File size: 12,713 Bytes
db5855f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import json
from collections import defaultdict, Counter
from copy import deepcopy
import random
random.seed(1234)




def generate_padded_dataset(des_size):
    input_files = ['../../Documents/character-mining/json/friends_season_01.json',
                  '../../Documents/character-mining/json/friends_season_02.json',
                  '../../Documents/character-mining/json/friends_season_03.json',
                  '../../Documents/character-mining/json/friends_season_04.json',
                  '../../Documents/character-mining/json/friends_season_05.json',
                  '../../Documents/character-mining/json/friends_season_06.json',
                  '../../Documents/character-mining/json/friends_season_07.json',
                  '../../Documents/character-mining/json/friends_season_08.json',
                  '../../Documents/character-mining/json/friends_season_09.json',
                  '../../Documents/character-mining/json/friends_season_10.json'
                  ]

    season_samples = defaultdict(list)
    for file in input_files:
        data = json.load(open(file))
        for episode_dict in data['episodes']:
            for idx, scene_dict in enumerate(episode_dict['scenes']):
                if scene_dict['plots'] is not None:
                  
                    entities = Counter()
                    entities.update(scene_dict['rc_entities'].keys())
                
                    cur = idx
                    dialog_len = len(scene_dict['utterances'])
                    while (dialog_len < des_size and cur < len(episode_dict['scenes'])-1):
                        cur += 1
                        entities.update(episode_dict['scenes'][cur]['rc_entities'].keys())
                        dialog_len += len(episode_dict['scenes'][cur]['utterances'])
                    if dialog_len < des_size:
                        cur = idx
                        while (cur > 0 and dialog_len < des_size):
                            cur -= 1
                            entities.update(episode_dict['scenes'][cur]['rc_entities'].keys())
                            dialog_len += len(episode_dict['scenes'][cur]['utterances'])

                    masking_map = {}
                    for vi, ki in enumerate(entities.keys()):
                        masking_map[ki] = '@ent%02d' % vi

                    masked_passages = []
                    for i, passage in enumerate(scene_dict['plots']):
                        masked_sentence = []
                        ent_list = {}
                        for ent, index_list in scene_dict['rc_entities'].iteritems():
                            for index in index_list['p_ent']:
                                if i == index[0]:
                                    ent_list[index[1]] = (index[1], index[2], ent)
                        jump = 0
                        for j, token in enumerate(passage.split(' ')):
                            if jump > 0:    
                                jump -= 1
                                continue
                            if j in ent_list:
                                masked_sentence.append(masking_map[ent_list[j][2]])
                                jump = ent_list[j][1] - ent_list[j][0] - 1   
                            else:
                                masked_sentence.append(token)
                        masked_passages.append(masked_sentence)

                    cur = idx
                    dialog_len = len(scene_dict['utterances'])
                    next_dialog = []
                    while (dialog_len < des_size and cur < len(episode_dict['scenes'])-1):
                        cur += 1    
                        for i, utterance in enumerate(episode_dict['scenes'][cur]['utterances']):
                            if utterance['tokens_with_note'] is not None:
                                tokens = [w for sent in utterance['tokens_with_note'] for w in sent]
                            else:
                                tokens = [w for sent in utterance['tokens'] for w in sent]

                            masked_utter = {}
                            masked_utter['speakers'] = utterance['speakers']
                            masked_utter['tokens'] = []
                            ent_list = {}
                            for ent, index_list in episode_dict['scenes'][cur]['rc_entities'].iteritems():
                                for index in index_list['u_ent']:
                                    if i == index[0]:
                                        ent_list[index[1]] = (index[1], index[2], ent)
                                for index in index_list['s_ent']:
                                    if i == index[0]:
                                        masked_utter['speakers'][index[1]] = masking_map[ent]
                            jump = 0
                            for j, token in enumerate(tokens):
                                if jump > 0:
                                    jump -= 1
                                    continue
                                if j in ent_list:
                                    masked_utter['tokens'].append(masking_map[ent_list[j][2]])
                                    jump = ent_list[j][1] - ent_list[j][0] - 1
                                else:
                                    masked_utter['tokens'].append(token)
                            next_dialog.append(masked_utter)
                            dialog_len += 1
                            if dialog_len == des_size:
                                break

                    prev_dialog = []
                    if dialog_len < des_size:
                        cur = idx
                        while (dialog_len < des_size and cur >0):
                            cur -= 1
                            for i, utterance in enumerate(reversed(episode_dict['scenes'][cur]['utterances'])):
                                if utterance['tokens_with_note'] is not None:
                                    tokens = [w for sent in utterance['tokens_with_note'] for w in sent]
                                else:
                                    tokens = [w for sent in utterance['tokens'] for w in sent]

                                masked_utter = {}
                                masked_utter['speakers'] = utterance['speakers']
                                masked_utter['tokens'] = []
                                ent_list = {}
                                for ent, index_list in episode_dict['scenes'][cur]['rc_entities'].iteritems():
                                    for index in index_list['u_ent']:
                                        if i == len(episode_dict['scenes'][cur]['utterances'])-index[0]-1:
                                            ent_list[index[1]] = (index[1], index[2], ent)
                                    for index in index_list['s_ent']:
                                        if i == len(episode_dict['scenes'][cur]['utterances'])-index[0]-1:
                                            masked_utter['speakers'][index[1]] = masking_map[ent]
                                jump = 0
                                for j, token in enumerate(tokens):
                                    if jump > 0:
                                        jump -= 1
                                        continue
                                    if j in ent_list:
                                        masked_utter['tokens'].append(masking_map[ent_list[j][2]])
                                        jump = ent_list[j][1] - ent_list[j][0] - 1
                                    else:
                                        masked_utter['tokens'].append(token)
                                prev_dialog.append(masked_utter)
                                dialog_len += 1
                                if dialog_len == des_size:
                                    break

                    masked_dialog = []
                    for i, utterance in enumerate(scene_dict['utterances']):
                        if utterance['tokens_with_note'] is not None:
                            tokens = [w for sent in utterance['tokens_with_note'] for w in sent]          
                        else:
                            tokens = [w for sent in utterance['tokens'] for w in sent]

                        masked_utter = {}
                        masked_utter['speakers'] = utterance['speakers']
                        masked_utter['tokens'] = []
                        ent_list = {}
                        for ent, index_list in scene_dict['rc_entities'].iteritems():
                            for index in index_list['u_ent']:
                                if i == index[0]:
                                    ent_list[index[1]] = (index[1], index[2], ent)
                            for index in index_list['s_ent']:
                                if i == index[0]:
                                    masked_utter['speakers'][index[1]] = masking_map[ent]
                        jump = 0
                        for j, token in enumerate(tokens):
                            if jump > 0:
                                jump -= 1
                                continue
                            if j in ent_list:
                                masked_utter['tokens'].append(masking_map[ent_list[j][2]])
                                jump = ent_list[j][1] - ent_list[j][0] - 1  
                            else:
                                masked_utter['tokens'].append(token)
                        masked_dialog.append(masked_utter)

                    dialog_entities = Counter()
                    for ent, ent_list in scene_dict['rc_entities'].iteritems():
                        if len(ent_list['u_ent']) > 0 or len(ent_list['s_ent']) > 0:
                            dialog_entities.update([masking_map[ent]])

                    full_dialog = []
                    for u in reversed(prev_dialog):
                        full_dialog.append(u)
                    for u in masked_dialog:
                        full_dialog.append(u)
                    for u in next_dialog:
                        full_dialog.append(u)

                    for utterance in full_dialog:
                        utterance['tokens'] = ' '.join(utterance['tokens']) 
                        utterance['speakers'] = ' '.join(utterance['speakers'])

                    for sentence in masked_passages:
                        for i, token in enumerate(sentence):
                            if token.startswith('@ent') and token in dialog_entities:
                                sample = {}                                
                                query = deepcopy(sentence)
                                query[i] = '@placeholder'
                                sample['query'] = ' '.join(query)
                                sample['answer'] = token
                                sample['utterances'] = full_dialog
                                sample['scene_id'] = scene_dict['scene_id']
                                season_samples[data['season_id']].append(sample)
    
    train_samples = []
    val_samples = []
    test_samples = []
    for season_id, s_samples in season_samples.iteritems():
        l = len(s_samples)
        random.shuffle(s_samples)
        train_samples.extend(s_samples[:int(0.8*l)])
        val_samples.extend(s_samples[int(0.8 * l):int(0.9 * l)])
        test_samples.extend(s_samples[int(0.9 * l):])

    train_samples = relabel(train_samples)
    val_samples = relabel(val_samples)
    test_samples = relabel(test_samples)
    print len(train_samples)
    print len(val_samples)
    print len(test_samples)
    
    prefix = 'data_check_generated/Friends_' + str(des_size) + '_samples'
    dump_json({'train': train_samples, 'dev': val_samples, 'test': test_samples}, prefix)

def dump_json(splits, prefix):
    for split, samples in splits.iteritems():
        with open(prefix + '.' + split + '.struct.json', 'w') as fw:
            json.dump(samples, fw, indent=2)

if __name__ == '__main__':
    json_dir = '/Users/jdchoi/Git/character-mining/json'
    output_dir = '/Users/jdchoi/Git/reading-comprehension/json'
    generate_dataset(json_dir, output_dir)
    # dialog_lengths = [25, 50, 100]
    # for size in dialog_lengths:
    #     random.seed(1234)
    #     generate_padded_dataset(size)