Spaces:
Runtime error
Runtime error
File size: 23,140 Bytes
db5855f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Named entity recognition with OpenVINO™\n",
"\n",
"\n",
"The Named Entity Recognition(NER) is a natural language processing method that involves the detecting of key information in the unstructured text and categorizing it into pre-defined categories. These categories or named entities refer to the key subjects of text, such as names, locations, companies and etc.\n",
"\n",
"NER is a good method for the situations when a high-level overview of a large amount of text is needed. NER can be helpful with such task as analyzing key information in unstructured text or automates the information extraction of large amounts of data.\n",
"\n",
"\n",
"This tutorial shows how to perform named entity recognition using OpenVINO. We will use the pre-trained model [`elastic/distilbert-base-cased-finetuned-conll03-english`](https://huggingface.co/elastic/distilbert-base-cased-finetuned-conll03-english). It is DistilBERT based model, trained on [`conll03 english dataset`](https://huggingface.co/datasets/conll2003). The model can recognize four named entities in text: persons, locations, organizations and names of miscellaneous entities that do not belong to the previous three groups. The model is sensitive to capital letters.\n",
"\n",
"To simplify the user experience, the [Hugging Face Optimum](https://huggingface.co/docs/optimum) library is used to convert the model to OpenVINO™ IR format and quantize it.\n",
"\n",
"\n",
"#### Table of contents:\n",
"\n",
"- [Prerequisites](#Prerequisites)\n",
"- [Download the NER model](#Download-the-NER-model)\n",
"- [Quantize the model, using Hugging Face Optimum API](#Quantize-the-model,-using-Hugging-Face-Optimum-API)\n",
"- [Compare the Original and Quantized Models](#Compare-the-Original-and-Quantized-Models)\n",
" - [Compare performance](#Compare-performance)\n",
" - [Compare size of the models](#Compare-size-of-the-models)\n",
"- [Prepare demo for Named Entity Recognition OpenVINO Runtime](#Prepare-demo-for-Named-Entity-Recognition-OpenVINO-Runtime)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install -q \"diffusers>=0.17.1\" \"openvino>=2023.1.0\" \"nncf>=2.5.0\" \"gradio>=4.19\" \"onnx>=1.11.0\" \"transformers>=4.33.0\" \"torch>=2.1\" --extra-index-url https://download.pytorch.org/whl/cpu\n",
"%pip install -q \"git+https://github.com/huggingface/optimum-intel.git\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Download the NER model\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"We load the [`distilbert-base-cased-finetuned-conll03-english`](https://huggingface.co/elastic/distilbert-base-cased-finetuned-conll03-english) model from the [Hugging Face Hub](https://huggingface.co/models) with [Hugging Face Transformers library](https://huggingface.co/docs/transformers/index)and Optimum Intel with OpenVINO integration.\n",
"\n",
"`OVModelForTokenClassification` is represent model class for Named Entity Recognition task in Optimum Intel. Model class initialization starts with calling `from_pretrained` method. For conversion original PyTorch model to OpenVINO format on the fly, `export=True` parameter should be used. To easily save the model, you can use the `save_pretrained()` method. After saving the model on disk, we can use pre-converted model for next usage, and speedup deployment process."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:nncf:NNCF initialized successfully. Supported frameworks detected: torch, tensorflow, onnx, openvino\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda'\n",
"2024-04-05 18:35:04.594311: I tensorflow/core/util/port.cc:111] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
"2024-04-05 18:35:04.596755: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.\n",
"2024-04-05 18:35:04.628293: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:9342] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
"2024-04-05 18:35:04.628326: E tensorflow/compiler/xla/stream_executor/cuda/cuda_fft.cc:609] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
"2024-04-05 18:35:04.628349: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1518] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
"2024-04-05 18:35:04.634704: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.\n",
"2024-04-05 18:35:04.635314: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
"2024-04-05 18:35:05.607762: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n",
"/home/ea/miniconda3/lib/python3.11/site-packages/transformers/utils/import_utils.py:519: FutureWarning: `is_torch_tpu_available` is deprecated and will be removed in 4.41.0. Please use the `is_torch_xla_available` instead.\n",
" warnings.warn(\n",
"Framework not specified. Using pt to export the model.\n",
"Using the export variant default. Available variants are:\n",
" - default: The default ONNX variant.\n",
"Using framework PyTorch: 2.1.2+cpu\n",
"/home/ea/miniconda3/lib/python3.11/site-packages/transformers/modeling_utils.py:4225: FutureWarning: `_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead\n",
" warnings.warn(\n",
"/home/ea/miniconda3/lib/python3.11/site-packages/nncf/torch/dynamic_graph/wrappers.py:80: TracerWarning: torch.tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect.\n",
" op1 = operator(*args, **kwargs)\n",
"Compiling the model to CPU ...\n"
]
}
],
"source": [
"from pathlib import Path\n",
"from transformers import AutoTokenizer\n",
"from optimum.intel import OVModelForTokenClassification\n",
"\n",
"original_ner_model_dir = Path(\"original_ner_model\")\n",
"\n",
"model_id = \"elastic/distilbert-base-cased-finetuned-conll03-english\"\n",
"if not original_ner_model_dir.exists():\n",
" model = OVModelForTokenClassification.from_pretrained(model_id, export=True)\n",
"\n",
" model.save_pretrained(original_ner_model_dir)\n",
"else:\n",
" model = OVModelForTokenClassification.from_pretrained(model_id, export=True)\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(model_id)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Quantize the model, using Hugging Face Optimum API\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Post-training static quantization introduces an additional calibration step where data is fed through the network in order to compute the activations quantization parameters. For quantization it will be used [Hugging Face Optimum Intel API](https://huggingface.co/docs/optimum/intel/index).\n",
"\n",
"To handle the NNCF quantization process we use class [`OVQuantizer`](https://huggingface.co/docs/optimum/intel/reference_ov#optimum.intel.OVQuantizer). The quantization with Hugging Face Optimum Intel API contains the next steps:\n",
"* Model class initialization starts with calling `from_pretrained()` method.\n",
"* Next we create calibration dataset with `get_calibration_dataset()` to use for the post-training static quantization calibration step. \n",
"* After we quantize a model and save the resulting model in the OpenVINO IR format to save_directory with `quantize()` method. \n",
"* Then we load the quantized model. The Optimum Inference models are API compatible with Hugging Face Transformers models and we can just replace `AutoModelForXxx` class with the corresponding `OVModelForXxx` class. So we use `OVModelForTokenClassification` to load the model."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"test_replace": {"num_samples=100,": "num_samples=10,"}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/ea/miniconda3/lib/python3.11/site-packages/datasets/load.py:2516: FutureWarning: 'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n",
"You can remove this warning by passing 'token=<use_auth_token>' instead.\n",
" warnings.warn(\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e166ccbed15a4f738160a2ecd9b1fa59",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
"</pre>\n"
],
"text/plain": [
"\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c8f6e0c512fc4c96ab7701bd7423db0a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
"</pre>\n"
],
"text/plain": [
"\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:nncf:18 ignored nodes were found by name in the NNCFGraph\n",
"INFO:nncf:25 ignored nodes were found by name in the NNCFGraph\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cc2867963a7341a28aa9f08847e439ff",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
"</pre>\n"
],
"text/plain": [
"\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5a1342cad34e467dbe7585841b225338",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
"</pre>\n"
],
"text/plain": [
"\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from functools import partial\n",
"from optimum.intel import OVQuantizer, OVConfig, OVQuantizationConfig\n",
"\n",
"from optimum.intel import OVModelForTokenClassification\n",
"\n",
"\n",
"def preprocess_fn(data, tokenizer):\n",
" examples = []\n",
" for data_chunk in data[\"tokens\"]:\n",
" examples.append(\" \".join(data_chunk))\n",
"\n",
" return tokenizer(examples, padding=True, truncation=True, max_length=128)\n",
"\n",
"\n",
"quantizer = OVQuantizer.from_pretrained(model)\n",
"calibration_dataset = quantizer.get_calibration_dataset(\n",
" \"conll2003\",\n",
" preprocess_function=partial(preprocess_fn, tokenizer=tokenizer),\n",
" num_samples=100,\n",
" dataset_split=\"train\",\n",
" preprocess_batch=True,\n",
")\n",
"\n",
"# The directory where the quantized model will be saved\n",
"quantized_ner_model_dir = \"quantized_ner_model\"\n",
"\n",
"# Apply static quantization and save the resulting model in the OpenVINO IR format\n",
"ov_config = OVConfig(quantization_config=OVQuantizationConfig(num_samples=len(calibration_dataset)))\n",
"quantizer.quantize(\n",
" calibration_dataset=calibration_dataset,\n",
" save_directory=quantized_ner_model_dir,\n",
" ov_config=ov_config,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "12e9426554484eafacbd27508006015b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Dropdown(description='Device:', index=3, options=('CPU', 'GPU.0', 'GPU.1', 'AUTO'), value='AUTO')"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import ipywidgets as widgets\n",
"import openvino as ov\n",
"\n",
"core = ov.Core()\n",
"device = widgets.Dropdown(\n",
" options=core.available_devices + [\"AUTO\"],\n",
" value=\"AUTO\",\n",
" description=\"Device:\",\n",
" disabled=False,\n",
")\n",
"\n",
"device"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Compiling the model to AUTO ...\n"
]
}
],
"source": [
"# Load the quantized model\n",
"optimized_model = OVModelForTokenClassification.from_pretrained(quantized_ner_model_dir, device=device.value)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Compare the Original and Quantized Models\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Compare the original [`distilbert-base-cased-finetuned-conll03-english`](https://huggingface.co/elastic/distilbert-base-cased-finetuned-conll03-english) model with quantized and converted to OpenVINO IR format models to see the difference."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Compare performance\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"As the Optimum Inference models are API compatible with Hugging Face Transformers models, we can just use `pipleine()` from [Hugging Face Transformers API](https://huggingface.co/docs/transformers/index) for inference."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"from transformers import pipeline\n",
"\n",
"ner_pipeline_optimized = pipeline(\"token-classification\", model=optimized_model, tokenizer=tokenizer)\n",
"\n",
"ner_pipeline_original = pipeline(\"token-classification\", model=model, tokenizer=tokenizer)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Median inference time of quantized model: 0.0063508255407214165 \n",
"Median inference time of original model: 0.007429798366501927 \n"
]
}
],
"source": [
"import time\n",
"import numpy as np\n",
"\n",
"\n",
"def calc_perf(ner_pipeline):\n",
" inference_times = []\n",
"\n",
" for data in calibration_dataset:\n",
" text = \" \".join(data[\"tokens\"])\n",
" start = time.perf_counter()\n",
" ner_pipeline(text)\n",
" end = time.perf_counter()\n",
" inference_times.append(end - start)\n",
"\n",
" return np.median(inference_times)\n",
"\n",
"\n",
"print(f\"Median inference time of quantized model: {calc_perf(ner_pipeline_optimized)} \")\n",
"\n",
"print(f\"Median inference time of original model: {calc_perf(ner_pipeline_original)} \")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Compare size of the models\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Size of original model in Bytes is 260795516\n",
"Size of quantized model in Bytes is 65802712\n"
]
}
],
"source": [
"from pathlib import Path\n",
"\n",
"fp_model_file = Path(original_ner_model_dir) / \"openvino_model.bin\"\n",
"print(f\"Size of original model in Bytes is {fp_model_file.stat().st_size}\")\n",
"print(f'Size of quantized model in Bytes is {Path(quantized_ner_model_dir, \"openvino_model.bin\").stat().st_size}')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prepare demo for Named Entity Recognition OpenVINO Runtime\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Now, you can try NER model on own text. Put your sentence to input text box, click Submit button, the model label the recognized entities in the text."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [],
"test_replace": {
"demo.launch(debug=True)": "demo.launch()",
"demo.launch(share=True, debug=True)": "demo.launch(share=True)"
}
},
"outputs": [],
"source": [
"import gradio as gr\n",
"\n",
"examples = [\n",
" \"My name is Wolfgang and I live in Berlin.\",\n",
"]\n",
"\n",
"\n",
"def run_ner(text):\n",
" output = ner_pipeline_optimized(text)\n",
" return {\"text\": text, \"entities\": output}\n",
"\n",
"\n",
"demo = gr.Interface(\n",
" run_ner,\n",
" gr.Textbox(placeholder=\"Enter sentence here...\", label=\"Input Text\"),\n",
" gr.HighlightedText(label=\"Output Text\"),\n",
" examples=examples,\n",
" allow_flagging=\"never\",\n",
")\n",
"\n",
"if __name__ == \"__main__\":\n",
" try:\n",
" demo.launch(debug=True)\n",
" except Exception:\n",
" demo.launch(share=True, debug=True)\n",
"# if you are launching remotely, specify server_name and server_port\n",
"# demo.launch(server_name='your server name', server_port='server port in int')\n",
"# Read more in the docs: https://gradio.app/docs/"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
},
"openvino_notebooks": {
"imageUrl": "",
"tags": {
"categories": [
"Model Demos"
],
"libraries": [],
"other": [],
"tasks": [
"Named Entity Recognition",
"Token Classification"
]
}
},
"vscode": {
"interpreter": {
"hash": "1c707170576399eaaed0c4f2e01a2d1b61ba791ba1842c47e5b3e4f6f79b82ab"
}
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|