Spaces:
Runtime error
Runtime error
File size: 28,387 Bytes
db5855f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 |
{
"cells": [
{
"cell_type": "markdown",
"id": "artificial-discretion",
"metadata": {},
"source": [
"# Working with Open Model Zoo Models\n",
"This tutorial shows how to download a model from [Open Model Zoo](https://github.com/openvinotoolkit/open_model_zoo), convert it to OpenVINO™ IR format, show information about the model, and benchmark the model.\n",
"\n",
"\n",
"#### Table of contents:\n",
"\n",
"- [OpenVINO and Open Model Zoo Tools](#OpenVINO-and-Open-Model-Zoo-Tools)\n",
"- [Preparation](#Preparation)\n",
" - [Model Name](#Model-Name)\n",
" - [Imports](#Imports)\n",
" - [Settings and Configuration](#Settings-and-Configuration)\n",
"- [Download a Model from Open Model Zoo](#Download-a-Model-from-Open-Model-Zoo)\n",
"- [Convert a Model to OpenVINO IR format](#Convert-a-Model-to-OpenVINO-IR-format)\n",
"- [Get Model Information](#Get-Model-Information)\n",
"- [Run Benchmark Tool](#Run-Benchmark-Tool)\n",
" - [Benchmark with Different Settings](#Benchmark-with-Different-Settings)\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "c4dda33e",
"metadata": {},
"source": [
"## OpenVINO and Open Model Zoo Tools\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"OpenVINO and Open Model Zoo tools are listed in the table below.\n",
"\n",
"| Tool | Command | Description |\n",
"|:-----------------|:--------------------|:--------------------------------------------------------|\n",
"| Model Downloader | `omz_downloader` | Download models from Open Model Zoo. |\n",
"| Model Converter | `omz_converter` | Convert Open Model Zoo models to OpenVINO's IR format. |\n",
"| Info Dumper | `omz_info_dumper` | Print information about Open Model Zoo models. |\n",
"| Benchmark Tool | `benchmark_app` | Benchmark model performance by computing inference time.|"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "57288459",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.3.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.0\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"# Install openvino package\n",
"%pip install -q \"openvino-dev>=2024.0.0\" torch torchvision --extra-index-url https://download.pytorch.org/whl/cpu"
]
},
{
"cell_type": "markdown",
"id": "fec90f61-08f3-4417-8a6f-ec61c9e5955b",
"metadata": {
"tags": [
"hide"
]
},
"source": [
"## Preparation\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"### Model Name\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Set `model_name` to the name of the Open Model Zoo model to use in this notebook. Refer to the list of [public](https://github.com/openvinotoolkit/open_model_zoo/blob/master/models/public/index.md) and [Intel](https://github.com/openvinotoolkit/open_model_zoo/blob/master/models/intel/index.md) pre-trained models for a full list of models that can be used. Set `model_name` to the model you want to use."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "21d6d2be-05a8-4c52-9ad9-af892a76db1f",
"metadata": {},
"outputs": [],
"source": [
"# model_name = \"resnet-50-pytorch\"\n",
"model_name = \"mobilenet-v2-pytorch\""
]
},
{
"cell_type": "markdown",
"id": "f0206a22-dc33-4666-ab2b-86386b97caca",
"metadata": {
"tags": [
"hide"
]
},
"source": [
"### Imports\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "impressed-uncertainty",
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"from pathlib import Path\n",
"\n",
"import openvino as ov\n",
"from IPython.display import Markdown, display\n",
"\n",
"# Fetch `notebook_utils` module\n",
"import requests\n",
"\n",
"r = requests.get(\n",
" url=\"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py\",\n",
")\n",
"\n",
"open(\"notebook_utils.py\", \"w\").write(r.text)\n",
"from notebook_utils import DeviceNotFoundAlert, NotebookAlert"
]
},
{
"cell_type": "markdown",
"id": "parental-assets",
"metadata": {
"tags": [
"hide"
]
},
"source": [
"### Settings and Configuration\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Set the file and directory paths. By default, this notebook downloads models from Open Model Zoo to the `open_model_zoo_models` directory in your `$HOME` directory. On Windows, the $HOME directory is usually `c:\\users\\username`, on Linux `/home/username`. To change the folder, change `base_model_dir` in the cell below.\n",
"\n",
"The following settings can be changed:\n",
"\n",
"* `base_model_dir`: Models will be downloaded into the `intel` and `public` folders in this directory.\n",
"* `omz_cache_dir`: Cache folder for Open Model Zoo. Specifying a cache directory is not required for Model Downloader and Model Converter, but it speeds up subsequent downloads.\n",
"* `precision`: If specified, only models with this precision will be downloaded and converted."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "korean-agency",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"base_model_dir: model, omz_cache_dir: cache, gpu_availble: False\n"
]
}
],
"source": [
"base_model_dir = Path(\"model\")\n",
"omz_cache_dir = Path(\"cache\")\n",
"precision = \"FP16\"\n",
"\n",
"# Check if an GPU is available on this system to use with Benchmark App.\n",
"core = ov.Core()\n",
"gpu_available = \"GPU\" in core.available_devices\n",
"\n",
"print(f\"base_model_dir: {base_model_dir}, omz_cache_dir: {omz_cache_dir}, gpu_availble: {gpu_available}\")"
]
},
{
"cell_type": "markdown",
"id": "judicial-preview",
"metadata": {},
"source": [
"## Download a Model from Open Model Zoo\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "rising-interval",
"metadata": {},
"source": [
"Specify, display and run the Model Downloader command to download the model."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "df2b0446-0c49-41cf-9f3f-dec1232249f7",
"metadata": {},
"outputs": [],
"source": [
"## Uncomment the next line to show help in omz_downloader which explains the command-line options.\n",
"\n",
"# !omz_downloader --help"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "556d0c12-15cf-492d-a1ed-41dff5090eff",
"metadata": {},
"outputs": [
{
"data": {
"text/markdown": [
"Download command: `omz_downloader --name mobilenet-v2-pytorch --output_dir model --cache_dir cache`"
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/markdown": [
"Downloading mobilenet-v2-pytorch..."
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"################|| Downloading mobilenet-v2-pytorch ||################\n",
"\n",
"========== Retrieving model/public/mobilenet-v2-pytorch/mobilenet_v2-b0353104.pth from the cache\n",
"\n"
]
}
],
"source": [
"download_command = f\"omz_downloader --name {model_name} --output_dir {base_model_dir} --cache_dir {omz_cache_dir}\"\n",
"display(Markdown(f\"Download command: `{download_command}`\"))\n",
"display(Markdown(f\"Downloading {model_name}...\"))\n",
"! $download_command"
]
},
{
"cell_type": "markdown",
"id": "proprietary-checklist",
"metadata": {},
"source": [
"## Convert a Model to OpenVINO IR format\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Specify, display and run the Model Converter command to convert the model to OpenVINO IR format. Model conversion may take a while. The output of the Model Converter command will be displayed. When the conversion is successful, the last lines of the output will include: `[ SUCCESS ] Generated IR version 11 model.` For downloaded models that are already in OpenVINO IR format, conversion will be skipped."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "11fe7461-90db-4585-b55f-b3df42b01274",
"metadata": {},
"outputs": [],
"source": [
"## Uncomment the next line to show Help in omz_converter which explains the command-line options.\n",
"\n",
"# !omz_converter --help"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "engaged-academy",
"metadata": {},
"outputs": [
{
"data": {
"text/markdown": [
"Convert command: `omz_converter --name mobilenet-v2-pytorch --precisions FP16 --download_dir model --output_dir model`"
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/markdown": [
"Converting mobilenet-v2-pytorch..."
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"========== Converting mobilenet-v2-pytorch to ONNX\n",
"Conversion to ONNX command: /home/ea/work/my_optimum_intel/optimum_env/bin/python -- /home/ea/work/my_optimum_intel/optimum_env/lib/python3.8/site-packages/openvino/model_zoo/internal_scripts/pytorch_to_onnx.py --model-name=mobilenet_v2 --weights=model/public/mobilenet-v2-pytorch/mobilenet_v2-b0353104.pth --import-module=torchvision.models --input-shape=1,3,224,224 --output-file=model/public/mobilenet-v2-pytorch/mobilenet-v2.onnx --input-names=data --output-names=prob\n",
"\n",
"ONNX check passed successfully.\n",
"\n",
"========== Converting mobilenet-v2-pytorch to IR (FP16)\n",
"Conversion command: /home/ea/work/my_optimum_intel/optimum_env/bin/python -- /home/ea/work/my_optimum_intel/optimum_env/bin/mo --framework=onnx --output_dir=model/public/mobilenet-v2-pytorch/FP16 --model_name=mobilenet-v2-pytorch --input=data '--mean_values=data[123.675,116.28,103.53]' '--scale_values=data[58.624,57.12,57.375]' --reverse_input_channels --output=prob --input_model=model/public/mobilenet-v2-pytorch/mobilenet-v2.onnx '--layout=data(NCHW)' '--input_shape=[1, 3, 224, 224]' --compress_to_fp16=True\n",
"\n",
"[ INFO ] Generated IR will be compressed to FP16. If you get lower accuracy, please consider disabling compression explicitly by adding argument --compress_to_fp16=False.\n",
"Find more information about compression to FP16 at https://docs.openvino.ai/2024/openvino-workflow/model-preparation/conversion-parameters.html\n",
"[ INFO ] The model was converted to IR v11, the latest model format that corresponds to the source DL framework input/output format. While IR v11 is backwards compatible with OpenVINO Inference Engine API v1.0, please use API v2.0 (as of 2022.1) to take advantage of the latest improvements in IR v11.\n",
"Find more information about API v2.0 and IR v11 at https://docs.openvino.ai/2023.3/openvino_2_0_transition_guide.html\n",
"[ INFO ] MO command line tool is considered as the legacy conversion API as of OpenVINO 2023.2 release. Please use OpenVINO Model Converter (OVC). OVC represents a lightweight alternative of MO and provides simplified model conversion API. \n",
"Find more information about transition from MO to OVC at https://docs.openvino.ai/2024/documentation/legacy-features/transition-legacy-conversion-api.html\n",
"[ SUCCESS ] Generated IR version 11 model.\n",
"[ SUCCESS ] XML file: /home/ea/work/openvino_notebooks/notebooks/model-tools/model/public/mobilenet-v2-pytorch/FP16/mobilenet-v2-pytorch.xml\n",
"[ SUCCESS ] BIN file: /home/ea/work/openvino_notebooks/notebooks/model-tools/model/public/mobilenet-v2-pytorch/FP16/mobilenet-v2-pytorch.bin\n",
"\n"
]
}
],
"source": [
"convert_command = f\"omz_converter --name {model_name} --precisions {precision} --download_dir {base_model_dir} --output_dir {base_model_dir}\"\n",
"display(Markdown(f\"Convert command: `{convert_command}`\"))\n",
"display(Markdown(f\"Converting {model_name}...\"))\n",
"\n",
"! $convert_command"
]
},
{
"cell_type": "markdown",
"id": "aa8d655f-215d-4e3c-adcb-e8fd4a2e8ab4",
"metadata": {},
"source": [
"## Get Model Information\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"The Info Dumper prints the following information for Open Model Zoo models:\n",
"\n",
"* Model name\n",
"* Description\n",
"* Framework that was used to train the model\n",
"* License URL\n",
"* Precisions supported by the model\n",
"* Subdirectory: the location of the downloaded model\n",
"* Task type\n",
"\n",
"This information can be shown by running `omz_info_dumper --name model_name` in a terminal. The information can also be parsed and used in scripts. \n",
"\n",
"In the next cell, run Info Dumper and use `json` to load the information in a dictionary. "
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "b8247daf-d3c5-4420-b4c8-d305ac4ace5b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'name': 'mobilenet-v2-pytorch',\n",
" 'composite_model_name': None,\n",
" 'description': 'MobileNet V2 is image classification model pre-trained on ImageNet dataset. This is a PyTorch* implementation of MobileNetV2 architecture as described in the paper \"Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation\" <https://arxiv.org/abs/1801.04381>.\\nThe model input is a blob that consists of a single image of \"1, 3, 224, 224\" in \"RGB\" order.\\nThe model output is typical object classifier for the 1000 different classifications matching with those in the ImageNet database.',\n",
" 'framework': 'pytorch',\n",
" 'license_url': 'https://raw.githubusercontent.com/pytorch/vision/master/LICENSE',\n",
" 'accuracy_config': '/home/ea/work/my_optimum_intel/optimum_env/lib/python3.8/site-packages/openvino/model_zoo/models/public/mobilenet-v2-pytorch/accuracy-check.yml',\n",
" 'model_config': '/home/ea/work/my_optimum_intel/optimum_env/lib/python3.8/site-packages/openvino/model_zoo/models/public/mobilenet-v2-pytorch/model.yml',\n",
" 'precisions': ['FP16', 'FP32'],\n",
" 'quantization_output_precisions': ['FP16-INT8', 'FP32-INT8'],\n",
" 'subdirectory': 'public/mobilenet-v2-pytorch',\n",
" 'task_type': 'classification',\n",
" 'input_info': [{'name': 'data',\n",
" 'shape': [1, 3, 224, 224],\n",
" 'layout': 'NCHW'}],\n",
" 'model_stages': []}]"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model_info_output = %sx omz_info_dumper --name $model_name\n",
"model_info = json.loads(model_info_output.get_nlstr())\n",
"\n",
"if len(model_info) > 1:\n",
" NotebookAlert(\n",
" f\"There are multiple IR files for the {model_name} model. The first model in the \"\n",
" \"omz_info_dumper output will be used for benchmarking. Change \"\n",
" \"`selected_model_info` in the cell below to select a different model from the list.\",\n",
" \"warning\",\n",
" )\n",
"\n",
"model_info"
]
},
{
"cell_type": "markdown",
"id": "7ea7e868-fd2d-4d11-9c87-7aa1f1301083",
"metadata": {},
"source": [
"Having information of the model in a JSON file enables extraction of the path to the model directory, and building the path to the OpenVINO IR file."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "de1a319e-bbef-414c-921d-60938b4a01a8",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"model/public/mobilenet-v2-pytorch/FP16/mobilenet-v2-pytorch.xml exists: True\n"
]
}
],
"source": [
"selected_model_info = model_info[0]\n",
"model_path = base_model_dir / Path(selected_model_info[\"subdirectory\"]) / Path(f\"{precision}/{selected_model_info['name']}.xml\")\n",
"print(model_path, \"exists:\", model_path.exists())"
]
},
{
"cell_type": "markdown",
"id": "54e01154-f700-479f-9111-147c95595d46",
"metadata": {},
"source": [
"## Run Benchmark Tool\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"By default, Benchmark Tool runs inference for 60 seconds in asynchronous mode on CPU. It returns inference speed as latency (milliseconds per image) and throughput values (frames per second). "
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "282452e8-24c7-49c0-bdb2-10677971c30f",
"metadata": {},
"outputs": [],
"source": [
"## Uncomment the next line to show Help in benchmark_app which explains the command-line options.\n",
"# !benchmark_app --help"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "9812b0c8-8cd0-4840-bca3-a28171d055b7",
"metadata": {
"tags": [],
"test_replace": {
"-t 15": "-t 3"
}
},
"outputs": [
{
"data": {
"text/markdown": [
"Benchmark command: `benchmark_app -m model/public/mobilenet-v2-pytorch/FP16/mobilenet-v2-pytorch.xml -t 15`"
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/markdown": [
"Benchmarking mobilenet-v2-pytorch on CPU with async inference for 15 seconds..."
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[Step 1/11] Parsing and validating input arguments\n",
"[ INFO ] Parsing input parameters\n",
"[Step 2/11] Loading OpenVINO Runtime\n",
"[ INFO ] OpenVINO:\n",
"[ INFO ] Build ................................. 2024.0.0-14412-faf97c13331\n",
"[ INFO ] \n",
"[ INFO ] Device info:\n",
"[ INFO ] CPU\n",
"[ INFO ] Build ................................. 2024.0.0-14412-faf97c13331\n",
"[ INFO ] \n",
"[ INFO ] \n",
"[Step 3/11] Setting device configuration\n",
"[ ERROR ] type object 'openvino._pyopenvino.properties.hint.PerformanceMo' has no attribute 'UNDEFINED'\n",
"Traceback (most recent call last):\n",
" File \"/home/ea/work/my_optimum_intel/optimum_env/lib/python3.8/site-packages/openvino/tools/benchmark/main.py\", line 171, in main\n",
" set_performance_hint(device)\n",
" File \"/home/ea/work/my_optimum_intel/optimum_env/lib/python3.8/site-packages/openvino/tools/benchmark/main.py\", line 109, in set_performance_hint\n",
" perf_hint = properties.hint.PerformanceMode.UNDEFINED\n",
"AttributeError: type object 'openvino._pyopenvino.properties.hint.PerformanceMo' has no attribute 'UNDEFINED'\n"
]
}
],
"source": [
"benchmark_command = f\"benchmark_app -m {model_path} -t 15\"\n",
"display(Markdown(f\"Benchmark command: `{benchmark_command}`\"))\n",
"display(Markdown(f\"Benchmarking {model_name} on CPU with async inference for 15 seconds...\"))\n",
"\n",
"! $benchmark_command"
]
},
{
"cell_type": "markdown",
"id": "75891996-cf53-4c76-ad3c-5fb468ccd7bb",
"metadata": {},
"source": [
"### Benchmark with Different Settings\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "markdown",
"id": "88d64dd7-789d-4536-ab8f-84999c73afaf",
"metadata": {},
"source": [
"The `benchmark_app` tool displays logging information that is not always necessary. A more compact result is achieved when the output is parsed with `json`.\n",
"\n",
"The following cells show some examples of `benchmark_app` with different parameters. Below are some useful parameters:\n",
"\n",
"- `-d` A device to use for inference. For example: CPU, GPU, MULTI. Default: CPU.\n",
"- `-t` Time expressed in number of seconds to run inference. Default: 60.\n",
"- `-api` Use asynchronous (async) or synchronous (sync) inference. Default: async.\n",
"- `-b` Batch size. Default: 1.\n",
"\n",
"\n",
"Run `! benchmark_app --help` to get an overview of all possible command-line parameters.\n",
"\n",
"In the next cell, define the `benchmark_model()` function that calls `benchmark_app`. This makes it easy to try different combinations. In the cell below that, you display available devices on the system.\n",
"\n",
"> **Note**: In this notebook, `benchmark_app` runs for 15 seconds to give a quick indication of performance. For more accurate performance, it is recommended to run inference for at least one minute by setting the `t` parameter to 60 or higher, and run `benchmark_app` in a terminal/command prompt after closing other applications. Copy the **benchmark command** and paste it in a command prompt where you have activated the `openvino_env` environment. "
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "7742390e-df71-45e1-9572-f3cbaa576ec3",
"metadata": {},
"outputs": [],
"source": [
"def benchmark_model(model_xml, device=\"CPU\", seconds=60, api=\"async\", batch=1):\n",
" core = ov.Core()\n",
" model_path = Path(model_xml)\n",
" if (\"GPU\" in device) and (\"GPU\" not in core.available_devices):\n",
" DeviceNotFoundAlert(\"GPU\")\n",
" else:\n",
" benchmark_command = f\"benchmark_app -m {model_path} -d {device} -t {seconds} -api {api} -b {batch}\"\n",
" display(Markdown(f\"**Benchmark {model_path.name} with {device} for {seconds} seconds with {api} inference**\"))\n",
" display(Markdown(f\"Benchmark command: `{benchmark_command}`\"))\n",
"\n",
" benchmark_output = %sx $benchmark_command\n",
" print(\"command ended\")\n",
" benchmark_result = [line for line in benchmark_output if not (line.startswith(r\"[\") or line.startswith(\" \") or line == \"\")]\n",
" print(\"\\n\".join(benchmark_result))"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "298904f0-638c-4958-876a-3b8c8bd06518",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU: Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz\n"
]
}
],
"source": [
"core = ov.Core()\n",
"\n",
"# Show devices available for OpenVINO Runtime\n",
"for device in core.available_devices:\n",
" device_name = core.get_property(device, \"FULL_DEVICE_NAME\")\n",
" print(f\"{device}: {device_name}\")"
]
},
{
"cell_type": "markdown",
"id": "3896e4bf-f7d0-4529-be97-921ef548de2a",
"metadata": {},
"source": [
"You can select inference device using device widget"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "7e977f84-a382-467c-a4db-7a7210117a90",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "af7e0ee163054ea3ae8fba6390dd11e4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Dropdown(description='Device:', options=('CPU', 'AUTO'), value='CPU')"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import ipywidgets as widgets\n",
"\n",
"device = widgets.Dropdown(\n",
" options=core.available_devices + [\"AUTO\"],\n",
" value=\"CPU\",\n",
" description=\"Device:\",\n",
" disabled=False,\n",
")\n",
"\n",
"device"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "486919e1",
"metadata": {},
"outputs": [
{
"data": {
"text/markdown": [
"**Benchmark mobilenet-v2-pytorch.xml with CPU for 15 seconds with async inference**"
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/markdown": [
"Benchmark command: `benchmark_app -m model/public/mobilenet-v2-pytorch/FP16/mobilenet-v2-pytorch.xml -d CPU -t 15 -api async -b 1`"
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"command ended\n",
"Traceback (most recent call last):\n",
" File \"/home/ea/work/my_optimum_intel/optimum_env/lib/python3.8/site-packages/openvino/tools/benchmark/main.py\", line 171, in main\n",
" set_performance_hint(device)\n",
" File \"/home/ea/work/my_optimum_intel/optimum_env/lib/python3.8/site-packages/openvino/tools/benchmark/main.py\", line 109, in set_performance_hint\n",
" perf_hint = properties.hint.PerformanceMode.UNDEFINED\n",
"AttributeError: type object 'openvino._pyopenvino.properties.hint.PerformanceMo' has no attribute 'UNDEFINED'\n"
]
}
],
"source": [
"benchmark_model(model_path, device=device.value, seconds=15, api=\"async\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
},
"openvino_notebooks": {
"imageUrl": "",
"tags": {
"categories": [
"API Overview",
"Convert"
],
"libraries": [],
"other": [],
"tasks": [
"Image Classification"
]
}
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|