKIfU5Pi3Mc7jbBl27xl1tvsWLr6QcoUlrNeCfvJANf/9HDdoeYdDhAS41G8Xfc9Wuhirt/FXPyU/na9Fo6tT8viuZTCZeffVV7rnnnnLf2dvbExwczLFjx4iJiWHNmjVMmTKFt99+m/Xr12NrW8m2dkI0UPFpeUxdupdujb14YXCLa18AYChAObcLgJ+MPXnCZgU5SScsA7fJhH2OutGFe6NmcCkMkg/Q1OYiJ4sakZZTaBG495/LJPFSLoP16n1JOawuk5pRvFlGQFvLgWlXUxy4A4oD98W0NCIy1Olk523DyMg7gK1OQ4uAcmur3Tjf4u1ALxyisU/xz9nsZLBPAY0OHt8Kdo5sOaAOwG3h74K3s76SmzUcMjitnuvYsSPHjh2jSZMm5V7a4v/YDg4ODB8+nA8++IC///6brVu3EhsbC4CdnR1GYzXWExainkpIz2Ps59vYE5/B5xvPUGgwVek6JXEfOlMBaYoLe+yiAbDJjLNMlJOMrVKAQdESEt4MPNXBXS306tzm1FzLAWq/H0gkSnMcb02ZBVO2zYekfepxVZvJwTw4zVPJwAYDBYlqbRtnP/amqQPlIgNc0dvoqn7PqvJpDmjgcjquxgx8XfS0KR4Vj08LsFN/vdlcvLpad+nfBqTGXe+9/PLL3HHHHQQHB3Pfffeh1Wo5cOAAsbGxzJ49m0WLFmE0GunSpQuOjo58/fXXODg4EBqqzsEMCwtjw4YNjBkzBr1ej7e3/McRDU9ixmXGfbGN8xmXASg0mDiYmEnHkGsv3BG3dy1hwF5aMGpwH/gD3IpSUAwFaGzU2qMh7TQ2QKLiRbtQH8gMA6CxjTodLK3MADWTSeH3A0k8otuhnmjUGc7tgGMr1R2uoNzAt6ty8gGtDVqTAR8yUVIuquctVkyrgWZyAFsHtUk//RSkHKaJrzNt4ooDd5lR8VtOlgRuaSYHqXHXe4MHD+a3334jJiaGTp060bVrV959911zYHZ3d+fzzz+nR48etG3blrVr1/Lrr7/i5aX+B5k1axZnz56lcePG+PhUcwF/IeqBrPwixn22lYT0y4R6ORIdqgbr3WcrXxilrEtHNwBgCOpC7/atuazYocPEubPHzWkuxh0F4JzGnwgfZ3X9bCBEowbu9DI17r0Jl0jMvMwQ3U71RM+p0Lg/oKgbcUD1atxaLbioi7BEauMIP/ezet63JccuqCO8WwbUUOCG0ubylCM09nGmtaY4cBf/8nE+4zJn0/LQaTV0KbMTWEMmNe56ZtKkSeVWShs8eDCDBw+uMP2IESMYMWJEpffr2rWreXqYEA3RV7+uZVHO06Q5+hA05n/8fFrDrrhL7IpL51GuPgDsVEoWoXmxoIG23W/HQW9Dgm0AwYY4jh85QHCTNgCknztGAJDrFIxOqzE3lfsbkwHLKWHbz6TTVnOaAE0a2DqpQVtrC6fWqQnsnMGrSfUK6RoImQnMs52LPsegbuXZdhSn96u/nJj7n2uCb0s4+ltxjXtIaVN58S8fm4tr220bueFiL+NuQGrcQghRqZNn47jj4DOEaS8QZTqI/3eD6Ger9gHvjruEco1Fkvbs3oGnJocCjZ7AyK4AFLmqrV0X44+a0xUVjyjXeRUvXFJc4/YsSkKLyaKpPDHjMkNKmsmbDlSbm5vcVjqK3L8aA9NKFA9Q02sMJOkC4dG15Pu0NXcNRFR1itf1KFPjbumci68mAyNa8Fd/qSlpJpf526UkcAshRAWUossYvh1LmCaZVBt/NSDmpdFs9QQm2K4lNafQvEd1ZXJPbgIg1a0N6NTaolNAUwCKLp7GZFIDv0O2OorbPaiZeqFbI3U9b6UIf9JJK9NUnnTpMrdriwN38TaZaLXQ63n1uFnFrWtXFRQFwJ/GTjysfxv8WnE2LRdFARd7G7yd7ap/z6oqOyXMcAKAU6ZACrX2FBpMrD+u9rl3byL92yUkcAshxJUUhcT/PUyLwkNkKY4UjV4CD8dAh/FoUHjR5jt0GNl1lX5ug9GER+puAGzDe5jPewerC4n4GZM4nJTF5UIj3gZ1ulOjiFZqIq3OPNAsVHvBosZtd+kY4doLGLV20HRQ6QM73A/TjkD3p6pf3m5Pcn7iDiYXTeV0tg5FUTh9MRdQa9s1utyxV2O1qb8wB/f41QDEKuHEpeWy7mgKl/KK8HXR0zlM+rdLSOAWQogrnFz9KUHnfqdI0bGq9X8JaNoBbO3hzvfB3h0nJY/WmjPsiqs8cMeez6S9ojaHe7XsYz6v82oMqAPP3l97gpe+24SXRl2X3CekeekNipvLgzUppOaU1rjDstS525cb9QL9FXOrXQPVoF9dGg1ejZoAGvKLTGTlGzh9UR2YVqP926C2RHirLQ2aw+pyrLGmcE6m5PDDbnVe+t0dgxr0bmBXksFpFbhWv5WoGvlzFLe6QoOJBxZsJynzMp3CPOkQ4sGO2CPMPvcqaGCB3f1MvGtM6QVaHYT1hKO/0UN7iDVx7Su99/4jR5mkTcGEFl1wmd29PEtHjMccTqaVJg70kK1zx8Xe1TLdKQjVXOCvXLXGnVdowNWQBjZg61vNAWjXYG+rw83BlszLRaRk5Ztr3FVewvRG+LWElENQqP6ycNAUhnI6jb+Oqc3k90U17N3AriSBu4ySlcLy8vJkK0wryMtT+/9kBTZxqzqclMWOM+qKYQnp51m+5zwf287FTZfHeYfm3Dv5TRzsrqjBhveBo7/RTXuITy7kkHm5CDeH8v/Gs4+r+29fcmmGV9mA7BaMotHiSAEjm9kxzDYTToGTf2PLGxTXuEM1KaTnFmIyKSRm5OONuuiK3s3PSn8Kpfxc9WReLuJCVgGnUoubym/GTlwlA9QABQ2HlTAO7EjAaFJoH+xOE98aWLWtDpPAXYZOp8Pd3Z2UFHXupKOjo2xleR0URSEvL4+UlBTc3d3R6WpgxSUhrOB4stpEHRngyoAWvmiP/caw9B0oGh1BE74AtwqCVoTa7N1Zdxy7oiL2xF+iX3NfiySFBhPuF3eDFjSh3Syvt7FD49oIMuP5b9d8WPEpANqWIyzTuQUB4Ku5hNGkkJVfRGLG5dLV0pwsn2kNfq72HL+QQ3JWvrmpvEZHlJcoGaAG5LpEkJdvD0Z1ZbqRUtsuRwL3FUp2wSoJ3uL6ubu7y65i4pZ27IIauLtGePJ8u0I4MB8ATc+p6nrfFfFuBs5+6HMu0EFzkt1nI8sF7v3nMuiA2r/t3rx3+Xt4hkFmPPz2LORnqFOfuj5umcZZrVH7azMAdS53UuZlWpYEbmfrB25fF3sADp7PJDvfgEYDoV43vtnRtR9cpsYd0A6KF2+zs9FyZ9ta2lb5FiaB+woajYaAgAB8fX0pKiqq7ezUWba2tlLTFjfNezHHiUvLZUznELqEe1a5pex4ceAeXLQOvpgNhnzwiYTe/6z8Io0GwntD7DK66w6xNa5HuSS7j8XxqEZdxUwb2rX8PTzC4cwGyEtVN9MY/pF5uphZceD2KW4aT8spIDEjn96a4q0unay/kqGfq7oE67bT6hrpwR6O2NvehP/HbiHqYjJFuTiGRWN7SEORUWFQSz/cHKWr7UoSuCuh0+kk8AhRB5xJzeX9ter835/3JRIZ4MozA5pye+trt/acTU7jdZsFdD2wVj3R5Da453N1BPnVlARu7UHmJWRQZDRhW2bUc/qxLeg0CtkOQbi4VlBjLB6gBqjTtypaW7w4cDuQjxOXScstJPFSHl7UXI3bz1Ut99HiLoSImh5RXkKrVbsgTqxG17gfrQIvsS8hgzGdQm7O8+sYCdxCiDot5rC6LKivi56s/CKOJGXx5Ld72PvywKsukZmVdJKPCmbQzuY0Cho0fadD7xeqtupYuNr83V57Cm1+HkeSsmjbyB2A/CIjrqm7QAtKcAW1bTCvCoZnY+j7UsVp9M7q8qWFOfhoMkjLKSAzIxU7TfFufY7WX0mspMZdIsL7JvRvl7j7U7UFwjOCD8fmEZeWR8+mslpaRWRinBCiTos5fAGAJ/s3Ydv0AXg52WEwlS4gUqGTa3BcNIB22tNk4ozmgR+g74tVXyrUIwzcQ7DFSCftMYuFWPbEXaJj8fxtl2a9Kr6+8QAY9RU8uFJdsrQyxbVqXzJIzSmkIEP9JcVg63LtVoHr4Otqec+bVuMGsHc1L9sa7OkoQfsqJHALIeqstJwCdhcvgnJbpB/ujnY09lVriadTcyq+KD8Lvp+ITUEG+0wRvBY0X20ir67iWnc37SFzHgA2HE2ig/YkAJqQbhVeikYDLe8Cl2s05zur3/toMknLLcCUrf6SotRA/zaUNpWXuKmBW1SZBG4hxC0t9lwmS3fGsz8hg/wio8V3a4+mYFKgVaArge5qzbVkpa9Ka9yZCVCYw2WdC6MKZxavGHYdwtVpYRN0MQw6NRvl7GbYu5g79z6Cg6aQQjt38Gl+9XtcS3GN20eTwamUXFyNGQDoXKw/hxvAx9myqbzJzZgKJqpN+riFELes/CIj477YRna+AQCdVkOfZj58OLYDTnobczP5wJalgaxkpa9KA3euuttUmsaDQmxpdr2LezQdhMknEseLR7jLtBYWqQPcWgEGRYux82S1Zn0jimvkvpoMfkzM5J7iqWBaF+sPTAN1+pWXkx1puYU4623wcdFf+yJx00mNWwhxy9p0IpXsfAOOdjq8nOwwmhTWHU3hhR/2c7nQyMYT6oTfsoG7pHn31MVKmsrz1MB9waCma+5/nYHbwR3tlK1Md/sPPxp7YdA5kOUYyn+KxjDZ52scbpt+ffctq6TGTQbZ+Qa8zIuv1ExTOZQ2l0f4OMkCVLcoqXELIW5Zfx5SB2ONig5m5p0t2X4mnfELtrMyNpns/F3kF5kIcnegZUDpkqIlI6HPpuViMilotVcEn+Ia9wWjCxoNNPG9geZgjQaHJr15bnMw+6JCScrMZ036BZ5v2ez671mWc2mNGzAvd1oTq6aV8HPVczjpJi11Kq6L1LiFELckg9HE2iNqU/igVn5oNBq6RnjxynB168uNJ9QAPLCln0XNsJGHA7Y6dZerxMzLABQZTYyav5X7v9iGIVtdFTFNcSXU88YXGIkO8wBg6+k0tpxS89S3uZUCa8kiLMU1bZ+SxVeca67GHeqlBuwWZX4ZErcWqXELIW5JO86mcymvCA9HW4u9mMd1DuFAQiZLd6lbPpZtJgew0WkJ9XLiZEoOpy7m0sjDkQPnMthxVt1M5GDRadoD6bjSzO/GN6+IDlUD98kUtWnex0VPq0ArBb3iQWi+GnXUek2uU17iiX5NaOzjxN0dZY3wW5XUuIUQt6RVB9Vm8tsi/Sz2YtZoNLx6Vytui/SjV1NvOod7lru2pJm3ZKOMbafTzd8lJ50DIE1xuf7+7TJ8Xe0J9iydi923mY/1+oaLa9yemmx0GEubymtg1bQSPi56xncLw1kv9bpblfzNCCFuOYqisLp4xPjgVuXnOtvb6vhiYnSl1zf2dYbDF8wjy0vW3vZwtMXDoDY3pyludLJCjRsgOtSThPTzgBWbyQEcvUCjQ6sY8SILL/M65bI4SUMmNW4hxC3nwLlMkjLzcbTTXdcKWuYad2oORUaTeWWzT+6PwlerrsOdjotVmsoBOhY3l+u0Guuu+KXVmUeQh2mScdQUqOdrsKlc3PokcAshbjklo8n7Nfet3uCx/Cz4djQD90/FjiJOX8zlwLlMLhcZ8XC0pUu4J0F2ai08V+dOuJVGTg9o4YuLvQ13tg3AzcHKu1kV93NHauMBUGwd1XXMRYMlTeVCiFvO6uLAPahVNVYIMxrghwfh5BrcgSdsXHgv8z7WHVWb3LuEe6FVjNgVZgDwr1G9sbOxTt0l0N2BfS8PokZmPRf3c7cs3iZUU4NzuEXdIDVuIcQtJSUrn1MXc9FortJfbDLC1k9gzSuQchQUBf54AU6uAa1aH5lis4IWmniW7VIHo3WN8ITLJYPUNHRt1dSq+dZpNeXnjFuDc0mNO674szSTN3RS4xZC3FJKpm1F+ruqzc7ndkPaCWh2Ozi4Q24aLH8UThXvob3pPfBuDqnHAA3c9z/Y/x22R3/jTdvPuCd7FqClS4QX5KpBHAcPtf+4LigO3M01xXmXGneDJ4FbCFFr5vxxhIPnM/lsfDROxdOPdpxRA3fncE8ozIOvR0BBFtjYQ+RwiN+qbhRi4wBhPeDUX8VBGxj8OkTeAUFRXD7+N+05zYO6P/hRP4Lmfi5wVl0itU4Fv+LArdcUqZ/rUt5Fjaj1pvJPPvmE8PBw7O3tiYqKYuPGjVdN/80339CuXTscHR0JCAjgwQcfJC0t7SblVghhLfFpeXy6/jSbT6axqrhPG64I3KfWqkEbDRjyIfZ7NWh7RsCja+GBH2HaERj8Bgz/ELpOUW/iGsCOps8C8KzNj3QPc1GbsYvXKa9T06mu3AlMmsobvFoN3EuXLmXq1KnMmDGDvXv30qtXL4YMGUJ8fHyF6Tdt2sSECRN4+OGHOXToEMuWLWPnzp088sgjNznnQogb9e2O0v/nfxQvtpKZV8SxC+p0rU5hnnB4hZqg6xR4ZB1EP6y+Hvsb/NSlT3Hxg25PQMcJFrtxFbZ9gDxFj7Mmn/5++erJ3OJf8h29arRsVuV8ReCWqWANXq0G7nfffZeHH36YRx55hMjISObOnUtwcDDz5s2rMP22bdsICwvj6aefJjw8nJ49e/KPf/yDXbt23eScCyFKfL31LGM+28ql3MIqX1NgMLKseMlSgA3HL5JbYGBXXDqKos7D9nHQwPE/1QQth0OjKLjjXfVl73bNZ0T4OhOnqEGvs1uGejK37jaVl36uQ3kXNaLWAndhYSG7d+9m0KBBFucHDRrEli1bKryme/funDt3jpUrV6IoChcuXOCHH35g2LBhlT6noKCArKwsi5cQwjryi4y89ecxtp1O59cDiVW+btWhC6TlFuLnqifE05ECg4m/jqWYB6Z1CvOEM+vVZnJnP2jUudp5C/V0JMMhGIBGpuK81cWm8nI1bgncDV2tBe7U1FSMRiN+fpb/KP38/EhOTq7wmu7du/PNN98wevRo7Ozs8Pf3x93dnQ8//LDS58yZMwc3NzfzKzg42KrlEKIh+/tYCtkFBqB0WdGq+Ha7OrVpTKcQhrRRlzT982CyZf/24V/UxC3uAG31f1TZ6LR066QGfO2l0+rJ4i09caxDgdvOEfRlNi2RpvIGr9YHp125GL+iKJUu0H/48GGefvppXn75ZXbv3s2ff/7JmTNnmDx5cqX3nz59OpmZmeZXQkJCpWmFENXzy77SWva20+mYTMo1rzmZksO20+loNTCmczBDWgcAsO5oCrHn1E00Ooe6wrGV6gUth19/Bj0bq+/pVwTuulTjBssBadJU3uDV2nQwb29vdDpdudp1SkpKuVp4iTlz5tCjRw9eeOEFANq2bYuTkxO9evVi9uzZBAQElLtGr9ej1+utXwAhGris/CLWHlX3ttZpNaTnFnIiJafCHbd2nEnnz4PJKCgcOq92V/Vv4UeAmwP+rvYEuNmTlKkOIAtws6dR1l7IS1PnW4f2uP5Mekao72mn1Pe62FQO4OwPaSdBZwf27rWdG1HLaq3GbWdnR1RUFDExMRbnY2Ji6N69e4XX5OXlob2iyUynUxdRUJRr/6YvhLCe1YcuUGgw0cTXme6N1VHaW0+llkuXV2jgsa938eXmMyzcfNbcj31/1xBAbXUruwNYpzBPNEd+VT80Hwa6G1j726u4xp2ZAIbCutlUDqU1bicfi5HzomGq1QVYpk2bxvjx44mOjqZbt2589tlnxMfHm5u+p0+fzvnz5/nqq68AuPPOO3n00UeZN28egwcPJikpialTp9K5c2cCAwNrsyhCNDi/7FO3sRzeLhCdVsPGE6lsO53OpB7hFum+35lARl4RgW723N0xCBSFUDcb+jYrbfId0tqfRVvOAsX921v+UL+4kWZyUAd22TpBUS6knypd8rSuDfByKf7Fpq61FIgaUauBe/To0aSlpTFr1iySkpJo3bo1K1euJDQ0FICkpCSLOd2TJk0iOzubjz76iOeeew53d3f69+/Pf/7zn9oqghAN0sXsAjafVGuvw9sFklY8FWzbmTRMJsW8ZrfBaOKLTWcAeLxfE8Z3DYWlD8C+DdBmt7m/NjrMkyB3By5k5dMrSANZxct7hlbc+lZlGo3aXH4hFs6VTBvVgKPnjd33ZjPXuGVgmrgFljydMmUKU6ZMqfC7RYsWlTv31FNP8dRTT9VwroQQV/P7gURMCrQLdifM24kgDwcc7XRkFC+gEhmgjoJeeTCZc5cu4+Vkx31RjcBkghNrwHAZkvZB04GA2ke+5LGupOcWEmo8qD7EPQT0Vtgv26s4cCdsUz/XpXXKSzQdBLu+hFZ313ZOxC2g1keVCyHqnpWx6qDS4e3ULipbnVadew1sPaVOC1MUhU/Xq4PCJnQLU/fVzk5Sgzao/c5lBHs60i7YHVKOqCd8W1knsyUjyxN2qO91rZkc1FXipsZCh/trOyfiFiCBWwhRLVn5ReyOvwTAoJalM0C6RqgD1Ermc285lcahxCwcbHVM6KZ2f5F+qvRGmecqfkDKYfXdN9I6GS4ZoJZ6XH2XfmJRx9V6U7kQom7ZcjINo0kh3NuJYE9H8/lujUsD92u/HTbP8R4V3QgPJzs1Ucl8arhK4C6pcbe0ToZLpoSVqEvrlAtRAQncQohq2XhCXe+7d1PLmmvrQFec9TZk5RtYUDwgLdDNnn/0aVyaKK1MjTujgsWQFAUuWLnG7dnY8nNdbCoXogwJ3EKIKlMUhQ3FgbtXU8sAaKPT8kDXUL7flUCvpt7c0TaQXk291b7tEteqcWclQkEmaHTg3dQ6mXb2BTtnKMxRP0tTuajjJHALISq1PyGDmMMXeLxvY5z0NsSl5ZGQfhlbncbcNF7WS0Na8NKQFpXfsGyNO+s8mIyWI7xLmsm9moCNlVY81GjAMxySY9XPdW3xFSGuIIFbCFGh1JwCHlq0k7TcQnIKDLwyvJW5th0V6oGTvpo/PkwmuHSm9LNihOxkcAsqPWftgWklPBuXBm6pcYs6TkaVCyHKURSF6ctjzQurfL0tjqPJWWw4ri66cmUzeZVkJ4IhH7Q24FocrK9sLrf2wLQSXmX6uSVwizpOArcQopwfdp8j5vAFbHUaokM9MJoUXv75kHkt8j7NriNwlzSTu4eCR5h6fMVc7hqtcZeQpnJRx0ngFkJYOHcpj1d/VQPotIHNmTumPfa2WnacTSe30IiXkx0tA1yvcZcKlAxM82oMbo3U47I1bpMRLh5Tj/2stPhKibJTwmRUuajjJHALIcwy8gp57Kvd5BQYiAr14LHeETTycGRK3ybmND2bepvXIq+WksVXPCMqDtyXzqqrqtnYl9bIrcW7mTpS3dZJXfJUiDpMArcQAoDMvCIeWLCdw0lZeDvb8d6o9uiKA/RjvSMI9nQAoF9zXyjIgdSTV79hfhaklxmMllZc4/aspMZd0r/t09z6a4k7ecHY79SXTsbkirpN/gULIcjKL2LCl9s5eD4LLyc7vn20KyFepaui2dvqWPxwFzafTFPXJ182AY6sgPsWVb7xxbKJcGYDPLQKGkWX1ri9ItSFVqDiwG3tgWklmg2umfsKcZNJjVuIBi4tp4D7P9/O/nOZeDja8s2jXWjmV35XrlAvJ8Z1CUFblAvH/1RP/v485KWXv2lBNpz+G0wG2PqROhWspPZtUeMuMzitpgamCVHPSOAWogE7dymP++ZvJfZ8Jp5Odix+pAst/K8x8OzMBjCq08TIS4U/p1dw412gmNTjwyvg3E4wFoDWFtyCS6eD5WeoQR7KBO4aqnELUU9I4BaigTp1MYeR87ZyOjWXIHcHfpjcjVaBbte+8GSM+h7SHdDAgSXqHttlxW8rPVaMsHqGeuwRqvYx27uCffGzMs+rr4tH1fsFtLvRoglRr0ngFqIBUhSFF5btJzkrn6a+zvzweDcifJyrciGcKA7cPZ+Fro+rx79NVQeslYjfqr437q++n9upvpedT+0WrL5nnoOjv6nHwV3UtcWFEJWSwC1EPWc0KcSn5VmcW3/8InviM7C31bL4kS4EuDlU7WYXj6n90jb2ENYT+v8fuIeo5w4sKX5gkdpUDnDbq+AWUnp92RXMyvZzH16hHrccfh0lFKJhkcAtRD03+/fD9H77L+auOQ6ote331pwA4IEuofi52lf9ZidWq+9hPcHOEeycoMtk9dz+4sCdHAtFuWpTuF9r6PxI6fVlF0IpCdyJeyF+i3oceWd1iydEgyOBW4h67MSFbP635SwAc9ec4LcDifx97CL7E9TatsVe2VVR0r/dZGDpudYj1cVNzu1U53aX9G8HdwWtFjqMB5viGr1X6UIu5sB94Ht1IFtAe7X2LoS4KpnHLUQ99sbKI5gUcHe0JSOviOeX7SewuFl8YrcwfFyqsXVmQTbEFfddNy0TuF38oMkAtTa+/ztILV62NKSr+u7oCSM+hoSdEN679LqSPm7DZfVdmsmFqBKpcQtRT206kcpfxy5io9Xww+Tu9G3uQ36RidOpuTja6Xisd8S1b1LW6fVgKlKbu72uqKm3G6u+H1haWuMO6Vb6fet7YcibliuilQTuEpF3VS8/QjRQEriFqIeMJoXZv6vzoh/oGkoTX2c+GNuBJr7qyPEJ3cLwcq5GbRtK+7ebDir/XfMhoHdTB5rlXgSdHQR2uPr9SprKAXwiwbtJ5WmFEGbSVC5EPfTT3vMcTc7G1d6GZwY0BcDV3pZvH+3CuiMp3N0xqHo3VBQ4WTxXu2z/dglbB2g1Avb8T/0c2BFsrzHozcVf7RtXjNJMLkQ1SI1biHrox93qGuD/6NMYDyc783lfF3vGdA5Bb1PNTTxSDkPWeXWQWViPitO0H1d6HNqt4jRlaXUQ0FZdTa3VPdXLjxANmNS4hahnsvOL2BWnrh8+tE2AdW5asuhKeC+1dl2R4C7qAivppywHoV3N2CXqWue+LayTTyEaAAncQtQzm0+mUWRUCPNyJNzbyTo3LQncFfVvl9BoYNxSSNoPEf2qdl8Xf/UlhKgyCdxC1DPrj6cA0Ld5NZcOLcxTF1W5Un4mJBSPFG9y29Xv4d1UfQkhaoz0cQtRjyiKwl9HLwLQt7lP1S/86w14Mxj2fVv+u5LtOb2agGe4dTIqhLhuEriFqOPyCg3m42MXsknOykdvo6VrhFfVb3LwRzU4r3hKna9dVlWayYUQN40EbiHqgPwiI78fSGLLyVQSMy6TkVfIV1vPMuyDjbR8eRWfrj8FwN/H1Np298Ze2NtWceR4zkVIO6kemwywdLy6mQhcMQ3sGs3kQoibQvq4hbjFmUwKzyzZy6pDFypNM+ePo4R7O/HXUbV/u1+LavRvl/RfezcDB0/18zcjYeh/1S02s5PA1hFCK5kGJoS4qSRwC3GLm7f+FKsOXcBWp6GRhyMJ6XkYTArN/VwY3SmYEyk5fLcjnqlL91FoMAHQt1k1AnfJEqVhvaDfDFhwG6Sfhm9Hga54dbXw3tdeUEUIcVNI4BbiFvb3sRT+u1pttp51V2vGdg6hyGgiI68Ib2c7NBoNRUYT8em5bD6ZBkCEjxMhXhWMDq9MfPHGISHdwMkLJq2ELR+o23ReVueDS/+2ELcO6eMW4hYVn5bH09/tRVFgbOdgxnZWt7y01WnxcdGj0WjMnz8e15Gw4mDdrzrTwApz1XnXULqbl2sA3D4HnjsK9y2Cga9BxwnWKpYQ4gZJjVuIW5DBaGLq0r1k5RtoH+zOK8NbXTW9u6Mdix/pwg+7zzGhW1jVH3RulzogzbURuF+xW5eNHlrdXf3MCyFqlARuIW5Bn244zZ74DFz0Nnw0rkOV1hZv5OHI1NuaVe9B5i04u15HLoUQtUGayoW4xRxKzGTumuMAzBzeikYe1eivri5z/7YEbiHqCgncQtxC8ouMTFu6nyKjwqCWftxb3e03ryVhByx7EBL3gtEA53aq50OqsJuXEOKWIE3lQtxC5v19imMXsvF2tuONe9qYB6BZzd9vwqm1cPQ36PQIFOaA3g18W1r3OUKIGiM1biFuEeczLjO/eAW0V4a3wttZb90HmIxqjRvAWAjbPlGPQ7qAVn4UCFFXVPt/a1hYGLNmzSI+Pr4m8iNEg3DiQjb3f7GNpTtL/x/954+jFBhMdA7zZJi19tEu68IhKMwGOxfo/2/QFP/3l/5tIeqUagfu5557jl9++YWIiAgGDhzIkiVLKCgoqIm8CVEvGU0Kzy3bz+aTabz4Yyxz1xxnd1w6K/YnotHAy3e2tH4TOZSOIA/uDL2fh4m/QdcpEPWg9Z8lhKgx1Q7cTz31FLt372b37t20bNmSp59+moCAAJ588kn27NlTE3kUol75bkc8B85lYqdT//vNXXOCSV+qg8RGRQXTOsitZh5cdoU0gLAe6kIrjp418zwhRI247o6tdu3a8f7773P+/HlmzpzJF198QadOnWjXrh1ffvkliqJYM59C1AupOQW89edRAGYMi2TWXa3QaCC7wICz3obnBzevmQcrikz9EqKeuO5R5UVFRfz0008sXLiQmJgYunbtysMPP0xiYiIzZsxgzZo1fPvtt9bMqxB13pt/HCUr30CrQFce6BqKTqvB3dGOuTHHeWpAE3xcrDwgrURGvLrLl9YGgqJq5hlCiJui2oF7z549LFy4kO+++w6dTsf48eN57733aNGihTnNoEGD6N27t1UzKkRdtzsunR92n0OjgdkjWqPTqv3Yw9sFMrxdYM0+vKR/O6A92NXggi5CiBpX7cDdqVMnBg4cyLx58xgxYgS2trbl0rRs2ZIxY8ZYJYNC1Bf/XaWuhjY6OpgOIR7WuWluGhz8EdqMtOyrzr4Ax36H1veCvZs0kwtRj1Q7cJ8+fZrQ0NCrpnFycmLhwoXXnSkh6putp9LYejoNO52Wpwc0td6NN70LWz+Cfd/AgyvBzgny0mHRMEg7AfuXwoRfyqxJLiukCVHXVXtwWkpKCtu3by93fvv27ezatcsqmRKiPlEUhfeK1x4f3SmYQHcH6938fPFMjqR98OOjUHQZlo5XgzZAwjb44UG4eET9LDVuIeq8agfuJ554goSEhHLnz58/zxNPPGGVTAlRn2w9lcaOM+nY6bRM6dfYejdWFHVRFQA0atP4x50hbpO6yMrQ/6qD0Y6tVJN4NwMnb+s9XwhRK6oduA8fPkzHjh3Lne/QoQOHDx+2SqaEqC/K1rbHdg4mwM2Kte2MeCjIBK0t3P1p6TmNDkYtgs6Pwp3vl6aX2rYQ9UK1+7j1ej0XLlwgIiLC4nxSUhI2NrJniRAJ6XnM/v0wJ1JyuJhVQHaBATsbLVP6NbHugy4cVN99WkC70ZCXBhvfgYGvQpPb1O86PADZybDlA2g72rrPF0LUimrXuAcOHMj06dPJzMw0n8vIyOBf//oXAwcOtGrmhKhrLmYXMH7BdlYdusDpi7lkFxgAeLxPY/xc7a//xqkn4YeH4EKZVq3kWPXdv7X63m0KvHBSDdZl9X4eXoyDsJ7X/3whxC2j2lXkd955h969exMaGkqHDh0A2LdvH35+fnz99ddWz6AQdUVWfhGTFu7gbFoejTwcmHNPGwLcHPBz1eNiX37aZJUpCqx4CuK3gLEIRhf/PysJ3H6tS9NWtsZ5Tax9LoSoFdWucQcFBXHgwAHeeustWrZsSVRUFO+//z6xsbEEBwdXOwOffPIJ4eHh2NvbExUVxcaNG6+avqCggBkzZhAaGoper6dx48Z8+eWX1X6uENaUX2Tk0f/t4lBiFt7Odnz9cBd6NfWhia/zjQVtgNN/qUEb4PTfavCG0qZy/zY3dn8hRJ1yXZ3STk5OPPbYYzf88KVLlzJ16lQ++eQTevTowaeffsqQIUM4fPgwISEhFV4zatQoLly4wIIFC2jSpAkpKSkYDIYbzosQ18tgNPH0d3vZfiYdZ70Nix7sTLi3k3Vuriiwbnbp54IsSNgO/m3h0ln1nARuIRqU6x5NdvjwYeLj4yksLLQ4P3z48Crf49133+Xhhx/mkUceAWDu3LmsWrWKefPmMWfOnHLp//zzT9avX8/p06fx9FRXiQoLC7veIghxwxRFYcZPB1l9+AJ2Nlo+nxBt3d29jv8J53eDraM6KvzUOjgRo44cB3AJlN29hGhgrmvltLvvvpvY2Fg0Go15F7CS/YONRmOV7lNYWMju3bt56aWXLM4PGjSILVu2VHjNihUriI6O5q233uLrr7/GycmJ4cOH89prr+HgUPE0m4KCAov9wrOysqqUPyGupcho4r+rj7F0VwJaDXw4tgPdGntZ7wEmE6x7XT3u8g/wbaUG7pNrwK2Ret6/deXXCyHqpWoH7meeeYbw8HDWrFlDREQEO3bsIC0tjeeee47//ve/Vb5PamoqRqMRPz8/i/N+fn4kJydXeM3p06fZtGkT9vb2/PTTT6SmpjJlyhTS09Mr7eeeM2cOr776atULKMRVKIrCbweS+ONgEhuPp5pHjc+5pw2DW/lb80Hq1K4LsaB3he5PF3+hUfu2T6xWP0ozuRANTrUD99atW1m3bh0+Pj5otVq0Wi09e/Zkzpw5PP300+zdu7da99NcMdpVUZRy50qYTCY0Gg3ffPMNbm5qc+S7777LyJEj+fjjjyusdU+fPp1p06aZP2dlZV3XIDohABZsOsPs34+YP3s52TF1YDNGd6p4TEaVpJ+B354F35bQcTy4BsEvT8CRFer3vZ4rbQ5vFA3ndpYGbj+pcQvR0FQ7cBuNRpydnQHw9vYmMTGR5s2bExoayrFjx6p8H29vb3Q6XbnadUpKSrlaeImAgACCgoLMQRsgMjISRVE4d+4cTZuW37xBr9ej19fQHseiQTmUmMlbf6r/xid0C+Wejo1oG+SGVnuDU622fqyOHD/9F2z7GPRupSui3T4HOj1SmrbpIDVwl5AatxANTrWng7Vu3ZoDBw4A0KVLF9566y02b97MrFmzyq2mdjV2dnZERUURExNjcT4mJobu3btXeE2PHj1ITEwkJyfHfO748eNotVoaNWpU3aIIUWWXC408s2QfhUYTA1v68erwVrQPdr/xoK0ocLL4/0BgR3Vt8YJMtdb90J/qsqVlW6BKVkQDsHEAz6r/nxNC1A/VDtz/93//h8lkAmD27NnExcXRq1cvVq5cyQcffFCte02bNo0vvviCL7/8kiNHjvDss88SHx/P5MmTAbWZe8KECeb048aNw8vLiwcffJDDhw+zYcMGXnjhBR566KFKB6cJYQ1vrDzCyZQcfFz0/OfetpV251Rb2kl1WpfODib+CtOOwL0LYPImtVn8SgHtwclHPfZrBVqddfIhhKgzqt1UPnjwYPNxREQEhw8fJj09HQ8Pj2r/MBs9ejRpaWnMmjWLpKQkWrduzcqVK837fSclJREfH29O7+zsTExMDE899RTR0dF4eXkxatQoZs+eXdkjhLhh20+n8fW2OADeHdUOTyc76938RHFtO7Q76J3VV5uRlafXatVa9/7vpJlciAZKo5TM56oCg8GAvb09+/bto3XrujkoJisrCzc3NzIzM3F1da3t7IhbnKIojP5sGzvOpDO2cwhz7rFysPxqhNq3Peh16P5k1a7JiIf1/4HeL4BHmHXzI4SoFdWJTdWqcdvY2BAaGlrludpC1HVl99J+eoCVd/cqzIW4zepx00FVv849BO762Lp5EULUGdfVxz19+nTS09NrIj9C3DJqdC9tgDMbwVioBmLv8jMihBCiItXu4/7ggw84efIkgYGBhIaG4uRkuSbznj17rJY5IWrT5pNp7Dx7qWb20obSudhNB8nuXUKIKqt24B4xYkQNZEOIW0vZ2va4ziE3tpd2xQ8onQbWRPaxF0JUXbUD98yZM2siH0LcUv4+dpHdcZfQ22iZ0rex9R+QtE8dZKbTQ3gv699fCFFvXffuYELUVwajiddXqsuaTuwehq+1atuKAsdWwu5F6kYhAGE9wc5KW4AKIRqEagdurVZ71fnaMuJc3OpyCgxMXbKPdo3ceGpA+UFhS3YmcDIlBw9HW56wZt/22ldh03uln0O6w9C3rXd/IUSDUO3A/dNPP1l8LioqYu/evfzvf/+TXbhEnfDV1rOsOXKBdUcvMKJDEMGejubvsvOLeC9G7dt+ZkBT3BxsrfPQ3YtKg3bXKRD9MHjXwIA3IUS9V+3Afdddd5U7N3LkSFq1asXSpUt5+OGHrZIxIWrC5UIjCzaeAcCkwNfb4vjX0Ejz9/P+PkVabiER3k7c3zXUOg89tQ5+K96hrs+L0O9f1rmvEKJBqvY87sp06dKFNWvWWOt2QtSIJTvjScstxN5W/ae/ZEc8eYXqntpnU3NZsEkN6i8NaYGtroL/HgU5sPQBiP2hag+8cBi+nwiKEdqOhr7TrVIOIUTDZZXAffnyZT788EPZoUvc0goNJj7bcBqAGcNaEurlSFa+geV7zlNoMPHUd3spMJjoFuHFwJYVby3L8T/hyK8Q87I62OxqspPh21FQkAWhPWD4hzJfWwhxw6rdVH7lZiKKopCdnY2joyOLFy+2auaEsKble86RlJmPn6ueUdGNKDSYeO23wyzacpbTF3OJPZ+Ju6Mt74xqV/kAzMwE9T3rPKSfBq9KpooV5sJ3Y9T0Xk1g9GKwkX3hhRA3rtqB+7333rP4oabVavHx8aFLly54eHhYNXNCWIvBaGLe+lMAPNorAr2NjvuiG/Hu6mOcTMnhZIq6x/vbI9sR6H6VpU0zz5Uen1lfceA2GWH5Y5C4Fxy9YNz34OhpzeIIIRqwagfuSZMm1UA2hKhZ8/4+RVxaHp5OdozrEgKAq70tI6Ma8b+t6padD/YIq7yJvIRF4N4A0Q+VT7P1Izj6m7q4yphvK6+VCyHEdah2H/fChQtZtmxZufPLli3jf//7n1UyJYQ1HTyfyftrTwDw7zsicbQr/X31wR7hONnpiAr14KUhLa59M4vAvRFMJsvv007BX2+ox0PfhpCuN5p9IYSwUO3A/eabb+Lt7V3uvK+vL2+88YZVMiWEteQXGXl26T4MJoWhbfwZ0T7I4vswbye2z7iNJY91RW+ju/YNS/q4AfJSIeVw6WdFgV+fAUM+RPSFjhOsUwghhCij2oE7Li6O8PDwcudDQ0OJj4+3SqaEsJb/rjrGiZQcvJ31zB7RpsJBZ856m4qnfl0pPwvyM9Xj4OKa9JkNpd/v+R+c3Qi2jnDHXBlBLoSoEdUO3L6+vhw4cKDc+f379+Pl5WWVTAlhDacu5rBgszov+62RbfB0sruxG2adV98dPKD5EPW4JHBnnoPVL6vH/f8PPMv/ciuEENZQ7cA9ZswYnn76af766y+MRiNGo5F169bxzDPPMGbMmJrIoxDX5ftdCSgK9G/hS/8W1xh0VhUl/dtujSCij3octxkuX4JvR0NBJgRFQZfJN/4sIYSoRLVHlc+ePZu4uDgGDBiAjY16uclkYsKECdLHLW4ZRUYTP+5Wa8ijOwVb56Yl/dtuweDfFuzd1KbzL4fAxSPg5Av3LQJtFfrKhRDiOlU7cNvZ2bF06VJmz57Nvn37cHBwoE2bNoSGWmldZyGsYP2xi6TmFODtbEf/Fr7WuWlGSeBupAbnsF7qtK+LR8DGAcYtAfcQ6zxLCCEqcd37cTdt2pSmTctviSjEreD7XWqQvbtDUNUGnlVF2aZygPDeauBGA/d+oTaTCyFEDav2T7SRI0fy5ptvljv/9ttvc99991klU0LciIvZBaw7mgLAfdFWaiaH8oG77WiIvBPung+Rd1jvOUIIcRXVDtzr169n2LBh5c7ffvvtbNiwoYIrhLi5ft57HoNJoX2wO838XKx3Y3PgLv5lwMFdXYO8nQzKFELcPNUO3Dk5OdjZlZ9WY2trS1ZWllUyJcT1upRbyJKd6noCo26ktn3hMHx9N+z4XP1sMpZOB3OTXfCEELWn2oG7devWLF26tNz5JUuW0LJlS6tkSojqOnUxh+nLY+n25lpOXczFwVbHHe0Cru9mB5bBFwPg1DpY9xoYDeoWnYoRtDbgbIWpZUIIcZ2qPTjt3//+N/feey+nTp2if//+AKxdu5Zvv/2WH374weoZFOJa9idkMOrTrRQY1HXDWwW6Mn1IJK72ttW7kckIf74EOz4rPZefCed2gqb4d1zXQJnuJYSoVdUO3MOHD+fnn3/mjTfe4IcffsDBwYF27dqxbt06XF1dayKPQgBgMin83y8HURT419AWuNjbkppTwOTFuykwmOgU5sELg1vQKcyj8v20r2bVv0qDdu8X1A1DDi2HkzHgW9ya5GbFwW5CCHEdrms62LBhw8wD1DIyMvjmm2+YOnUq+/fvx2g0WjWDQpTYFXeJb7er/dfbT6fx4bgOzPr1MEmZ+UT4OPHlpE64VLeWXWLbfNg+Xz2+dwG0GQn7l6qB+8Rq0Bf/Uir920KIWnbd87jXrVvHl19+yfLlywkNDeXee+9lwYIF1sybEBZ+2lu6pebp1FyGfbAJUDcJ+Wx89PUH7WN/wKrp6vFtr6hBG6DJAEADybHgXrzAkARuIUQtq1bgPnfuHIsWLeLLL78kNzeXUaNGUVRUxI8//igD00SNyi8y8tuBJAA+GteBJTsS2HQyFYB3RrWjia/z9d04KxF+eAgUE3ScCD2mln7n5A1BHeH8bjj+p3pOArcQopZVOXAPHTqUTZs2cccdd/Dhhx9y++23o9PpmD9/fk3mTwgA1h1NITvfQICbPUNbBzCkdQDf70rAw9GWwa38r//GB5dDUR4EtIdh75TfirPJQDVwmwzqZ+njFkLUsioH7tWrV/P000/z+OOPy1Kn4qb7aa86h/qu9kFotWpwHdvZCuuCH1mhvre/H3QVNLU3HQjry6wUKDVuIUQtq/I87o0bN5KdnU10dDRdunTho48+4uLFizWZNyEAdVGVv4+pS5je0zHIejfOToaE7epxZUuWBnYAxzL7zLta8flCCHEdqhy4u3Xrxueff05SUhL/+Mc/WLJkCUFBQZhMJmJiYsjOzq7JfIoGSFEUAH47kEiRUaFVoKt1lzA98qv63qiTOj+7IlodNB6gHtu7gb1MeRRC1K5qr5zm6OjIQw89xKZNm4iNjeW5557jzTffxNfXl+HDh9dEHkUDk19k5K6PNhH58p/cPncDH6w7Cag7fV03RYHEfZB9ofRcSTN55DX+3TYbrL57hF//84UQwkquezoYQPPmzXnrrbeYM2cOv/76K19++aW18iUaIkMBoGHBpnj2n8sE4Giy2pJjq9MwvH0lteIrFeapo8UBTEXqiPC9iyHtJDj5wCNrwc4Zzm5W00TeefX7tbobMhMgtOd1FEoIIaxLo5S0RzYQWVlZuLm5kZmZKSu93UqMBvi0N4aCXKIvvUZGoY5/39GSCG8nzqbl0tzPhe5NvK99n+RY+OouyEurPI13c+g4AVbPAP82MHmT9cohhBDXoTqx6YZq3EJYzfldkHIIGyCi6BTG4M482D3MPIK8SrIS4ZtRatC2cQCb4l3sfCKhwwMQ0hX+NxxSj6lBGyDyLqsXRQghapIEbnFrOBFjPuygPcmwOydVL2gX5MC3oyA7EXxawEOr1P2yrzRuKSwcAoU56ueWMi5DCFG3VHtwmhA1QTmx2nx8h+d5OoZ4VP1io0Fd/Sw5Vu3DHvd9xUEbIKAtjFyobs8ZFAU+zW8s40IIcZNJjVvUOiUrCU3yAfPnNpoT1bhYUbfiPLEKbOxh7FLwCL36Nc0GwTP7SzcOEUKIOkRq3KLWrfx5MQAnlUAUNNhknYOclKpdvH0+7Pwc0MA9n0OjqKpd59ZI5mQLIeokqXGLm+5kSjY7z14it8DA6dRcup+IAR0UNBuOJuNvuHgUzu2CFkOvfqOjv8Ofxbt6DXpN+quFEA2CBG5xU+UVGhg5fysZeUUA6DDykj4WgFa9R8LuHDVwn79G4D6/B358BFAg+iHo9uRNyL0QQtQ+aSoXN9WKfYlk5BXh7WzHXe0DebFVFq6aPBQHT3ULzZKm7nO7Kr9JRjx8N0bd1avJbTDk7fK7egkhRD0lNW5xU327PY7/2HxGP4cUfEPGQfppADRNBqjrgjfqpCZM3Asmk7ry2fcTIS8V2o6GZrfDt6Mh5wL4tVZHiOvkn7EQouGQn3ji+uxdDOd2wu3/AVv7Kl1y4FwGNom7GK3/G7KB1f9X+mWTgeq7TyTYOkJBFqQeh0M/wfE/1O/O7YSVz6vHzv7qnGwZYCaEaGCkqVxUX2EerHwBdi+Cfd9U+bJvt8fzoM2f6oeQbhDYUT3Wu6pN3qDWngM7qMd7v4aN76jHUQ+Cb0v12NZJDdqyN7YQogGSGreovlNr1f5lgO2fqoPDKuhjLjSYKDAYcbG3JSu/iG37Ypmt3aF+OfRtdZ3wi8dBZwtOZfa8DoqCuM2w9SP1c/OhcMd76vGFg6B3AY+wmiufEELcwiRwi+or2cca1HW/T/8NjfuZTxlNCkt2xvPO6uNcyiukd1Mf/Fz13KusxkZjQgntgca/jZrYp1n5+zeKLj3Wu8Kwd0p/MSi5TgghGigJ3KJ6DIVwrLi5Oyhanba1/VNz4I49l8mLPx7gcFKW+ZL1xy+ip5At+rUAaLpMvvozgsoE7oGvgmsVt/MUQogGQAK3qJ4z66EgE5z9YMQ8+LiTut91+mkKXcN4cNFOUnMKcLW34dmBzejV1Jvle86Tv/MrvIzZmFwboW1+jYVV3IKg73QozIWOk25KsYQQoq6QwC2q58gK9b3FHWozd5OBcDIGdnzOukbPkJpTgK+Lnj+e7onXykcg5lf+WeZybedHqzZ9q+9LNZJ9IYSo62RUuag6o0FdZhRKlxftWtzsvXcxv+08BsA9HRvhlRFr2RcO4BIIHSfcpMwKIUT9JDVuUXXxWyEvDRw8ILSnei6iP3g3g9TjRJz6GribkVFBsGGq+n3b0TD4DfXY3k0dQS6EEOK61XqN+5NPPiE8PBx7e3uioqLYuHFjla7bvHkzNjY2tG/fvmYzKEqVNJM3H1ba3K3VQp8XAXhE9zs9gnQ0sc+Bwz+r33d7Apy81ZcEbSGEuGG1GriXLl3K1KlTmTFjBnv37qVXr14MGTKE+Pj4q16XmZnJhAkTGDBgwE3KqQDUQWgAkXdanFZa3c0ZbSiumjxecouBXV+CyQAh3SGgXS1kVAgh6q9aDdzvvvsuDz/8MI888giRkZHMnTuX4OBg5s2bd9Xr/vGPfzBu3Di6det2k3IqyDyvbu6h0UFYD4uvDiXlMCf/HgBaJ3wHuxaoX3T5x83OpRBC1Hu1FrgLCwvZvXs3gwYNsjg/aNAgtmzZUul1Cxcu5NSpU8ycObNKzykoKCArK8viJa5Dwjb13b+NunJZGd/vSmC1KZo4fXM0RblqP7hrkDryXAghhFXVWuBOTU3FaDTi5+dncd7Pz4/k5OQKrzlx4gQvvfQS33zzDTY2VRtXN2fOHNzc3Myv4ODgG857gxS3VX0PKW3lKDAYmfXrYb7aGgdoyOj2Ymn6To/Irl1CCFEDan1wmuaKNa4VRSl3DsBoNDJu3DheffVVmjWrYJnMSkyfPp3MzEzzKyEh4Ybz3CDFF9e4Q7oCcDIlh7s/3sKXm88A8EjPcNr2vhta36tuBhI1qZYyKoQQ9VutVYm8vb3R6XTlatcpKSnlauEA2dnZ7Nq1i7179/Lkk08CYDKZUBQFGxsbVq9eTf/+/ctdp9fr0ev1NVOIhiI/U93cAygM7Mz8tSf46K+TFBpMeDrZ8fbItgyILP47G/llLWZUCCHqv1oL3HZ2dkRFRRETE8Pdd99tPh8TE8Ndd91VLr2rqyuxsbEW5z755BPWrVvHDz/8QHh4eI3nucFK2AkoFLiGMmzhCU6m5ADQp5kPb41si59r1fbjFkIIceNqtRNy2rRpjB8/nujoaLp168Znn31GfHw8kyerq3FNnz6d8+fP89VXX6HVamndurXF9b6+vtjb25c7L6wsXu3fXp0dzsnLOXg72/HvO1oyvF1ghd0aQgghak6tBu7Ro0eTlpbGrFmzSEpKonXr1qxcuZLQ0FAAkpKSrjmnW9yA/Ey4FAcBba+errh/e1NhUxr7OPHj491xd7S7CRkUQghxJY2iKEptZ+JmysrKws3NjczMTFxdXWs7O7Xr2zFw/A8Y9XXp2uNXMhRimtMIrbGAAQVv88pDd9Orqc/NzacQQtRz1YlNtT6qXNSS3DQ4sVo9XjtL3UCk2G8HEpm2dB8bjl/ElLgPrbGANMWFppEdJWgLIUQtk4m2DdWx30ExqsdpJyB2GbQfS+y5TKYu2YfBpLB873med/qTJ4E9Sgtm3NGyVrMshBBCAnfDVbLlpkcYXDoLf88hr/ldTPtuJ89qv2O4/W6MRhOehgzQgD6iO8GejrWYYSGEECCBu2HKz4RTf6nH9y2Cb0ZBRhxbFs3gjexNdLI5DiageMC4CS1dBo2qrdwKIYQoQwJ3Q3R8FZiKwLs5BHaAXs/Bny9y24UvQQsGW2dshr0NnhEAaF380XuE1W6ehRBCABK4G6bDv6jvxSPJTR0nkrrqLXyVNC44NMHvke/Bq3EtZlAIIURlZFR5Q1OYCyfXqseRauBefyabsfkv8RqP4PLkXxK0hRDiFiaBu6E5uQYMl8E9VN2iE1i8NY5TShBK1MM4OjXwue1CCHGLk8DdkOSmwub31eOWw0GjISE9j3XHUgC4v2tILWZOCCFEVUgfd0ORsBOWTYSs8xh0DhS1HocD8N2OeBQFejTxorGPc23nUgghxDVIjbshiP0BFg6BrPPEawIZkvcqd3yXwv6EDJbuVPcnH981tJYzKYQQoiqkxl3fZcTDiqfBVMQJr/7cfX4cOTjCxVzu+ngzAH6uem6LLL8HuhBCiFuP1LjrM0WBX6dCUS75gV2448Ij5ODIayNaM6CFrznZ2M4h2Ojkn4IQQtQFUuOuzw4shVNrUXR6Zir/oMAAvZp680CXEB7oEsKSnQkcOJfJwz3DazunQgghqkgCd31iMkH6aTAZoCgP/nwJgOMtprB0tz12Oi2z7mqNRqOuZTq2cwhjO9dmhoUQQlSXBO6bQVGgOFhW6fz1+uMF2PmFxak8z5aMio0G4B99Igj3drLe84QQQtx00rFZ085sgLcbw6oZYCxSz5mM8Ncb8J8wOPRz5dceWAb/CYfT66/9nNSTsGuheuzoBY5eFLqGMjH9QTILNfRo4sWT/ZvcaGmEEELUMgncNe34KshLg60fwaI7IPkgfDMS1v8H8jNg+6cVX2c0wNpX4XI6bHr32s9Z/6a6v3az2+GfpznzUCw9Lr/Lzvwg2ge789n4aPQ2OqsWTQghxM0nTeU1Let86XHCNpjfQz22cVCXHo3fCtkXwOWK6VjHVkKmOsea0+sh8zy4BQGQmVfEX8dSCPZ0JDLABcdLx9W52gD9ZvDbgUSmL48lO99AC38XFj3YCSe9/FULIUR9ID/Na1pmceC+7RU1uF44CJ6NYfTX8MuTkLgHjv0O0Q9ZXmeuiWsARR0h3msaAC8tP8AfB5MB0Grgf04f0AuF074Dmb9Z4ftdewHoEOLOp+OjcHe0q/lyCiGEuCkkcNe0khp3WG/o/A84uxFCu4PeRV0vPHEPHF5hGbiTYyFuE2h00OdF+PsN2L8Eej7LqdRcNh46w93aXfg4mNDkZ9HLsA2jouHRhEGcij+HRgNP9G3CM7c1xVbmZwshRL0igbsmGQ2QnaQeuwaCnSM0G1z6feRwWPOKGszz0sHRUz1fUttuORy6Pg6b3oPUY5C4h6+2FLHE9jVaa8+CEbBVk57wH0ozlygCCww83rcx3Rt736RCCiGEuJkkcNeknGRQTKC1AWff8t97NQbfVpByCI7/Ce3HQW4axC5Tv+8yGexdIfIOiF1G3o6v6B0bS2vtWQx6d2zCivvL9S60GPgq81z8b17ZhBBC1AoJ3DUpK1F9dwkEbSUjulsOVwP34RXQ6m51LrYhHwLaoTTqzOmLOYS3GYM2dhmO+xcxQAuF2GJ7//cQ0uXmlUUIIcQtQTpAa1LmOfW9eDR4hSLvVN9PrYMFA+Hgj6DRovR5ied/iGXAO+u57WfI1fuYLznU9W00ErSFEKJBksBdk0oGprkGVp7Gt6U6ytxYoA5Kc/SG8T+xKC2SH/eogf90egEf5QwAYL7dJNoOmlTDGRdCCHGrksBdk0qmgrlepcat0UDb0epxo87wjw1sow2zfz8CwAuDmzN7RGtWeYyhbf5nBA57EZ3WisukCiGEqFOkj7smldS43RpdNdn3DiNZUqgn9WJLmv+SxJ64SxhNCne1D2RK38ZoNBrGdQ4hO9+Am6PtTci4EEKIW5UE7pqUde0ad2LGZV79/QS5pqaQWUR85gUAIgNcefOetuadvLRajQRtIYQQErhrVOa1+7hfWXGI3EIjUaEevDC4OYcSs0jMuMwjvcJxsJO1xYUQQliSwF1TDIWQo9aeK2sqX3UomdWHL2Cj1fDG3W1o7u9C1wivm5hJIYQQdY0MTqspOcmAAjo7daT4lV8XGJj5yyEAHusdQXN/l5ucQSGEEHWRBO6aUraZXFv+j/nLTWdIzsonxNORp/o3vcmZE0IIUVdJ4K4p1xiYtjJWXcP8qf5NpC9bCCFElUngriklq6ZVELjj0/I4mpyNTqvhtki/ct8LIYQQlZHAXVNK1imvYLnT1YfVvbQ7h3ni4SR7ZQshhKg6Cdw15SpN5asPq6PNB7WS2rYQQojqkcBdU8wbjFhOBUvLKWDX2XQABraUwC2EEKJ6JHDXlEo2GFl7JAWTAq2DXGnk4VgLGRNCCFGXSeCuCYYCyL2oHrta1rhL+rcHtfS/2bkSQghRD0jgrgklA9Ns7MHR03w6t8DAhhOpgPRvCyGEuD6y5GlNKDswTaPBYDSxNyGDH3ado9BgIsTTkeZ+slKaEEKI6pPAXRPKrJq2Oy6dR7/aTXpuofnrO9oGmHf9EkIIIapDAndNOLlGfXcPZcmOBNJzC3FzsKVPMx8GRPoypHVA7eZPCCFEnSWB29pOrIHY7wENStQktnyTBsCHYzvQu5lP7eZNCCFEnSeD06ypIAd+m6oed5lMvGNLzmdcxlanITrMo1azJoQQon6QwG1N616DzARwD4H+/8eWU2ptu0OwB4520rghhBDixkngtpbze2D7p+rxHXNB72wO3N0ae9VevoQQQtQrEritZe9iQIHW90KTASiKwtZT6pzt7hK4hRBCWIkEbmtQFDgZox63GQXAiZQcUnMKsbfV0iFE+reFEEJYhwRua0g9DhnxoLOD8F4AbDmp1rY7hXliZyN/zEIIIaxDIoo1nCiubYf2ADsnADYX9293b+xdW7kSQghRD0ngtoYTq9X3poMAMJoUtp0uCdzSvy2EEMJ6JHDfqIIciN+qHjcdCMChxEyy8w242NvQKtC1FjMnhBCivpHAfaPObABjIXiEgVcTADYW7wDWJdwTG538EQshhLCeWo8qn3zyCeHh4djb2xMVFcXGjRsrTbt8+XIGDhyIj48Prq6udOvWjVWrVt3E3FagpJm8yUAo3jjkz4PqntsDImXrTiGEENZVq4F76dKlTJ06lRkzZrB371569erFkCFDiI+PrzD9hg0bGDhwICtXrmT37t3069ePO++8k717997knBdTlNINRYr7txPS84g9n4lWA4NaSuAWQghhXRpFUZTaeniXLl3o2LEj8+bNM5+LjIxkxIgRzJkzp0r3aNWqFaNHj+bll1+uUvqsrCzc3NzIzMzE1fUG+59TjsAnXUGnhxfPgp0jn204xRsrj9K9sRffPtr1xu4vhBCiQahObKq1GndhYSG7d+9m0KBBFucHDRrEli1bqnQPk8lEdnY2np6elaYpKCggKyvL4mU1JdPAwnuBnSMAK2PVZvIhbWTrTiGEENZXa4E7NTUVo9GIn59lc7Kfnx/JyclVusc777xDbm4uo0aNqjTNnDlzcHNzM7+Cg4NvKN8WGkVDxwnQeiQA5zMusy8hA40GBreSZnIhhBDWV+tbVmmKB3SVUBSl3LmKfPfdd7zyyiv88ssv+Pr6Vppu+vTpTJs2zfw5KyvLesE7tLv6KlYyKK1TmCe+LvbWeYYQQghRRq0Fbm9vb3Q6XbnadUpKSrla+JWWLl3Kww8/zLJly7jtttuumlav16PX6284v1XxR2wSAENb+9+U5wkhhGh4aq2p3M7OjqioKGJiYizOx8TE0L1790quUmvakyZN4ttvv2XYsGE1nc0qS87MZ1fcJQBuby3920IIIWpGrTaVT5s2jfHjxxMdHU23bt347LPPiI+PZ/LkyYDazH3+/Hm++uorQA3aEyZM4P3336dr167m2rqDgwNubm61Vg6ANUcuABAV6oG/mzSTCyGEqBm1GrhHjx5NWloas2bNIikpidatW7Ny5UpCQ0MBSEpKspjT/emnn2IwGHjiiSd44oknzOcnTpzIokWLbnb2Lew4kw5A76Y+tZoPIYQQ9VutzuOuDVadx11GjzfXcT7jMt880oUeTWRHMCGEEFVXJ+Zx1ydJmZc5n3EZnVZD+2D32s6OEEKIekwCtxXsLh6UFhnggpO+1mfYCSGEqMckcFvBrrNq4I4K8ajlnAghhKjvJHBbQUmNOyqs8qVXhRBCCGuQwH2D8goNHE5S1z+PDpUatxBCiJolgfsG7UvIwGhSCHSzJ9DdobazI4QQop6TwH2Ddp+VZnIhhBA3jwTuG1SyzGlUiHvtZkQIIUSDIIH7BphMCnvi1cAdLTVuIYQQN4EE7htwIiWH7HwDjnY6Wvi71HZ2hBBCNAASuG/Arjh1ffIOIe7Y6OSPUgghRM2TaHMD3Bxs6RTmQffGsja5EEKIm0PW57wBd7QN5I62gbWdDSGEEA2I1LiFEEKIOkQCtxBCCFGHSOAWQggh6hAJ3EIIIUQdIoFbCCGEqEMkcAshhBB1iARuIYQQog6RwC2EEELUIRK4hRBCiDpEArcQQghRh0jgFkIIIeqQBrdWuaIoAGRlZdVyToQQQghVSUwqiVFX0+ACd3Z2NgDBwcG1nBMhhBDCUnZ2Nm5ubldNo1GqEt7rEZPJRGJiIi4uLmg0mhu+X1ZWFsHBwSQkJODq6mqFHN66GlJZoWGVtyGVFaS89VldLauiKGRnZxMYGIhWe/Ve7AZX49ZqtTRq1Mjq93V1da1T/0huREMqKzSs8jaksoKUtz6ri2W9Vk27hAxOE0IIIeoQCdxCCCFEHSKB+wbp9XpmzpyJXq+v7azUuIZUVmhY5W1IZQUpb33WEMra4AanCSGEEHWZ1LiFEEKIOkQCtxBCCFGHSOAWQggh6hAJ3EIIIUQdIoH7BnzyySeEh4djb29PVFQUGzdurO0s3bA5c+bQqVMnXFxc8PX1ZcSIERw7dswijaIovPLKKwQGBuLg4EDfvn05dOhQLeXYuubMmYNGo2Hq1Knmc/WpvOfPn+eBBx7Ay8sLR0dH2rdvz+7du83f16eyGgwG/u///o/w8HAcHByIiIhg1qxZmEwmc5q6XN4NGzZw5513EhgYiEaj4eeff7b4viplKygo4KmnnsLb2xsnJyeGDx/OuXPnbmIpquZqZS0qKuLFF1+kTZs2ODk5ERgYyIQJE0hMTLS4R10pa5Uo4rosWbJEsbW1VT7//HPl8OHDyjPPPKM4OTkpcXFxtZ21GzJ48GBl4cKFysGDB5V9+/Ypw4YNU0JCQpScnBxzmjfffFNxcXFRfvzxRyU2NlYZPXq0EhAQoGRlZdVizm/cjh07lLCwMKVt27bKM888Yz5fX8qbnp6uhIaGKpMmTVK2b9+unDlzRlmzZo1y8uRJc5r6UlZFUZTZs2crXl5eym+//aacOXNGWbZsmeLs7KzMnTvXnKYul3flypXKjBkzlB9//FEBlJ9++sni+6qUbfLkyUpQUJASExOj7NmzR+nXr5/Srl07xWAw3OTSXN3VypqRkaHcdtttytKlS5WjR48qW7duVbp06aJERUVZ3KOulLUqJHBfp86dOyuTJ0+2ONeiRQvlpZdeqqUc1YyUlBQFUNavX68oiqKYTCbF399fefPNN81p8vPzFTc3N2X+/Pm1lc0blp2drTRt2lSJiYlR+vTpYw7c9am8L774otKzZ89Kv69PZVUURRk2bJjy0EMPWZy75557lAceeEBRlPpV3iuDWVXKlpGRodja2ipLliwxpzl//ryi1WqVP//886blvboq+iXlSjt27FAAc0Wqrpa1MtJUfh0KCwvZvXs3gwYNsjg/aNAgtmzZUku5qhmZmZkAeHp6AnDmzBmSk5Mtyq7X6+nTp0+dLvsTTzzBsGHDuO222yzO16fyrlixgujoaO677z58fX3p0KEDn3/+ufn7+lRWgJ49e7J27VqOHz8OwP79+9m0aRNDhw4F6l95y6pK2Xbv3k1RUZFFmsDAQFq3bl3ny5+ZmYlGo8Hd3R2of2VtcJuMWENqaipGoxE/Pz+L835+fiQnJ9dSrqxPURSmTZtGz549ad26NYC5fBWVPS4u7qbn0RqWLFnCnj172LlzZ7nv6lN5T58+zbx585g2bRr/+te/2LFjB08//TR6vZ4JEybUq7ICvPjii2RmZtKiRQt0Oh1Go5HXX3+dsWPHAvXr7/ZKVSlbcnIydnZ2eHh4lEtTl3+O5efn89JLLzFu3DjzJiP1rawSuG/AlduCKopila1CbxVPPvkkBw4cYNOmTeW+qy9lT0hI4JlnnmH16tXY29tXmq4+lNdkMhEdHc0bb7wBQIcOHTh06BDz5s1jwoQJ5nT1oawAS5cuZfHixXz77be0atWKffv2MXXqVAIDA5k4caI5XX0pb0Wup2x1ufxFRUWMGTMGk8nEJ598cs30dbWs0lR+Hby9vdHpdOV+U0tJSSn3G25d9dRTT7FixQr++usvi21Q/f39AepN2Xfv3k1KSgpRUVHY2NhgY2PD+vXr+eCDD7CxsTGXqT6UNyAggJYtW1qci4yMJD4+Hqh/f7cvvPACL730EmPGjKFNmzaMHz+eZ599ljlz5gD1r7xlVaVs/v7+FBYWcunSpUrT1CVFRUWMGjWKM2fOEBMTY7GlZ30rqwTu62BnZ0dUVBQxMTEW52NiYujevXst5co6FEXhySefZPny5axbt47w8HCL78PDw/H397coe2FhIevXr6+TZR8wYACxsbHs27fP/IqOjub+++9n3759RERE1Jvy9ujRo9zUvuPHjxMaGgrUv7/bvLw8tFrLH3E6nc48Hay+lbesqpQtKioKW1tbizRJSUkcPHiwzpW/JGifOHGCNWvW4OXlZfF9fSorINPBrlfJdLAFCxYohw8fVqZOnao4OTkpZ8+ere2s3ZDHH39ccXNzU/7++28lKSnJ/MrLyzOnefPNNxU3Nzdl+fLlSmxsrDJ27Ng6M4WmKsqOKleU+lPeHTt2KDY2Nsrrr7+unDhxQvnmm28UR0dHZfHixeY09aWsiqIoEydOVIKCgszTwZYvX654e3sr//znP81p6nJ5s7Ozlb179yp79+5VAOXdd99V9u7dax5JXZWyTZ48WWnUqJGyZs0aZc+ePUr//v1vySlSVytrUVGRMnz4cKVRo0bKvn37LH5uFRQUmO9RV8paFRK4b8DHH3+shIaGKnZ2dkrHjh3NU6bqMqDC18KFC81pTCaTMnPmTMXf31/R6/VK7969ldjY2NrLtJVdGbjrU3l//fVXpXXr1oper1datGihfPbZZxbf16eyZmVlKc8884wSEhKi2NvbKxEREcqMGTMsfpjX5fL+9ddfFf5fnThxoqIoVSvb5cuXlSeffFLx9PRUHBwclDvuuEOJj4+vhdJc3dXKeubMmUp/bv3111/me9SVslaFbOsphBBC1CHSxy2EEELUIRK4hRBCiDpEArcQQghRh0jgFkIIIeoQCdxCCCFEHSKBWwghhKhDJHALIYQQdYgEbiGEEKIOkcAthLjpNBoNP//8c21nQ4g6SQK3EA3MpEmT0Gg05V633357bWdNCFEFsh+3EA3Q7bffzsKFCy3O6fX6WsqNEKI6pMYtRAOk1+vx9/e3eHl4eABqM/a8efMYMmQIDg4OhIeHs2zZMovrY2Nj6d+/Pw4ODnh5efHYY4+Rk5NjkebLL7+kVatW6PV6AgICePLJJy2+T01N5e6778bR0ZGmTZuyYsWKmi20EPWEBG4hRDn//ve/uffee9m/fz8PPPAAY8eO5ciRI4C6z/Xtt9+Oh4cHO3fuZNmyZaxZs8YiMM+bN48nnniCxx57jNjYWFasWEGTJk0snvHqq68yatQoDhw4wNChQ7n//vtJT0+/qeUUok6q7e3JhBA318SJExWdTqc4OTlZvGbNmqUoirq16+TJky2u6dKli/L4448riqIon332meLh4aHk5OSYv//9998VrVarJCcnK4qiKIGBgcqMGTMqzQOg/N///Z/5c05OjqLRaJQ//vjDauUUor6SPm4hGqB+/foxb948i3Oenp7m427dull8161bN/bt2wfAkSNHaNeuHU5OTubve/Togclk4tixY2g0GhITExkwYMBV89C2bVvzsZOTEy4uLqSkpFxvkYRoMCRwC9EAOTk5lWu6vhaNRgOAoijm44rSODg4VOl+tra25a41mUzVypMQDZH0cQshytm2bVu5zy1atACgZcuW7Nu3j9zcXPP3mzdvRqvV0qxZM1xcXAgLC2Pt2rU3Nc9CNBRS4xaiASooKCA5OdninI2NDd7e3gAsW7aM6OhoevbsyTfffMOOHTtYsGABAPfffz8zZ85k4sSJvPLKK1y8eJGnnnqK8ePH4+fnB8Arr7zC5MmT8fX1ZciQIWRnZ7N582aeeuqpm1tQIeohCdxCNEB//vknAQEBFueaN2/O0aNHAXXE95IlS5gyZQr+/v588803tGzZEgBHR0dWrVrFM888Q6dOnXB0dOTee+/l3XffNd9r4sSJ5Ofn89577/H888/j7e3NyJEjb14BhajHNIqiKLWdCSHErUOj0fDTTz8xYsSI2s6KEKIC0scthBBC1CESuIUQQog6RPq4hRAWpPdMiFub1LiFEEKIOkQCtxBCCFGHSOAWQggh6hAJ3EIIIUQdIoFbCCGEqEMkcAshhBB1iARuIYQQog6RwC2EEELUIf8P4X2pDRHhPH4AAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 1200x400 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.figure(figsize=(12, 4))\n",
    "plt.subplot(1, 2, 1)\n",
    "plt.plot(history.history['accuracy'])\n",
    "plt.plot(history.history['val_accuracy'])\n",
    "plt.title('Model accuracy')\n",
    "plt.ylabel('Accuracy')\n",
    "plt.xlabel('Epoch')\n",
    "plt.legend(['Train', 'Test'], loc='upper left')"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "617d7de2-cf38-4b87-a94e-8a1f6c406c37",
   "metadata": {},
   "source": [
    "## Description\n",
    "\n",
    "- **X-axis (Epoch)**: Represents the number of epochs, ranging from 0 to 130\n",
    "- **Y-axis (Accuracy)**: Represents accuracy, ranging from 0 to 1.0.\n",
    "\n",
    "## Observations\n",
    "\n",
    "- **Training Accuracy (Blue Line)**: The 'Train' accuracy line shows a consistent increase over epochs, indicating continuous improvement in performance on the training data.\n",
    "- **Test Accuracy (Orange Line)**: The 'Test' accuracy line fluctuates but generally follows the upward trend of the 'Train' line. This suggests that the model's performance on unseen test data also improves over epochs, with some variability."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "476b3c27-8d4a-4e89-846f-513824e987cb",
   "metadata": {},
   "source": [
    "# Confusion Matrix\n",
    "\n",
    "The following plot shows the confusion matrix for the Conv1D model's predictions on the test dataset.\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 91,
   "id": "1a149853-2e28-4a36-92a6-ca4f1312bd2c",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAGwCAYAAAD8AYzHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5f0lEQVR4nO3dfVxUZf7/8feIOIIipuUAeUeGeZuRFItamIbf0HV17d7adO1G00pyW82lkm+rjFqZFWWppZaZ9at0rS2D7qjWdUPTMjLNpLSSxYrESEeT8/ujbb47gToznMMZTq+nj+vxkHPOXOdzWcqHz3Vd57gMwzAEAAAQhiZ2BwAAABovEgkAABA2EgkAABA2EgkAABA2EgkAABA2EgkAABA2EgkAABA2EgkAABC2pnYHYIV7infaHYIpJvU/xe4QAMDxmjfAd8KY1BtM6efApgJT+jETFQkAABA2R1YkAACIKC7n/txOIgEAgNVcLrsjsAyJBAAAVnNwRcK5IwMAAJajIgEAgNWY2gAAAGFjagMAAKA2KhIAAFiNqQ0AABA2pjYAAABqoyIBAIDVmNoAAABhY2oDAACgNioSAABYjakNAAAQNgdPbZBIAABgNQdXJJybItXTR2++qGf/93otuWmUltw0Sqtn36xdW0oCrqncs0trC/K05KYLteTGUVrtzdH331TYFHFonn7qSWUPGaSzUnvrsotH6b2NG+wOKSxOGIcTxiAxjkjihDFIzhmH05FIHEWLE07U2aP+qN/n3q/f596vpNP6qPChO/XtV59LkqoqvtKaubeodUIHDb9lji6840GdOWy0oqKb2Rz58a19+SXNne3Vtdddr6efXa0zz+yrieOv1Z6vvrI7tJA4YRxOGIPEOCKJE8YgOWccfq4m5rQIFJlRRYBOfX6jjr3PVmtPe7X2tNfZvx+raHdzVez8WJL07upl6tDrLP3moqt1YsdT1eqkRHU8/WzFtGptb+BBeGLZEv3+wgs16qKLdUqXLpo6PVcJiQl65umn7A4tJE4YhxPGIDGOSOKEMUjOGYcficSvW03NEe14900dPnRQnlO6yaip0e4tJWrtOVkvzc/V43+6TKvyc/TZpnV2h3pchw8d0taPSpXRb0DA8Yx+/fX+5k02RRU6J4zDCWOQGEckccIYJOeM49fC1kTiiy++UG5urs477zx1795dPXr00Hnnnafc3Fzt3r07qD58Pp+qqqoC2o+HfKbE9+0XZXrsxt/r0Ym/0ztPFmjI9bfrhKROOrD/Ox32HdDmtc+ofc80Dc2ZpeTUfip8eKa+2vaBKfe2SuV3lTpy5Ijatm0bcLxt2xP19dd7bYoqdE4YhxPGIDGOSOKEMUjOGUeAJi5zWgh+/PFH3XbbbUpOTlZMTIxOOeUU3XnnnaqpqfFfYxiG8vLylJSUpJiYGA0cOFClpaWhDS2kq030zjvvqHv37lq1apX69Omjq666SldeeaX69Omj1atXq2fPnvrHP/5x3H68Xq/i4+MD2mtPPmxKjPEJ7XXh7Q9q5K33qkfmML255B5VfvW5DMOQJHU6I0OnZ/1eJ3boojOyL1HH3mdr61svmXJvq7l+sYLYMIxaxxoDJ4zDCWOQGEckccIYJOeMQ5ItUxtz5szRww8/rIKCAm3dulVz587VXXfdpQceeMB/zdy5czVv3jwVFBSopKRECQkJysrK0v79+4O+j23bP2+++WZdc801uvfee496PicnRyUlJXWe/9n06dM1ZcqUgGML/vWlKTFGNY1WfLskSdJJnbtq72fbteW1v6n/5dfL1SRKJyR2DLj+hMQOKt/xkSn3tsoJrU9QVFSUvv7664Dj3377jdq2PdGmqELnhHE4YQwS44gkThiD5Jxx2O2f//ynRowYoWHDhkmSOnfurKeeekobNvy0+8UwDM2fP1+5ubkaNWqUJGnZsmXyeDxasWKFxo8fH9R9bKtIfPjhh5owYcJRz48fP14ffvjhcftxu91q1apVQGvazG1mqH6GDNX8eFhRTaPVrnNXfVf+RcD5ff/+Ui3btrPk3maJbtZM3Xv01Pp1gdWe9evWqc8ZqTZFFTonjMMJY5AYRyRxwhgk54wjgMtlSqtrOt/nq3s6f8CAAXrttde0fft2SdL777+vd955R0OHDpUklZWVqby8XEOGDPF/xu12KzMzU+vWBb/mz7ZEIjEx8ZiB/vOf/1RiYmIDRhTo3VVLteeTD7X/63/r2y/Kfvp62xadmn6eJOn0/7lQOze8pa1vv6x9FV/pw9fX6PMP/qWemcNsizlYfxjzRz3/3LNa9fyz2vnpp7prdr727Nmjiy+9zO7QQuKEcThhDBLjiCROGIPknHH4mTS1Udd0vtfrrfOW06ZN0+WXX65u3bopOjpaqampysnJ0eWXXy5JKi8vlyR5PJ6Az3k8Hv+5YNg2tXHLLbdowoQJ2rhxo7KysuTxeORyuVReXq6ioiItXrxY8+fPtys8Haiq1BuP3aUf9n2rZjEt1PbkZGVP/qva9zhTkpSc2l8DrrhBm9c+o3UrH1ZrT3tlTbhNCSm9bIs5WBdkD9W+7yq1cMFD2ru3QqemdNWDDy9UUtLJdocWEieMwwljkBhHJHHCGCTnjMNsdU3nu911V+GffvppLV++XCtWrFDPnj21efNm5eTkKCkpSWPGjPFfV9+1KC7j55WDNnj66ad17733auPGjTpy5IgkKSoqSn379tWUKVN0ySWXhNXvPcU7zQzTNpP6n2J3CADgeM0b4EfqmKw5pvRzoGha0Nd26NBBt956qyZNmuQ/NnPmTC1fvlwff/yxdu7cqS5duui9995Taur/TRmNGDFCrVu31rJly4K6j63v2rj00kt16aWX6vDhw/5FNSeeeKKio6PtDAsAAHPZ8DCpH374QU2aBN43KirKv/0zOTlZCQkJKioq8icShw4dUnFxsebMCT7xiYiXdkVHR9u6HgIAAEvZsG11+PDhmjVrljp27KiePXtq06ZNmjdvnsaNG/efkFzKyclRfn6+UlJSlJKSovz8fMXGxmr06NFB3yciEgkAAGCuBx54QLfffrsmTpyoiooKJSUlafz48brjjjv810ydOlUHDhzQxIkTVVlZqfT0dBUWFiouLi7o+9i6RsIqrJEAAASrQdZIXDDPlH4OrJ1y/IsaGBUJAACs1lifyBkEXtoFAADCRkUCAACrRegrwM1AIgEAgNWY2gAAAKiNigQAAFZjagMAAITNwYmEc0cGAAAsR0UCAACrOXixJYkEAABWc/DUBokEAABWc3BFwrkpEgAAsBwVCQAArMbURuNyfb9ku0MwxQln3WB3CPVWWVJgdwgAYD+mNgAAAGpzZEUCAIBI4nJwRYJEAgAAizk5kWBqAwAAhI2KBAAAVnNuQYJEAgAAqzG1AQAAUAcqEgAAWMzJFQkSCQAALEYiAQAAwubkRII1EgAAIGxUJAAAsJpzCxIkEgAAWI2pDQAAgDpQkQAAwGJOrkiQSAAAYDEnJxJMbQAAgLBRkQAAwGJUJAAAQPhcJrUQdO7cWS6Xq1abNGmSJMkwDOXl5SkpKUkxMTEaOHCgSktLQx4aiQQAAA5UUlKiPXv2+FtRUZEk6eKLL5YkzZ07V/PmzVNBQYFKSkqUkJCgrKws7d+/P6T7kEgAAGCxuioD4bRQnHTSSUpISPC3F198UV26dFFmZqYMw9D8+fOVm5urUaNGqVevXlq2bJl++OEHrVixIqT7NPpEwufzqaqqKqD5fD67wwIAwM+sRCLc73mHDh3S8uXLNW7cOLlcLpWVlam8vFxDhgzxX+N2u5WZmal169aFNLaITiR2796tcePGHfMar9er+Pj4gHb3HG8DRQgAwPGZlUjU9T3P6z3+97zVq1fru+++09ixYyVJ5eXlkiSPxxNwncfj8Z8LVkTv2vj222+1bNkyPfbYY0e9Zvr06ZoyZUrAsSNNmlkdGgAADa6u73lut/u4n3v00UeVnZ2tpKSkgOO/nC4xDCPkKRRbE4k1a9Yc8/zOnTuP24fb7a71h/jDYaNecQEAYCqTdn/W9T3veD7//HO9+uqrev755/3HEhISJP1UmUhMTPQfr6ioqFWlOB5bE4mRI0fK5XLJMI7+jd/Je28BAL8Odn4vW7Jkidq1a6dhw4b5jyUnJyshIUFFRUVKTU2V9NM6iuLiYs2ZMyek/m1dI5GYmKjnnntONTU1dbb33nvPzvAAAGjUampqtGTJEo0ZM0ZNm/5f7cDlciknJ0f5+flatWqVPvzwQ40dO1axsbEaPXp0SPewtSLRt29fvffeexo5cmSd549XrQAAoDGwqyLx6quvateuXXVuXJg6daoOHDigiRMnqrKyUunp6SosLFRcXFxI93AZNn6nfvvtt1VdXa0LLrigzvPV1dXasGGDMjMzQ+rXKWsk2p59o90h1FtlSYHdIQDAMTVvgB+pE697zpR+9iy80JR+zGRrReKcc8455vkWLVqEnEQAAICGE9HbPwEAcAInbxwgkQAAwGrOzSMi+8mWAAAgslGRAADAYkxtAACAsJFIAACAsDk5kWCNBAAACBsVCQAArObcggSJBAAAVmNqAwAAoA5UJAAAsJiTKxIkEgAAWMzJiQRTGwAAIGxUJAAAsJiTKxIkEgAAWM25eQRTGwAAIHyOrEg0cUgJqbKkwO4Q6q37LX+3OwRTbL17mN0h4D9qDMPuEEzhlH+nEBymNgAAQNhIJAAAQNgcnEewRgIAAISPigQAABZjagMAAITNwXkEUxsAACB8VCQAALAYUxsAACBsDs4jmNoAAADhoyIBAIDFmjRxbkmCRAIAAIsxtQEAAFAHKhIAAFiMXRsAACBsDs4jmNoAAMBqLpfLlBaqL7/8UldeeaXatm2r2NhYnXHGGdq4caP/vGEYysvLU1JSkmJiYjRw4ECVlpaGdA8SCQAAHKiyslL9+/dXdHS0Xn75ZX300Ue655571Lp1a/81c+fO1bx581RQUKCSkhIlJCQoKytL+/fvD/o+TG0AAGAxO9ZIzJkzRx06dNCSJUv8xzp37uz/vWEYmj9/vnJzczVq1ChJ0rJly+TxeLRixQqNHz8+qPtQkQAAwGIulznN5/OpqqoqoPl8vjrvuWbNGqWlpeniiy9Wu3btlJqaqkWLFvnPl5WVqby8XEOGDPEfc7vdyszM1Lp164IeG4kEAACNhNfrVXx8fEDzer11Xrtz504tWLBAKSkpeuWVVzRhwgTddNNNevzxxyVJ5eXlkiSPxxPwOY/H4z8XDKY2AACwmFlTG9Nvna4pU6YEHHO73XVeW1NTo7S0NOXn50uSUlNTVVpaqgULFuiqq646amyGYYQULxUJAAAsZtbUhtvtVqtWrQLa0RKJxMRE9ejRI+BY9+7dtWvXLklSQkKCJNWqPlRUVNSqUhyL7YnEgQMH9M477+ijjz6qde7gwYP+EszRhDJfBADAr0X//v21bdu2gGPbt29Xp06dJEnJyclKSEhQUVGR//yhQ4dUXFysfv36BX0fWxOJ7du3q3v37jr33HPVu3dvDRw4UHv27PGf37dvn/74xz8es4+65ovumlP3fBEAAHaw4zkSN998s9avX6/8/Hzt2LFDK1as0MKFCzVp0iR/TDk5OcrPz9eqVav04YcfauzYsYqNjdXo0aODvo+ticS0adPUu3dvVVRUaNu2bWrVqpX69+/vL7sEY/r06dq3b19A+/O06RZGDQBAaMya2gjFWWedpVWrVumpp55Sr1699Ne//lXz58/XFVdc4b9m6tSpysnJ0cSJE5WWlqYvv/xShYWFiouLC35shmEYoYVmHo/Ho1dffVW9e/f2H5s0aZJefPFFvfHGG2rRooWSkpJ05MiRkPo9+KPZkSJc3W/5u90hmGLr3cPsDgH/UWPfP1mmauLkZyY3Ms0bYNtB2sw3TOlnw23nmdKPmWzdtXHgwAE1bRoYwoMPPqgmTZooMzNTK1assCkyAADMw0u7LNKtWzdt2LBB3bt3Dzj+wAMPyDAM/e53v7MpMgAAzOPgPMLeNRK///3v9dRTT9V5rqCgQJdffrlsnHkBAMAUdr20qyHYmkhMnz5dL7300lHPP/TQQ6qpqWnAiAAAQCh4siUAABaL0GKCKUgkAACwWKROS5jB9idbAgCAxouKBAAAFnNwQYJEAgAAqzG1AQAAUAcqEgAAWMzBBQkSCQAArMbUBgAAQB2oSAAAYDEnVyRIJAAAsJiD8wgSCQAArObkigRrJAAAQNioSAAAYDEHFyRIJAAAsBpTGwAAAHWgIgFLbb17mN0hmOKEwXfaHYIpKl+7w+4Q6q2JQ36yqzEMu0OoN6f8t2gITv6jIpEAAMBiTk66mNoAAABhoyIBAIDFHFyQIJEAAMBqTt61QSIBAIDFmjg3j2CNBAAACB8VCQAALMbUBgAACJuD8wimNgAAQPioSAAAYDGXnFuSIJEAAMBi7NoAAACNSl5enlwuV0BLSEjwnzcMQ3l5eUpKSlJMTIwGDhyo0tLSkO9DIgEAgMV++Q093Baqnj17as+ePf62ZcsW/7m5c+dq3rx5KigoUElJiRISEpSVlaX9+/eHdA+mNgAAsJhduzaaNm0aUIX4mWEYmj9/vnJzczVq1ChJ0rJly+TxeLRixQqNHz8+6HtQkQAAoJHw+XyqqqoKaD6f76jXf/LJJ0pKSlJycrIuu+wy7dy5U5JUVlam8vJyDRkyxH+t2+1WZmam1q1bF1JMJBIAAFisictlSvN6vYqPjw9oXq+3znump6fr8ccf1yuvvKJFixapvLxc/fr10zfffKPy8nJJksfjCfiMx+PxnwsWUxsAAFjMrKmN6dOna8qUKQHH3G53nddmZ2f7f9+7d29lZGSoS5cuWrZsmX7zm9/8J67AwAzDCHktBhUJAAAsZtZiS7fbrVatWgW0oyUSv9SiRQv17t1bn3zyiX/dxC+rDxUVFbWqFMdDIgEAwK+Az+fT1q1blZiYqOTkZCUkJKioqMh//tChQyouLla/fv1C6pepDQAALGbHro1bbrlFw4cPV8eOHVVRUaGZM2eqqqpKY8aMkcvlUk5OjvLz85WSkqKUlBTl5+crNjZWo0ePDuk+JBIAAFisiQ2ZxBdffKHLL79cX3/9tU466ST95je/0fr169WpUydJ0tSpU3XgwAFNnDhRlZWVSk9PV2FhoeLi4kK6j8swDMOKAQRr69atWr9+vTIyMtStWzd9/PHHuu++++Tz+XTllVdq0KBBx/y8z+ertfXFiHIHPWcEBOOEwXfaHYIpKl+7w+4Q8B819v7Tawo7vjlaoXkD/Eh96bJNpvTz9JhUU/oxk61rJNauXaszzjhDt9xyi1JTU7V27Vqde+652rFjh3bt2qX/+Z//0euvv37MPuraCnPXnLq3wgAAYAeXSS0S2VqR6NevnwYNGqSZM2dq5cqVmjhxoq6//nrNmjVLkpSbm6uSkhIVFhYetQ8qEmgIVCRgNioSkaMhKhKXP77ZlH6euuoMU/oxk60VidLSUo0dO1aSdMkll2j//v268MIL/ecvv/xyffDBB8fsoz5bYQAAQP1EzGLLJk2aqHnz5mrdurX/WFxcnPbt22dfUAAAmIDXiFukc+fO2rFjh//rf/7zn+rYsaP/6927dysxMdGO0AAAMI1db/9sCEFVJNasWRN0h7/73e+Cvvb666/XkSNH/F/36tUr4PzLL7983F0bAADAPkElEiNHjgyqM5fLFZAYHM+ECROOef7nRZcAADRmEVpMMEVQiURNTY3VcQAA4FiROi1hhohZbAkAgFM5ebFlWIlEdXW1iouLtWvXLh06dCjg3E033WRKYAAAIPKFnEhs2rRJQ4cO1Q8//KDq6mq1adNGX3/9tWJjY9WuXTsSCQAAfsHJUxshb/+8+eabNXz4cH377beKiYnR+vXr9fnnn6tv3766++67rYgRAIBGzcmPyA45kdi8ebP+9Kc/KSoqSlFRUfL5fOrQoYPmzp2rv/zlL1bECAAAIlTIiUR0dLS/ROPxeLRr1y5JUnx8vP/3AADg/zRxuUxpkSjkNRKpqanasGGDunbtqvPOO0933HGHvv76az3xxBPq3bu3FTECANCoRWgOYIqQKxL5+fn+x1b/9a9/Vdu2bXX99deroqJCCxcuND1AAAAQuUKuSKSlpfl/f9JJJ+mll14yNSAAAJzGybs2eCAVAAAWc3AeEXoikZycfMzMaufOnfUKCAAANB4hJxI5OTkBXx8+fFibNm3S2rVr9ec//9msuAAAcIxI3XFhhpATicmTJ9d5/MEHH9SGDRvqHRAAAE7j4Dwi9F0bR5Odna3nnnvOrO4AAHAMl8tlSotEpiUSzz77rNq0aWNWdwAAoBEI64FU/50VGYah8vJy7d27Vw899JCpwaHxqzEMu0MwReVrd9gdgilOGHyn3SHUm1P+Wzhhztwpf78b4i0Wpv3UHoFCTiRGjBgRkEg0adJEJ510kgYOHKhu3bqZGhwAAE4QqdMSZgg5kcjLy7MgDAAA0BiFXG2JiopSRUVFrePffPONoqKiTAkKAAAnaeIyp0WikCsSxlHmxHw+n5o1a1bvgAAAcJpITQLMEHQicf/990v6aZ5n8eLFatmypf/ckSNH9NZbb7FGAgCAX5mgE4l7771X0k8ViYcffjhgGqNZs2bq3LmzHn74YfMjBACgkWOxpaSysjJJ0nnnnafnn39eJ5xwgmVBAQDgJExt/Jc33njDijgAAEAjFPKujYsuukizZ8+udfyuu+7SxRdfbEpQAAA4ictlTqsPr9crl8sV8PJNwzCUl5enpKQkxcTEaODAgSotLQ2p35ATieLiYg0bNqzW8QsuuEBvvfVWqN0BAOB4TVwuU1q4SkpKtHDhQp1++ukBx+fOnat58+apoKBAJSUlSkhIUFZWlvbv3x/82EIN5vvvv69zm2d0dLSqqqpC7Q4AAMdrYlILx/fff68rrrhCixYtCljfaBiG5s+fr9zcXI0aNUq9evXSsmXL9MMPP2jFihUhjS0kvXr10tNPP13r+MqVK9WjR49QuwMAAEHy+XyqqqoKaD6f75ifmTRpkoYNG6bzzz8/4HhZWZnKy8s1ZMgQ/zG3263MzEytW7cu6JhCXmx5++2368ILL9Snn36qQYMGSZJee+01rVixQs8++2yo3QEA4Hhm7f70er363//934BjM2bMOOrrK1auXKn33ntPJSUltc6Vl5dLkjweT8Bxj8ejzz//POiYQk4kfve732n16tXKz8/Xs88+q5iYGPXp00evv/66WrVqFWp3AAA4nllve50+fbqmTJkScMztdtd57e7duzV58mQVFhaqefPmR+3zl8+4MAwjpOdehJxISNKwYcP8Cy6/++47Pfnkk8rJydH777+vI0eOhNMlAAA4DrfbfdTE4Zc2btyoiooK9e3b13/s5ydRFxQUaNu2bZJ+qkwkJib6r6moqKhVpTiWsF+R/vrrr+vKK69UUlKSCgoKNHToUG3YsCHc7gAAcCw7tn8OHjxYW7Zs0ebNm/0tLS1NV1xxhTZv3qxTTjlFCQkJKioq8n/m0KFDKi4uVr9+/YK+T0gViS+++EJLly7VY489purqal1yySU6fPiwnnvuORZaAgBwFHY82TIuLk69evUKONaiRQu1bdvWfzwnJ0f5+flKSUlRSkqK8vPzFRsbq9GjRwd9n6ATiaFDh+qdd97Rb3/7Wz3wwAO64IILFBUVxfs1AABopKZOnaoDBw5o4sSJqqysVHp6ugoLCxUXFxd0H0EnEoWFhbrpppt0/fXXKyUlJayAAQD4NTJrsWV9vfnmmwFfu1wu5eXlHXXXRzCCXiPx9ttva//+/UpLS1N6eroKCgq0d+/esG98NIZhmN4nAAB2ioRHZFsl6EQiIyNDixYt0p49ezR+/HitXLlSJ598smpqalRUVBTS4zSPxe12a+vWrab0BQAArBXy9s/Y2FiNGzdO48aN07Zt2/Too49q9uzZuvXWW5WVlaU1a9YE1c8v98H+7MiRI5o9e7batm0rSZo3b94x+/H5fLWe6mVEBb89BgAAqzn5NeJhb/+UpNNOO01z587VF198oaeeeiqkz86fP19vvPGGNm3aFNAMw9DWrVu1adMmbd68+bj9eL1excfHB7S75njDHBEAAOZzmfQrErkMmxYleL1eLVq0SIsXL/Y/alv66eVf77//ftDbSalIRLYah6x5iZSFUvV1wuA77Q6h3ipfu8PuEPAfTvn7HRtt/d/v2a9/ako/tw7qYko/ZgrryZZmmD59us4//3xdeeWVGj58uLxer6Kjo0Pup66nfB380awoAQDAsdRraqO+zjrrLG3cuFF79+5VWlqatmzZEtLzvQEAaAyauMxpkci2isTPWrZsqWXLlmnlypXKysriXR0AAMdx8g/JticSP7vssss0YMAAbdy4UZ06dbI7HAAAEISISSQkqX379mrfvr3dYQAAYKpInZYwQ0QlEgAAOJGDZzbsXWwJAAAaNyoSAABYzCnPoqkLiQQAABZz8hoJpjYAAEDYqEgAAGAxB89skEgAAGC1JhH6wi0zkEgAAGAxJ1ckWCMBAADCRkUCAACLOXnXBokEAAAWc/JzJJjaAAAAYaMiAQCAxRxckCCRAADAakxtAAAA1IGKBAAAFnNwQYJEAvg1qXztDrtDqLee0162OwRTlM7JtjuEenNyud5sTi7/O3lsAADAYlQkAACwmMvB1RsSCQAALObcNIJEAgAAyzl5PQlrJAAAQNhIJAAAsJjLpBaKBQsW6PTTT1erVq3UqlUrZWRk6OWX/2/Xk2EYysvLU1JSkmJiYjRw4ECVlpaGPDYSCQAALOZymdNC0b59e82ePVsbNmzQhg0bNGjQII0YMcKfLMydO1fz5s1TQUGBSkpKlJCQoKysLO3fvz+k+5BIAADgQMOHD9fQoUPVtWtXde3aVbNmzVLLli21fv16GYah+fPnKzc3V6NGjVKvXr20bNky/fDDD1qxYkVI9yGRAADAYi6Xy5Tm8/lUVVUV0Hw+33Hvf+TIEa1cuVLV1dXKyMhQWVmZysvLNWTIEP81brdbmZmZWrduXUhjI5EAAMBiTUxqXq9X8fHxAc3r9R71vlu2bFHLli3ldrs1YcIErVq1Sj169FB5ebkkyePxBFzv8Xj854LF9k8AABqJ6dOna8qUKQHH3G73Ua8/7bTTtHnzZn333Xd67rnnNGbMGBUXF/vP//JBWYZhhPzwLBIJAAAsZtaTLd1u9zETh19q1qyZTj31VElSWlqaSkpKdN9992natGmSpPLyciUmJvqvr6ioqFWlOB6mNgAAsJgd2z/rYhiGfD6fkpOTlZCQoKKiIv+5Q4cOqbi4WP369QupTyoSAAA40F/+8hdlZ2erQ4cO2r9/v1auXKk333xTa9eulcvlUk5OjvLz85WSkqKUlBTl5+crNjZWo0ePDuk+JBIAAFjMjpd2/fvf/9Yf/vAH7dmzR/Hx8Tr99NO1du1aZWVlSZKmTp2qAwcOaOLEiaqsrFR6eroKCwsVFxcX0n1chmEYVgzATgd/tDsC/KzGIf97Ofk5+Y1Nz2kvH/+iRqB0TrbdIeA/mjfAj9TPv7/HlH5G9Uk8/kUNjIoEAAAWc/JrxFlsCQAAwkZFAgAAizm3HkEiAQCA5Rw8s8HUBgAACF+jr0j4fL5aLywxokJ78hcAAFZq4uDJjYiqSFRWVmr+/PmaNGmSZs6cqd27dx/3M3W9wOSuOUd/gQkAAA3N5TKnRSJbnyORlJSkLVu2qG3btiorK/M/lrN3797aunWr9u/fr/Xr16tbt25H7YOKRGTjORIwG8+RgNka4jkSL374b1P6+W2v0N6D0RBsndooLy/XkSNHJP30KM9u3brp73//u2JjY+Xz+XTRRRfp9ttv1//7f//vqH3U9QITHkgFAIgkLgdPbUTMGol//etfWrx4sWJjYyX9lCDcdtttuuiii2yODACA+nFyUdP2NRI/P+3L5/PVenWpx+PR3r177QgLAAAEwfaKxODBg9W0aVNVVVVp+/bt6tmzp//crl27dOKJJ9oYHQAA9efkXRu2JhIzZswI+PrnaY2fvfDCCzrnnHMaMiQAAEzn5KmNiEokfumuu+5qoEgAALCOkxMJ29dIAACAxsv2NRIAADgd2z8BAEDYmjg3j2BqAwAAhI+KBAAAFmNqAwAAhI1dGwAAAHWgIgEAgMWY2gAAAGFj1wYAAEAdqEgAAGAxpjYAAEDYnLxrg0QCAACLOTiPYI0EAAAIHxUJAAAs1sTBcxskErCUk//ywB6lc7LtDsEUCWOW2x1CvX219Aq7QzCJ9f9OOflfQqY2AABA2KhIAABgNQeXJKhIAABgMZdJv0Lh9Xp11llnKS4uTu3atdPIkSO1bdu2gGsMw1BeXp6SkpIUExOjgQMHqrS0NKT7kEgAAOBAxcXFmjRpktavX6+ioiL9+OOPGjJkiKqrq/3XzJ07V/PmzVNBQYFKSkqUkJCgrKws7d+/P+j7uAzDMKwYgJ0O/mh3BABwbCy2jByx0dbPO7y7c58p/Zx9SnzYn927d6/atWun4uJinXvuuTIMQ0lJScrJydG0adMkST6fTx6PR3PmzNH48eOD6peKBAAAFnOZ1Hw+n6qqqgKaz+cLKoZ9+35KZtq0aSNJKisrU3l5uYYMGeK/xu12KzMzU+vWrQt6bCQSAAA0El6vV/Hx8QHN6/Ue93OGYWjKlCkaMGCAevXqJUkqLy+XJHk8noBrPR6P/1ww2LUBAIDVTJo9mT59uqZMmRJwzO12H/dzN9xwgz744AO98847tUP7xfN+DMOodexYSCQAALCYWW//dLvdQSUO/+3GG2/UmjVr9NZbb6l9+/b+4wkJCZJ+qkwkJib6j1dUVNSqUhwLUxsAAFjM5TKnhcIwDN1www16/vnn9frrrys5OTngfHJyshISElRUVOQ/dujQIRUXF6tfv35B34eKBAAADjRp0iStWLFCf/vb3xQXF+df9xAfH6+YmBi5XC7l5OQoPz9fKSkpSklJUX5+vmJjYzV69Oig70MiAQCAxex4sOWCBQskSQMHDgw4vmTJEo0dO1aSNHXqVB04cEATJ05UZWWl0tPTVVhYqLi4uKDvw3MkAMAGPEcicjTEcyTe+7zKlH7O7NTKlH7MxBoJAAAQNqY2AACwmFm7NiIRiQQAABYLdcdFY8LUBgAACBsVCQAALObgggSJBAAAlnNwJsHUBgAACBsVCQAALMaujQjm8/lqvYvdiAr9pSYAAFiFXRsW2bRpk8rKyvxfL1++XP3791eHDh00YMAArVy58rh91PVu9rvmHP/d7AAANBSXSS0S2ZpIXH311frss88kSYsXL9Z1112ntLQ05ebm6qyzztK1116rxx577Jh9TJ8+Xfv27Qtof542vQGiBwAAtk5tbNu2TV26dJEkPfTQQ5o/f76uu+46//mzzjpLs2bN0rhx447aR13vZuddGwCAiBKp5QQT2FqRiImJ0d69eyVJX375pdLT0wPOp6enB0x9AADQGLlM+hWJbE0ksrOz/a85zczM1LPPPhtw/plnntGpp55qR2gAACAItk5tzJkzR/3791dmZqbS0tJ0zz336M0331T37t21bds2rV+/XqtWrbIzRAAA6o1dGxZJSkrSpk2blJGRobVr18owDL377rsqLCxU+/bt9Y9//ENDhw61M0QAAOrNybs2XIZhGHYHYTYWWwKIdAljltsdQr19tfQKu0MwRWy09d+it35VbUo/3ZNamNKPmRr9A6kAAIh4kVpOMAGJBAAAFovUHRdm4KVdAAAgbFQkAACwmJN3bZBIAABgMQfnESQSAABYzsGZBGskAABA2KhIAABgMSfv2iCRAADAYk5ebMnUBgAACBsVCQAALObgggSJBAAAlnNwJsHUBgAACBsVCQAALMauDQAAEDZ2bQAAgEbnrbfe0vDhw5WUlCSXy6XVq1cHnDcMQ3l5eUpKSlJMTIwGDhyo0tLSkO5BRQIAbFC+7Eq7Q6i3E/rdYncIpjjw7t2W38OugkR1dbX69OmjP/7xj7rwwgtrnZ87d67mzZunpUuXqmvXrpo5c6aysrK0bds2xcXFBXUPEgkAAKxmUyaRnZ2t7OzsOs8ZhqH58+crNzdXo0aNkiQtW7ZMHo9HK1as0Pjx44O6B1MbAABYzGXSL5/Pp6qqqoDm8/nCiqmsrEzl5eUaMmSI/5jb7VZmZqbWrVsXdD8kEgAANBJer1fx8fEBzev1htVXeXm5JMnj8QQc93g8/nPBYGoDAACLmbVrY/r06ZoyZUrAMbfbXa8+Xb8IzjCMWseOhUQCAACLmbVEwu121ztx+FlCQoKknyoTiYmJ/uMVFRW1qhTHwtQGAAC/QsnJyUpISFBRUZH/2KFDh1RcXKx+/foF3Q8VCQAALGbXA6m+//577dixw/91WVmZNm/erDZt2qhjx47KyclRfn6+UlJSlJKSovz8fMXGxmr06NFB34NEAgAAy9mTSWzYsEHnnXee/+uf11eMGTNGS5cu1dSpU3XgwAFNnDhRlZWVSk9PV2FhYdDPkJAkl2EYhumR2+zgj3ZHAADOxwOpgvdF5SFT+ml/QjNT+jETFQkAACzm5HdtkEgAAGAxB+cR7NoAAADhoyIBAIDFmNoAAABhczl4coNEAgAAqzk3j2CNBAAACB8VCQAALObgggSJBAAAVnPyYkumNgAAQNioSAAAYDF2bQAAgPA5N4+wd2rjxhtv1Ntvv12vPnw+n6qqqgKaz+czKUIAAHAstiYSDz74oAYOHKiuXbtqzpw5Ki8vD7kPr9er+Pj4gHbXHK8F0QIAEB6XSS0S2foa8SZNmqioqEgvvPCCnnzySe3bt0/Z2dm69tprNXToUDVpcvw8x+fz1apAGFFuud1uq8IGAIjXiIfim+ofTemnbYvIW5Fg+66N3r17a/78+frqq6+0fPly+Xw+jRw5Uh06dFBubq527NhxzM+73W61atUqoJFEAADQMGxPJH4WHR2tSy65RGvXrtXOnTt17bXX6sknn9Rpp51md2gAANSLy6RfkShiEon/1rFjR+Xl5amsrExr1661OxwAAOrF5TKnRSJbE4lOnTopKirqqOddLpeysrIaMCIAABAKW1dtlJWV2Xl7AABQT5G3/BMAAIeJ1GkJM5BIAABgsUhdKGmGiFxsCQAAGgcqEgAAWIypDQAAEDYH5xFMbQAAgPBRkQAAwGoOLkmQSAAAYDF2bQAAANSBigQAABZj1wYAAAibg/MIEgkAACzn4EyCNRIAADjYQw89pOTkZDVv3lx9+/bV22+/bWr/JBIAAFjMZdKvUD399NPKyclRbm6uNm3apHPOOUfZ2dnatWuXeWMzDMMwrbcIcfBHuyMAAOc7od8tdodgigPv3m35Pcz6vtQ8xAUJ6enpOvPMM7VgwQL/se7du2vkyJHyer2mxERFAgCARsLn86mqqiqg+Xy+Oq89dOiQNm7cqCFDhgQcHzJkiNatW2deUAZCdvDgQWPGjBnGwYMH7Q6lXpwwDieMwTCcMQ4njMEwGEckccIYzDZjxgxDUkCbMWNGndd++eWXhiTjH//4R8DxWbNmGV27djUtJkdObVitqqpK8fHx2rdvn1q1amV3OGFzwjicMAbJGeNwwhgkxhFJnDAGs/l8vloVCLfbLbfbXevar776SieffLLWrVunjIwM//FZs2bpiSee0Mcff2xKTGz/BACgkTha0lCXE088UVFRUSovLw84XlFRIY/HY1pMrJEAAMCBmjVrpr59+6qoqCjgeFFRkfr162fafahIAADgUFOmTNEf/vAHpaWlKSMjQwsXLtSuXbs0YcIE0+5BIhEGt9utGTNmBF1eilROGIcTxiA5YxxOGIPEOCKJE8Zgt0svvVTffPON7rzzTu3Zs0e9evXSSy+9pE6dOpl2DxZbAgCAsLFGAgAAhI1EAgAAhI1EAgAAhI1EAgAAhI1EIgxWv5LVam+99ZaGDx+upKQkuVwurV692u6QQub1enXWWWcpLi5O7dq108iRI7Vt2za7wwrZggULdPrpp6tVq1Zq1aqVMjIy9PLLL9sdVr14vV65XC7l5OTYHUpI8vLy5HK5AlpCQoLdYYXsyy+/1JVXXqm2bdsqNjZWZ5xxhjZu3Gh3WCHp3Llzrf8WLpdLkyZNsjs01IFEIkQN8UpWq1VXV6tPnz4qKCiwO5SwFRcXa9KkSVq/fr2Kior0448/asiQIaqurrY7tJC0b99es2fP1oYNG7RhwwYNGjRII0aMUGlpqd2hhaWkpEQLFy7U6aefbncoYenZs6f27Nnjb1u2bLE7pJBUVlaqf//+io6O1ssvv6yPPvpI99xzj1q3bm13aCEpKSkJ+O/w8wOVLr74YpsjQ51Me2vHr8TZZ59tTJgwIeBYt27djFtvvdWmiOpHkrFq1Sq7w6i3iooKQ5JRXFxsdyj1dsIJJxiLFy+2O4yQ7d+/30hJSTGKioqMzMxMY/LkyXaHFJIZM2YYffr0sTuMepk2bZoxYMAAu8Mw3eTJk40uXboYNTU1doeCOlCRCEGDvZIVIdu3b58kqU2bNjZHEr4jR45o5cqVqq6uDnjBTmMxadIkDRs2TOeff77doYTtk08+UVJSkpKTk3XZZZdp586ddocUkjVr1igtLU0XX3yx2rVrp9TUVC1atMjusOrl0KFDWr58ucaNGyeXy2V3OKgDiUQIvv76ax05cqTWy048Hk+tl6Kg4RiGoSlTpmjAgAHq1auX3eGEbMuWLWrZsqXcbrcmTJigVatWqUePHnaHFZKVK1fqvffek9frtTuUsKWnp+vxxx/XK6+8okWLFqm8vFz9+vXTN998Y3doQdu5c6cWLFiglJQUvfLKK5owYYJuuukmPf7443aHFrbVq1fru+++09ixY+0OBUfBI7LD8Mus2DAMMmUb3XDDDfrggw/0zjvv2B1KWE477TRt3rxZ3333nZ577jmNGTNGxcXFjSaZ2L17tyZPnqzCwkI1b97c7nDClp2d7f997969lZGRoS5dumjZsmWaMmWKjZEFr6amRmlpacrPz5ckpaamqrS0VAsWLNBVV11lc3ThefTRR5Wdna2kpCS7Q8FRUJEIQUO9khXBu/HGG7VmzRq98cYbat++vd3hhKVZs2Y69dRTlZaWJq/Xqz59+ui+++6zO6ygbdy4URUVFerbt6+aNm2qpk2bqri4WPfff7+aNm2qI0eO2B1iWFq0aKHevXvrk08+sTuUoCUmJtZKQLt3796oFoP/t88//1yvvvqqrrnmGrtDwTGQSISgoV7JiuMzDEM33HCDnn/+eb3++utKTk62OyTTGIYhn89ndxhBGzx4sLZs2aLNmzf7W1pamq644gpt3rxZUVFRdocYFp/Pp61btyoxMdHuUILWv3//Wtugt2/fbuoLmhrSkiVL1K5dOw0bNszuUHAMTG2EqCFeyWq177//Xjt27PB/XVZWps2bN6tNmzbq2LGjjZEFb9KkSVqxYoX+9re/KS4uzl8lio+PV0xMjM3RBe8vf/mLsrOz1aFDB+3fv18rV67Um2++qbVr19odWtDi4uJqrU1p0aKF2rZt26jWrNxyyy0aPny4OnbsqIqKCs2cOVNVVVUaM2aM3aEF7eabb1a/fv2Un5+vSy65RO+++64WLlyohQsX2h1ayGpqarRkyRKNGTNGTZvyrSqi2btppHF68MEHjU6dOhnNmjUzzjzzzEa35fCNN94wJNVqY8aMsTu0oNUVvyRjyZIldocWknHjxvn/XzrppJOMwYMHG4WFhXaHVW+NcfvnpZdeaiQmJhrR0dFGUlKSMWrUKKO0tNTusEL2wgsvGL169TLcbrfRrVs3Y+HChXaHFJZXXnnFkGRs27bN7lBwHLxGHAAAhI01EgAAIGwkEgAAIGwkEgAAIGwkEgAAIGwkEgAAIGwkEgAAIGwkEgAAIGwkEgAAIGwkEoAD5eXl6YwzzvB/PXbsWI0cObLB4/jss8/kcrm0efPmBr83gIZBIgE0oLFjx8rlcsnlcik6OlqnnHKKbrnlFlVXV1t63/vuu09Lly4N6lq++QMIBW9CARrYBRdcoCVLlujw4cN6++23dc0116i6uloLFiwIuO7w4cOKjo425Z7x8fGm9AMAv0RFAmhgbrdbCQkJ6tChg0aPHq0rrrhCq1ev9k9HPPbYYzrllFPkdrtlGIb27dun6667Tu3atVOrVq00aNAgvf/++wF9zp49Wx6PR3Fxcbr66qt18ODBgPO/nNqoqanRnDlzdOqpp8rtdqtjx46aNWuWJPlfyZ6amiqXy6WBAwf6P7dkyRJ1795dzZs3V7du3fTQQw8F3Ofdd99VamqqmjdvrrS0NG3atMnEPzkAkYiKBGCzmJgYHT58WJK0Y8cOPfPMM3ruuecUFRUlSRo2bJjatGmjl156SfHx8XrkkUc0ePBgbd++XW3atNEzzzyjGTNm6MEHH9Q555yjJ554Qvfff79OOeWUo95z+vTpWrRoke69914NGDBAe/bs0ccffyzpp2Tg7LPP1quvvqqePXuqWbNmkqRFixZpxowZKigoUGpqqjZt2qRrr71WLVq00JgxY1RdXa3f/va3GjRokJYvX66ysjJNnjzZ4j89ALaz+e2jwK/KmDFjjBEjRvi//te//mW0bdvWuOSSS4wZM2YY0dHRRkVFhf/8a6+9ZrRq1co4ePBgQD9dunQxHnnkEcMwDCMjI8OYMGFCwPn09HSjT58+dd63qqrKcLvdxqJFi+qMsayszJBkbNq0KeB4hw4djBUrVgQc++tf/2pkZGQYhmEYjzzyiNGmTRujurraf37BggV19gXAOZjaABrYiy++qJYtW6p58+bKyMjQueeeqwceeECS1KlTJ5100kn+azdu3Kjvv/9ebdu2VcuWLf2trKxMn376qSRp69atysjICLjHL7/+b1u3bpXP59PgwYODjnnv3r3avXu3rr766oA4Zs6cGRBHnz59FBsbG1QcAJyBqQ2ggZ133nlasGCBoqOjlZSUFLCgskWLFgHX1tTUKDExUW+++Watflq3bh3W/WNiYkL+TE1NjaSfpjfS09MDzv08BWMYRljxAGjcSCSABtaiRQudeuqpQV175plnqry8XE2bNlXnzp3rvKZ79+5av369rrrqKv+x9evXH7XPlJQUxcTE6LXXXtM111xT6/zPayKOHDniP+bxeHTyySdr586duuKKK+rst0ePHnriiSd04MABf7JyrDgAOANTG0AEO//885WRkaGRI0fqlVde0WeffaZ169bptttu04YNGyRJkydP1mOPPabHHntM27dv14wZM1RaWnrUPps3b65p06Zp6tSpevzxx/Xpp59q/fr1evTRRyVJ7dq1U0xMjNauXat///vf2rdvn6SfHnLl9Xp13333afv27dqyZYuWLFmiefPmSZJGjx6tJk2a6Oqrr9ZHH32kl156SXfffbfFf0IA7EYiAUQwl8ull156Seeee67GjRunrl276rLLLtNnn30mj8cjSbr00kt1xx13aNq0aerbt68+//xzXX/99cfs9/bbb9ef/vQn3XHHHerevbsuvfRSVVRUSJKaNm2q+++/X4888oiSkpI0YsQISdI111yjxYsXa+nSperdu7cyMzO1dOlS/3bRli1b6oUXXtBHH32k1NRU5ebmas6cORb+6QCIBC6DiU0AABAmKhIAACBsJBIAACBsJBIAACBsJBIAACBsJBIAACBsJBIAACBsJBIAACBsJBIAACBsJBIAACBsJBIAACBsJBIAACBs/x9tILUaZpgtzAAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 640x480 with 2 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "\n",
    "# Compute confusion matrix\n",
    "conf_matrix = confusion_matrix(true_labels, predicted_labels)\n",
    "sns.heatmap(conf_matrix, annot=True, fmt=\"d\", cmap=\"Blues\", xticklabels=label_encoder.classes_, yticklabels=label_encoder.classes_)\n",
    "plt.ylabel('Actual')\n",
    "plt.xlabel('Predicted')\n",
    "plt.show()\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7042688c-5e80-412b-a2f1-9cb5c62b9281",
   "metadata": {},
   "source": [
    "\n",
    "\n",
    "### Description\n",
    "\n",
    "- **X-axis (Predicted)**: Represents the predicted emotion labels by the model.\n",
    "- **Y-axis (Actual)**: Represents the actual emotion labels.\n",
    "- **Color Scale**: The intensity of the color represents the number of instances classified in each category, with darker colors indicating a higher number of instances.\n",
    "\n",
    "### Emotion Labels\n",
    "The numerical labels correspond to the following emotions:\n",
    "- 0: Neutral\n",
    "- 1: Calm\n",
    "- 2: Happy\n",
    "- 3: Sad\n",
    "- 4: Angry\n",
    "- 5: Fearful\n",
    "- 6: Disgust\n",
    "- 7: Surprised\n",
    "\n",
    "### Observations\r\n",
    "\r\n",
    "1. **Class 0:**\r\n",
    "   - Perfect prediction: 36 instances correctly predicted.\r\n",
    "   - No misclassifications.\r\n",
    "\r\n",
    "2. **Class 1 to 7:**\r\n",
    "   - The majority of predictions are correct for each class.\r\n",
    "   - There is a slight off-diagonal spread indicating some misclassifications to neighboring classes.\r\n",
    "\r\n",
    "3. **General Trend:**\r\n",
    "   - High accuracy for each class.\r\n",
    "   - Misclassifications mostly occur in adjacent classes, indicating that errors are minor and close to the actual class.\r\n",
    "\r\n",
    "### Conclusions\r\n",
    "\r\n",
    "- **High Model Accuracy:** The LSTM model performs exceptionally well, particularly for class 0 with no misclassifications.\r\n",
    "- **Adjacent Class Misclassifications:** The few errors made are predominantly in predicting adjacent classes, suggesting the model's confusion is limited to closely related classes.\r\n",
    "- **Strong Performance Across All Classes:** The confusion matrix demonstrates that the model has robust predictive capabilities for a range of classes.\r\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 57,
   "id": "989966bb-a2b4-48b9-b2b6-c6f4e9a6fb61",
   "metadata": {},
   "outputs": [],
   "source": [
    "model.save('emotion_recognition_model_LSTM.keras')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f4596afd-1c4a-4dfe-8dd5-7d8c907e9737",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}