Spaces:
Runtime error
Runtime error
File size: 33,607 Bytes
db5855f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Industrial Meter Reader\n",
"This notebook shows how to create a industrial meter reader with OpenVINO Runtime. We use the pre-trained [PPYOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/ppyolo) PaddlePaddle model and [DeepLabV3P](https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.5/configs/deeplabv3p) to build up a multiple inference task pipeline:\n",
"\n",
"1. Run detection model to find the meters, and crop them from the origin photo.\n",
"2. Run segmentation model on these cropped meters to get the pointer and scale instance.\n",
"3. Find the location of the pointer in scale map.\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"#### Table of contents:\n",
"\n",
"- [Import](#Import)\n",
"- [Prepare the Model and Test Image](#Prepare-the-Model-and-Test-Image)\n",
"- [Configuration](#Configuration)\n",
"- [Load the Models](#Load-the-Models)\n",
"- [Data Process](#Data-Process)\n",
"- [Main Function](#Main-Function)\n",
" - [Initialize the model and parameters.](#Initialize-the-model-and-parameters.)\n",
" - [Run meter detection model](#Run-meter-detection-model)\n",
" - [Run meter segmentation model](#Run-meter-segmentation-model)\n",
" - [Postprocess the models result and calculate the final readings](#Postprocess-the-models-result-and-calculate-the-final-readings)\n",
" - [Get the reading result on the meter picture](#Get-the-reading-result-on-the-meter-picture)\n",
"- [Try it with your meter photos!](#Try-it-with-your-meter-photos!)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import platform\n",
"\n",
"# Install openvino package\n",
"%pip install -q \"openvino>=2023.1.0\" opencv-python tqdm\n",
"\n",
"if platform.system() != \"Windows\":\n",
" %pip install -q \"matplotlib>=3.4\"\n",
"else:\n",
" %pip install -q \"matplotlib>=3.4,<3.7\""
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Import\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from pathlib import Path\n",
"import numpy as np\n",
"import math\n",
"import cv2\n",
"import tarfile\n",
"import matplotlib.pyplot as plt\n",
"import openvino as ov\n",
"\n",
"# Fetch `notebook_utils` module\n",
"import requests\n",
"\n",
"r = requests.get(\n",
" url=\"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py\",\n",
")\n",
"\n",
"open(\"notebook_utils.py\", \"w\").write(r.text)\n",
"from notebook_utils import download_file, segmentation_map_to_image"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prepare the Model and Test Image\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"Download PPYOLOv2 and DeepLabV3P pre-trained models from PaddlePaddle community."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"MODEL_DIR = \"model\"\n",
"DATA_DIR = \"data\"\n",
"DET_MODEL_LINK = \"https://storage.openvinotoolkit.org/repositories/openvino_notebooks/models/meter-reader/meter_det_model.tar.gz\"\n",
"SEG_MODEL_LINK = \"https://storage.openvinotoolkit.org/repositories/openvino_notebooks/models/meter-reader/meter_seg_model.tar.gz\"\n",
"DET_FILE_NAME = DET_MODEL_LINK.split(\"/\")[-1]\n",
"SEG_FILE_NAME = SEG_MODEL_LINK.split(\"/\")[-1]\n",
"IMG_LINK = \"https://user-images.githubusercontent.com/91237924/170696219-f68699c6-1e82-46bf-aaed-8e2fc3fa5f7b.jpg\"\n",
"IMG_FILE_NAME = IMG_LINK.split(\"/\")[-1]\n",
"IMG_PATH = Path(f\"{DATA_DIR}/{IMG_FILE_NAME}\")\n",
"\n",
"os.makedirs(MODEL_DIR, exist_ok=True)\n",
"\n",
"download_file(DET_MODEL_LINK, directory=MODEL_DIR, show_progress=True)\n",
"file = tarfile.open(f\"model/{DET_FILE_NAME}\")\n",
"res = file.extractall(\"model\")\n",
"if not res:\n",
" print(f'Detection Model Extracted to \"./{MODEL_DIR}\".')\n",
"else:\n",
" print(\"Error Extracting the Detection model. Please check the network.\")\n",
"\n",
"download_file(SEG_MODEL_LINK, directory=MODEL_DIR, show_progress=True)\n",
"file = tarfile.open(f\"model/{SEG_FILE_NAME}\")\n",
"res = file.extractall(\"model\")\n",
"if not res:\n",
" print(f'Segmentation Model Extracted to \"./{MODEL_DIR}\".')\n",
"else:\n",
" print(\"Error Extracting the Segmentation model. Please check the network.\")\n",
"\n",
"download_file(IMG_LINK, directory=DATA_DIR, show_progress=True)\n",
"if IMG_PATH.is_file():\n",
" print(f'Test Image Saved to \"./{DATA_DIR}\".')\n",
"else:\n",
" print(\"Error Downloading the Test Image. Please check the network.\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Configuration\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"Add parameter configuration for reading calculation."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"METER_SHAPE = [512, 512]\n",
"CIRCLE_CENTER = [256, 256]\n",
"CIRCLE_RADIUS = 250\n",
"PI = math.pi\n",
"RECTANGLE_HEIGHT = 120\n",
"RECTANGLE_WIDTH = 1570\n",
"TYPE_THRESHOLD = 40\n",
"COLORMAP = np.array([[28, 28, 28], [238, 44, 44], [250, 250, 250]])\n",
"\n",
"# There are 2 types of meters in test image datasets\n",
"METER_CONFIG = [\n",
" {\"scale_interval_value\": 25.0 / 50.0, \"range\": 25.0, \"unit\": \"(MPa)\"},\n",
" {\"scale_interval_value\": 1.6 / 32.0, \"range\": 1.6, \"unit\": \"(MPa)\"},\n",
"]\n",
"\n",
"SEG_LABEL = {\"background\": 0, \"pointer\": 1, \"scale\": 2}"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load the Models\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"Define a common class for model loading and inference"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# Initialize OpenVINO Runtime\n",
"core = ov.Core()\n",
"\n",
"\n",
"class Model:\n",
" \"\"\"\n",
" This class represents a OpenVINO model object.\n",
"\n",
" \"\"\"\n",
"\n",
" def __init__(self, model_path, new_shape, device=\"CPU\"):\n",
" \"\"\"\n",
" Initialize the model object\n",
"\n",
" Param:\n",
" model_path (string): path of inference model\n",
" new_shape (dict): new shape of model input\n",
"\n",
" \"\"\"\n",
" self.model = core.read_model(model=model_path)\n",
" self.model.reshape(new_shape)\n",
" self.compiled_model = core.compile_model(model=self.model, device_name=device)\n",
" self.output_layer = self.compiled_model.output(0)\n",
"\n",
" def predict(self, input_image):\n",
" \"\"\"\n",
" Run inference\n",
"\n",
" Param:\n",
" input_image (np.array): input data\n",
"\n",
" Retuns:\n",
" result (np.array)): model output data\n",
" \"\"\"\n",
" result = self.compiled_model(input_image)[self.output_layer]\n",
" return result"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data Process\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"Including the preprocessing and postprocessing tasks of each model."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"def det_preprocess(input_image, target_size):\n",
" \"\"\"\n",
" Preprocessing the input data for detection task\n",
"\n",
" Param:\n",
" input_image (np.array): input data\n",
" size (int): the image size required by model input layer\n",
" Retuns:\n",
" img.astype (np.array): preprocessed image\n",
"\n",
" \"\"\"\n",
" img = cv2.resize(input_image, (target_size, target_size))\n",
" img = np.transpose(img, [2, 0, 1]) / 255\n",
" img = np.expand_dims(img, 0)\n",
" img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))\n",
" img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))\n",
" img -= img_mean\n",
" img /= img_std\n",
" return img.astype(np.float32)\n",
"\n",
"\n",
"def filter_bboxes(det_results, score_threshold):\n",
" \"\"\"\n",
" Filter out the detection results with low confidence\n",
"\n",
" Param:\n",
" det_results (list[dict]): detection results\n",
" score_threshold (float): confidence threshold\n",
"\n",
" Retuns:\n",
" filtered_results (list[dict]): filter detection results\n",
"\n",
" \"\"\"\n",
" filtered_results = []\n",
" for i in range(len(det_results)):\n",
" if det_results[i, 1] > score_threshold:\n",
" filtered_results.append(det_results[i])\n",
" return filtered_results\n",
"\n",
"\n",
"def roi_crop(image, results, scale_x, scale_y):\n",
" \"\"\"\n",
" Crop the area of detected meter of original image\n",
"\n",
" Param:\n",
" img (np.array):original image。\n",
" det_results (list[dict]): detection results\n",
" scale_x (float): the scale value in x axis\n",
" scale_y (float): the scale value in y axis\n",
"\n",
" Retuns:\n",
" roi_imgs (list[np.array]): the list of meter images\n",
" loc (list[int]): the list of meter locations\n",
"\n",
" \"\"\"\n",
" roi_imgs = []\n",
" loc = []\n",
" for result in results:\n",
" bbox = result[2:]\n",
" xmin, ymin, xmax, ymax = [\n",
" int(bbox[0] * scale_x),\n",
" int(bbox[1] * scale_y),\n",
" int(bbox[2] * scale_x),\n",
" int(bbox[3] * scale_y),\n",
" ]\n",
" sub_img = image[ymin : (ymax + 1), xmin : (xmax + 1), :]\n",
" roi_imgs.append(sub_img)\n",
" loc.append([xmin, ymin, xmax, ymax])\n",
" return roi_imgs, loc\n",
"\n",
"\n",
"def roi_process(input_images, target_size, interp=cv2.INTER_LINEAR):\n",
" \"\"\"\n",
" Prepare the roi image of detection results data\n",
" Preprocessing the input data for segmentation task\n",
"\n",
" Param:\n",
" input_images (list[np.array]):the list of meter images\n",
" target_size (list|tuple): height and width of resized image, e.g [heigh,width]\n",
" interp (int):the interp method for image reszing\n",
"\n",
" Retuns:\n",
" img_list (list[np.array]):the list of processed images\n",
" resize_img (list[np.array]): for visualization\n",
"\n",
" \"\"\"\n",
" img_list = list()\n",
" resize_list = list()\n",
" for img in input_images:\n",
" img_shape = img.shape\n",
" scale_x = float(target_size[1]) / float(img_shape[1])\n",
" scale_y = float(target_size[0]) / float(img_shape[0])\n",
" resize_img = cv2.resize(img, None, None, fx=scale_x, fy=scale_y, interpolation=interp)\n",
" resize_list.append(resize_img)\n",
" resize_img = resize_img.transpose(2, 0, 1) / 255\n",
" img_mean = np.array([0.5, 0.5, 0.5]).reshape((3, 1, 1))\n",
" img_std = np.array([0.5, 0.5, 0.5]).reshape((3, 1, 1))\n",
" resize_img -= img_mean\n",
" resize_img /= img_std\n",
" img_list.append(resize_img)\n",
" return img_list, resize_list\n",
"\n",
"\n",
"def erode(seg_results, erode_kernel):\n",
" \"\"\"\n",
" Erode the segmentation result to get the more clear instance of pointer and scale\n",
"\n",
" Param:\n",
" seg_results (list[dict]):segmentation results\n",
" erode_kernel (int): size of erode_kernel\n",
"\n",
" Return:\n",
" eroded_results (list[dict]): the lab map of eroded_results\n",
"\n",
" \"\"\"\n",
" kernel = np.ones((erode_kernel, erode_kernel), np.uint8)\n",
" eroded_results = seg_results\n",
" for i in range(len(seg_results)):\n",
" eroded_results[i] = cv2.erode(seg_results[i].astype(np.uint8), kernel)\n",
" return eroded_results\n",
"\n",
"\n",
"def circle_to_rectangle(seg_results):\n",
" \"\"\"\n",
" Switch the shape of label_map from circle to rectangle\n",
"\n",
" Param:\n",
" seg_results (list[dict]):segmentation results\n",
"\n",
" Return:\n",
" rectangle_meters (list[np.array]):the rectangle of label map\n",
"\n",
" \"\"\"\n",
" rectangle_meters = list()\n",
" for i, seg_result in enumerate(seg_results):\n",
" label_map = seg_result\n",
"\n",
" # The size of rectangle_meter is determined by RECTANGLE_HEIGHT and RECTANGLE_WIDTH\n",
" rectangle_meter = np.zeros((RECTANGLE_HEIGHT, RECTANGLE_WIDTH), dtype=np.uint8)\n",
" for row in range(RECTANGLE_HEIGHT):\n",
" for col in range(RECTANGLE_WIDTH):\n",
" theta = PI * 2 * (col + 1) / RECTANGLE_WIDTH\n",
"\n",
" # The radius of meter circle will be mapped to the height of rectangle image\n",
" rho = CIRCLE_RADIUS - row - 1\n",
" y = int(CIRCLE_CENTER[0] + rho * math.cos(theta) + 0.5)\n",
" x = int(CIRCLE_CENTER[1] - rho * math.sin(theta) + 0.5)\n",
" rectangle_meter[row, col] = label_map[y, x]\n",
" rectangle_meters.append(rectangle_meter)\n",
" return rectangle_meters\n",
"\n",
"\n",
"def rectangle_to_line(rectangle_meters):\n",
" \"\"\"\n",
" Switch the dimension of rectangle label map from 2D to 1D\n",
"\n",
" Param:\n",
" rectangle_meters (list[np.array]):2D rectangle OF label_map。\n",
"\n",
" Return:\n",
" line_scales (list[np.array]): the list of scales value\n",
" line_pointers (list[np.array]):the list of pointers value\n",
"\n",
" \"\"\"\n",
" line_scales = list()\n",
" line_pointers = list()\n",
" for rectangle_meter in rectangle_meters:\n",
" height, width = rectangle_meter.shape[0:2]\n",
" line_scale = np.zeros((width), dtype=np.uint8)\n",
" line_pointer = np.zeros((width), dtype=np.uint8)\n",
" for col in range(width):\n",
" for row in range(height):\n",
" if rectangle_meter[row, col] == SEG_LABEL[\"pointer\"]:\n",
" line_pointer[col] += 1\n",
" elif rectangle_meter[row, col] == SEG_LABEL[\"scale\"]:\n",
" line_scale[col] += 1\n",
" line_scales.append(line_scale)\n",
" line_pointers.append(line_pointer)\n",
" return line_scales, line_pointers\n",
"\n",
"\n",
"def mean_binarization(data_list):\n",
" \"\"\"\n",
" Binarize the data\n",
"\n",
" Param:\n",
" data_list (list[np.array]):input data\n",
"\n",
" Return:\n",
" binaried_data_list (list[np.array]):output data。\n",
"\n",
" \"\"\"\n",
" batch_size = len(data_list)\n",
" binaried_data_list = data_list\n",
" for i in range(batch_size):\n",
" mean_data = np.mean(data_list[i])\n",
" width = data_list[i].shape[0]\n",
" for col in range(width):\n",
" if data_list[i][col] < mean_data:\n",
" binaried_data_list[i][col] = 0\n",
" else:\n",
" binaried_data_list[i][col] = 1\n",
" return binaried_data_list\n",
"\n",
"\n",
"def locate_scale(line_scales):\n",
" \"\"\"\n",
" Find location of center of each scale\n",
"\n",
" Param:\n",
" line_scales (list[np.array]):the list of binaried scales value\n",
"\n",
" Return:\n",
" scale_locations (list[list]):location of each scale\n",
"\n",
" \"\"\"\n",
" batch_size = len(line_scales)\n",
" scale_locations = list()\n",
" for i in range(batch_size):\n",
" line_scale = line_scales[i]\n",
" width = line_scale.shape[0]\n",
" find_start = False\n",
" one_scale_start = 0\n",
" one_scale_end = 0\n",
" locations = list()\n",
" for j in range(width - 1):\n",
" if line_scale[j] > 0 and line_scale[j + 1] > 0:\n",
" if not find_start:\n",
" one_scale_start = j\n",
" find_start = True\n",
" if find_start:\n",
" if line_scale[j] == 0 and line_scale[j + 1] == 0:\n",
" one_scale_end = j - 1\n",
" one_scale_location = (one_scale_start + one_scale_end) / 2\n",
" locations.append(one_scale_location)\n",
" one_scale_start = 0\n",
" one_scale_end = 0\n",
" find_start = False\n",
" scale_locations.append(locations)\n",
" return scale_locations\n",
"\n",
"\n",
"def locate_pointer(line_pointers):\n",
" \"\"\"\n",
" Find location of center of pointer\n",
"\n",
" Param:\n",
" line_scales (list[np.array]):the list of binaried pointer value\n",
"\n",
" Return:\n",
" scale_locations (list[list]):location of pointer\n",
"\n",
" \"\"\"\n",
" batch_size = len(line_pointers)\n",
" pointer_locations = list()\n",
" for i in range(batch_size):\n",
" line_pointer = line_pointers[i]\n",
" find_start = False\n",
" pointer_start = 0\n",
" pointer_end = 0\n",
" location = 0\n",
" width = line_pointer.shape[0]\n",
" for j in range(width - 1):\n",
" if line_pointer[j] > 0 and line_pointer[j + 1] > 0:\n",
" if not find_start:\n",
" pointer_start = j\n",
" find_start = True\n",
" if find_start:\n",
" if line_pointer[j] == 0 and line_pointer[j + 1] == 0:\n",
" pointer_end = j - 1\n",
" location = (pointer_start + pointer_end) / 2\n",
" find_start = False\n",
" break\n",
" pointer_locations.append(location)\n",
" return pointer_locations\n",
"\n",
"\n",
"def get_relative_location(scale_locations, pointer_locations):\n",
" \"\"\"\n",
" Match location of pointer and scales\n",
"\n",
" Param:\n",
" scale_locations (list[list]):location of each scale\n",
" pointer_locations (list[list]):location of pointer\n",
"\n",
" Return:\n",
" pointed_scales (list[dict]): a list of dict with:\n",
" 'num_scales': total number of scales\n",
" 'pointed_scale': predicted number of scales\n",
"\n",
" \"\"\"\n",
" pointed_scales = list()\n",
" for scale_location, pointer_location in zip(scale_locations, pointer_locations):\n",
" num_scales = len(scale_location)\n",
" pointed_scale = -1\n",
" if num_scales > 0:\n",
" for i in range(num_scales - 1):\n",
" if scale_location[i] <= pointer_location < scale_location[i + 1]:\n",
" pointed_scale = i + (pointer_location - scale_location[i]) / (scale_location[i + 1] - scale_location[i] + 1e-05) + 1\n",
" result = {\"num_scales\": num_scales, \"pointed_scale\": pointed_scale}\n",
" pointed_scales.append(result)\n",
" return pointed_scales\n",
"\n",
"\n",
"def calculate_reading(pointed_scales):\n",
" \"\"\"\n",
" Calculate the value of meter according to the type of meter\n",
"\n",
" Param:\n",
" pointed_scales (list[list]):predicted number of scales\n",
"\n",
" Return:\n",
" readings (list[float]): the list of values read from meter\n",
"\n",
" \"\"\"\n",
" readings = list()\n",
" batch_size = len(pointed_scales)\n",
" for i in range(batch_size):\n",
" pointed_scale = pointed_scales[i]\n",
" # find the type of meter according the total number of scales\n",
" if pointed_scale[\"num_scales\"] > TYPE_THRESHOLD:\n",
" reading = pointed_scale[\"pointed_scale\"] * METER_CONFIG[0][\"scale_interval_value\"]\n",
" else:\n",
" reading = pointed_scale[\"pointed_scale\"] * METER_CONFIG[1][\"scale_interval_value\"]\n",
" readings.append(reading)\n",
" return readings"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Main Function\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Initialize the model and parameters.\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"\n",
"select device from dropdown list for running inference using OpenVINO"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"jupyter": {
"source_hidden": true
},
"tags": [
"hide-input"
]
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ea1b8e76e34a4f5c88e13529e14766d3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Dropdown(description='Device:', index=2, options=('CPU', 'GPU', 'AUTO'), value='AUTO')"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import ipywidgets as widgets\n",
"\n",
"device = widgets.Dropdown(\n",
" options=core.available_devices + [\"AUTO\"],\n",
" value=\"AUTO\",\n",
" description=\"Device:\",\n",
" disabled=False,\n",
")\n",
"\n",
"device"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"The number of detected meter from detection network can be arbitrary in some scenarios, which means the batch size of segmentation network input is a [dynamic dimension](https://docs.openvino.ai/2024/openvino-workflow/running-inference/dynamic-shapes.html), and it should be specified as ```-1``` or the ```ov::Dimension()``` instead of a positive number used for static dimensions. In this case, for memory consumption optimization, we can specify the lower and/or upper bounds of input batch size."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"img_file = f\"{DATA_DIR}/{IMG_FILE_NAME}\"\n",
"det_model_path = f\"{MODEL_DIR}/meter_det_model/model.pdmodel\"\n",
"det_model_shape = {\n",
" \"image\": [1, 3, 608, 608],\n",
" \"im_shape\": [1, 2],\n",
" \"scale_factor\": [1, 2],\n",
"}\n",
"seg_model_path = f\"{MODEL_DIR}/meter_seg_model/model.pdmodel\"\n",
"seg_model_shape = {\"image\": [ov.Dimension(1, 2), 3, 512, 512]}\n",
"\n",
"erode_kernel = 4\n",
"score_threshold = 0.5\n",
"seg_batch_size = 2\n",
"input_shape = 608\n",
"\n",
"# Intialize the model objects\n",
"detector = Model(det_model_path, det_model_shape, device.value)\n",
"segmenter = Model(seg_model_path, seg_model_shape, device.value)\n",
"\n",
"# Visulize a original input photo\n",
"image = cv2.imread(img_file)\n",
"rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)\n",
"plt.imshow(rgb_image)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Run meter detection model\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"Detect the location of the meter and prepare the ROI images for segmentation."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"# Prepare the input data for meter detection model\n",
"im_shape = np.array([[input_shape, input_shape]]).astype(\"float32\")\n",
"scale_factor = np.array([[1, 2]]).astype(\"float32\")\n",
"input_image = det_preprocess(image, input_shape)\n",
"inputs_dict = {\"image\": input_image, \"im_shape\": im_shape, \"scale_factor\": scale_factor}\n",
"\n",
"# Run meter detection model\n",
"det_results = detector.predict(inputs_dict)\n",
"\n",
"# Filter out the bounding box with low confidence\n",
"filtered_results = filter_bboxes(det_results, score_threshold)\n",
"\n",
"# Prepare the input data for meter segmentation model\n",
"scale_x = image.shape[1] / input_shape * 2\n",
"scale_y = image.shape[0] / input_shape\n",
"\n",
"# Create the individual picture for each detected meter\n",
"roi_imgs, loc = roi_crop(image, filtered_results, scale_x, scale_y)\n",
"roi_imgs, resize_imgs = roi_process(roi_imgs, METER_SHAPE)\n",
"\n",
"# Create the pictures of detection results\n",
"roi_stack = np.hstack(resize_imgs)\n",
"\n",
"if cv2.imwrite(f\"{DATA_DIR}/detection_results.jpg\", roi_stack):\n",
" print('The detection result image has been saved as \"detection_results.jpg\" in data')\n",
" plt.imshow(cv2.cvtColor(roi_stack, cv2.COLOR_BGR2RGB))"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Run meter segmentation model\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"Get the results of segmentation task on detected ROI."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"seg_results = list()\n",
"mask_list = list()\n",
"num_imgs = len(roi_imgs)\n",
"\n",
"# Run meter segmentation model on all detected meters\n",
"for i in range(0, num_imgs, seg_batch_size):\n",
" batch = roi_imgs[i : min(num_imgs, i + seg_batch_size)]\n",
" seg_result = segmenter.predict({\"image\": np.array(batch)})\n",
" seg_results.extend(seg_result)\n",
"results = []\n",
"for i in range(len(seg_results)):\n",
" results.append(np.argmax(seg_results[i], axis=0))\n",
"seg_results = erode(results, erode_kernel)\n",
"\n",
"# Create the pictures of segmentation results\n",
"for i in range(len(seg_results)):\n",
" mask_list.append(segmentation_map_to_image(seg_results[i], COLORMAP))\n",
"mask_stack = np.hstack(mask_list)\n",
"\n",
"if cv2.imwrite(f\"{DATA_DIR}/segmentation_results.jpg\", cv2.cvtColor(mask_stack, cv2.COLOR_RGB2BGR)):\n",
" print('The segmentation result image has been saved as \"segmentation_results.jpg\" in data')\n",
" plt.imshow(mask_stack)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Postprocess the models result and calculate the final readings\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"Use OpenCV function to find the location of the pointer in a scale map."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"# Find the pointer location in scale map and calculate the meters reading\n",
"rectangle_meters = circle_to_rectangle(seg_results)\n",
"line_scales, line_pointers = rectangle_to_line(rectangle_meters)\n",
"binaried_scales = mean_binarization(line_scales)\n",
"binaried_pointers = mean_binarization(line_pointers)\n",
"scale_locations = locate_scale(binaried_scales)\n",
"pointer_locations = locate_pointer(binaried_pointers)\n",
"pointed_scales = get_relative_location(scale_locations, pointer_locations)\n",
"meter_readings = calculate_reading(pointed_scales)\n",
"\n",
"rectangle_list = list()\n",
"# Plot the rectangle meters\n",
"for i in range(len(rectangle_meters)):\n",
" rectangle_list.append(segmentation_map_to_image(rectangle_meters[i], COLORMAP))\n",
"rectangle_meters_stack = np.hstack(rectangle_list)\n",
"\n",
"if cv2.imwrite(\n",
" f\"{DATA_DIR}/rectangle_meters.jpg\",\n",
" cv2.cvtColor(rectangle_meters_stack, cv2.COLOR_RGB2BGR),\n",
"):\n",
" print('The rectangle_meters result image has been saved as \"rectangle_meters.jpg\" in data')\n",
" plt.imshow(rectangle_meters_stack)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get the reading result on the meter picture\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# Create a final result photo with reading\n",
"for i in range(len(meter_readings)):\n",
" print(\"Meter {}: {:.3f}\".format(i + 1, meter_readings[i]))\n",
"\n",
"result_image = image.copy()\n",
"for i in range(len(loc)):\n",
" cv2.rectangle(result_image, (loc[i][0], loc[i][1]), (loc[i][2], loc[i][3]), (0, 150, 0), 3)\n",
" font = cv2.FONT_HERSHEY_SIMPLEX\n",
" cv2.rectangle(\n",
" result_image,\n",
" (loc[i][0], loc[i][1]),\n",
" (loc[i][0] + 100, loc[i][1] + 40),\n",
" (0, 150, 0),\n",
" -1,\n",
" )\n",
" cv2.putText(\n",
" result_image,\n",
" \"#{:.3f}\".format(meter_readings[i]),\n",
" (loc[i][0], loc[i][1] + 25),\n",
" font,\n",
" 0.8,\n",
" (255, 255, 255),\n",
" 2,\n",
" cv2.LINE_AA,\n",
" )\n",
"if cv2.imwrite(f\"{DATA_DIR}/reading_results.jpg\", result_image):\n",
" print('The reading results image has been saved as \"reading_results.jpg\" in data')\n",
" plt.imshow(cv2.cvtColor(result_image, cv2.COLOR_BGR2RGB))"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Try it with your meter photos!\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
}
],
"metadata": {
"interpreter": {
"hash": "e7370f93d1d0cde622a1f8e1c04877d8463912d04d973331ad4851f04de6915a"
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
},
"openvino_notebooks": {
"imageUrl": "https://user-images.githubusercontent.com/91237924/166135627-194405b0-6c25-4fd8-9ad1-83fb3a00a081.jpg",
"tags": {
"categories": [
"Model Demos"
],
"libraries": [],
"other": ["YOLO"],
"tasks": [
"Object Detection",
"Image Segmentation"
]
}
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|