File size: 22,952 Bytes
db5855f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
{
 "cells": [
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Live Object Detection with OpenVINO™\n",
    "\n",
    "This notebook demonstrates live object detection with OpenVINO, using the [SSDLite MobileNetV2](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/ssdlite_mobilenet_v2) from [Open Model Zoo](https://github.com/openvinotoolkit/open_model_zoo/). Final part of this notebook shows live inference results from a webcam. Additionally, you can also upload a video file.\n",
    "\n",
    "> **NOTE**: To use this notebook with a webcam, you need to run the notebook on a computer with a webcam. If you run the notebook on a server, the webcam will not work. However, you can still do inference on a video.\n",
    "\n",
    "\n",
    "#### Table of contents:\n",
    "\n",
    "- [Preparation](#Preparation)\n",
    "    - [Install requirements](#Install-requirements)\n",
    "    - [Imports](#Imports)\n",
    "- [The Model](#The-Model)\n",
    "    - [Download the Model](#Download-the-Model)\n",
    "    - [Convert the Model](#Convert-the-Model)\n",
    "    - [Load the Model](#Load-the-Model)\n",
    "- [Processing](#Processing)\n",
    "    - [Process Results](#Process-Results)\n",
    "    - [Main Processing Function](#Main-Processing-Function)\n",
    "- [Run](#Run)\n",
    "    - [Run Live Object Detection](#Run-Live-Object-Detection)\n",
    "- [References](#References)\n",
    "\n"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Preparation\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "### Install requirements\n",
    "[back to top ⬆️](#Table-of-contents:)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%pip install -q \"openvino-dev>=2024.0.0\"\n",
    "%pip install -q tensorflow\n",
    "%pip install -q opencv-python requests tqdm\n",
    "\n",
    "# Fetch `notebook_utils` module\n",
    "import requests\n",
    "\n",
    "r = requests.get(\n",
    "    url=\"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py\",\n",
    ")\n",
    "\n",
    "open(\"notebook_utils.py\", \"w\").write(r.text)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Imports\n",
    "[back to top ⬆️](#Table-of-contents:)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import collections\n",
    "import tarfile\n",
    "import time\n",
    "from pathlib import Path\n",
    "\n",
    "import cv2\n",
    "import numpy as np\n",
    "from IPython import display\n",
    "import openvino as ov\n",
    "from openvino.tools.mo.front import tf as ov_tf_front\n",
    "from openvino.tools import mo\n",
    "\n",
    "import notebook_utils as utils"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## The Model\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "### Download the Model\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "Use the `download_file`, a function from the `notebook_utils` file. It automatically creates a directory structure and downloads the selected model. This step is skipped if the package is already downloaded and unpacked. The chosen model comes from the public directory, which means it must be converted into OpenVINO Intermediate Representation (OpenVINO IR).\n",
    "\n",
    "> **NOTE**: Using a model other than `ssdlite_mobilenet_v2` may require different conversion parameters as well as pre- and post-processing."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# A directory where the model will be downloaded.\n",
    "base_model_dir = Path(\"model\")\n",
    "\n",
    "# The name of the model from Open Model Zoo\n",
    "model_name = \"ssdlite_mobilenet_v2\"\n",
    "\n",
    "archive_name = Path(f\"{model_name}_coco_2018_05_09.tar.gz\")\n",
    "model_url = f\"https://storage.openvinotoolkit.org/repositories/open_model_zoo/public/2022.1/{model_name}/{archive_name}\"\n",
    "\n",
    "# Download the archive\n",
    "downloaded_model_path = base_model_dir / archive_name\n",
    "if not downloaded_model_path.exists():\n",
    "    utils.download_file(model_url, downloaded_model_path.name, downloaded_model_path.parent)\n",
    "\n",
    "# Unpack the model\n",
    "tf_model_path = base_model_dir / archive_name.with_suffix(\"\").stem / \"frozen_inference_graph.pb\"\n",
    "if not tf_model_path.exists():\n",
    "    with tarfile.open(downloaded_model_path) as file:\n",
    "        file.extractall(base_model_dir)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Convert the Model\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "The pre-trained model is in TensorFlow format. To use it with OpenVINO, convert it to OpenVINO IR format, using [Model Conversion API](https://docs.openvino.ai/2024/openvino-workflow/model-preparation.html) (`mo.convert_model` function). If the model has been already converted, this step is skipped."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false,
    "jupyter": {
     "outputs_hidden": false
    }
   },
   "outputs": [],
   "source": [
    "precision = \"FP16\"\n",
    "# The output path for the conversion.\n",
    "converted_model_path = Path(\"model\") / f\"{model_name}_{precision.lower()}.xml\"\n",
    "\n",
    "# Convert it to IR if not previously converted\n",
    "trans_config_path = Path(ov_tf_front.__file__).parent / \"ssd_v2_support.json\"\n",
    "if not converted_model_path.exists():\n",
    "    ov_model = mo.convert_model(\n",
    "        tf_model_path,\n",
    "        compress_to_fp16=(precision == \"FP16\"),\n",
    "        transformations_config=trans_config_path,\n",
    "        tensorflow_object_detection_api_pipeline_config=tf_model_path.parent / \"pipeline.config\",\n",
    "        reverse_input_channels=True,\n",
    "    )\n",
    "    ov.save_model(ov_model, converted_model_path)\n",
    "    del ov_model"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Load the Model\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "Only a few lines of code are required to run the model. First, initialize OpenVINO Runtime. Then, read the network architecture and model weights from the `.bin` and `.xml` files to compile for the desired device. If you choose `GPU` you need to wait for a while, as the startup time is much longer than in the case of `CPU`.\n",
    "\n",
    "There is a possibility to let OpenVINO decide which hardware offers the best performance. For that purpose, just use `AUTO`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import ipywidgets as widgets\n",
    "\n",
    "core = ov.Core()\n",
    "\n",
    "device = widgets.Dropdown(\n",
    "    options=core.available_devices + [\"AUTO\"],\n",
    "    value=\"AUTO\",\n",
    "    description=\"Device:\",\n",
    "    disabled=False,\n",
    ")\n",
    "\n",
    "device"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read the network and corresponding weights from a file.\n",
    "model = core.read_model(model=converted_model_path)\n",
    "# Compile the model for CPU (you can choose manually CPU, GPU etc.)\n",
    "# or let the engine choose the best available device (AUTO).\n",
    "compiled_model = core.compile_model(model=model, device_name=device.value)\n",
    "\n",
    "# Get the input and output nodes.\n",
    "input_layer = compiled_model.input(0)\n",
    "output_layer = compiled_model.output(0)\n",
    "\n",
    "# Get the input size.\n",
    "height, width = list(input_layer.shape)[1:3]"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Input and output layers have the names of the input node and output node respectively. In the case of SSDLite MobileNetV2, there is 1 input and 1 output."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "input_layer.any_name, output_layer.any_name"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Processing\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "### Process Results\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "First, list all available classes and create colors for them. Then, in the post-process stage, transform boxes with normalized coordinates `[0, 1]` into boxes with pixel coordinates `[0, image_size_in_px]`. Afterward, use [non-maximum suppression](https://paperswithcode.com/method/non-maximum-suppression) to reject overlapping detections and those below the probability threshold (0.5). Finally, draw boxes and labels inside them."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/\n",
    "classes = [\n",
    "    \"background\",\n",
    "    \"person\",\n",
    "    \"bicycle\",\n",
    "    \"car\",\n",
    "    \"motorcycle\",\n",
    "    \"airplane\",\n",
    "    \"bus\",\n",
    "    \"train\",\n",
    "    \"truck\",\n",
    "    \"boat\",\n",
    "    \"traffic light\",\n",
    "    \"fire hydrant\",\n",
    "    \"street sign\",\n",
    "    \"stop sign\",\n",
    "    \"parking meter\",\n",
    "    \"bench\",\n",
    "    \"bird\",\n",
    "    \"cat\",\n",
    "    \"dog\",\n",
    "    \"horse\",\n",
    "    \"sheep\",\n",
    "    \"cow\",\n",
    "    \"elephant\",\n",
    "    \"bear\",\n",
    "    \"zebra\",\n",
    "    \"giraffe\",\n",
    "    \"hat\",\n",
    "    \"backpack\",\n",
    "    \"umbrella\",\n",
    "    \"shoe\",\n",
    "    \"eye glasses\",\n",
    "    \"handbag\",\n",
    "    \"tie\",\n",
    "    \"suitcase\",\n",
    "    \"frisbee\",\n",
    "    \"skis\",\n",
    "    \"snowboard\",\n",
    "    \"sports ball\",\n",
    "    \"kite\",\n",
    "    \"baseball bat\",\n",
    "    \"baseball glove\",\n",
    "    \"skateboard\",\n",
    "    \"surfboard\",\n",
    "    \"tennis racket\",\n",
    "    \"bottle\",\n",
    "    \"plate\",\n",
    "    \"wine glass\",\n",
    "    \"cup\",\n",
    "    \"fork\",\n",
    "    \"knife\",\n",
    "    \"spoon\",\n",
    "    \"bowl\",\n",
    "    \"banana\",\n",
    "    \"apple\",\n",
    "    \"sandwich\",\n",
    "    \"orange\",\n",
    "    \"broccoli\",\n",
    "    \"carrot\",\n",
    "    \"hot dog\",\n",
    "    \"pizza\",\n",
    "    \"donut\",\n",
    "    \"cake\",\n",
    "    \"chair\",\n",
    "    \"couch\",\n",
    "    \"potted plant\",\n",
    "    \"bed\",\n",
    "    \"mirror\",\n",
    "    \"dining table\",\n",
    "    \"window\",\n",
    "    \"desk\",\n",
    "    \"toilet\",\n",
    "    \"door\",\n",
    "    \"tv\",\n",
    "    \"laptop\",\n",
    "    \"mouse\",\n",
    "    \"remote\",\n",
    "    \"keyboard\",\n",
    "    \"cell phone\",\n",
    "    \"microwave\",\n",
    "    \"oven\",\n",
    "    \"toaster\",\n",
    "    \"sink\",\n",
    "    \"refrigerator\",\n",
    "    \"blender\",\n",
    "    \"book\",\n",
    "    \"clock\",\n",
    "    \"vase\",\n",
    "    \"scissors\",\n",
    "    \"teddy bear\",\n",
    "    \"hair drier\",\n",
    "    \"toothbrush\",\n",
    "    \"hair brush\",\n",
    "]\n",
    "\n",
    "# Colors for the classes above (Rainbow Color Map).\n",
    "colors = cv2.applyColorMap(\n",
    "    src=np.arange(0, 255, 255 / len(classes), dtype=np.float32).astype(np.uint8),\n",
    "    colormap=cv2.COLORMAP_RAINBOW,\n",
    ").squeeze()\n",
    "\n",
    "\n",
    "def process_results(frame, results, thresh=0.6):\n",
    "    # The size of the original frame.\n",
    "    h, w = frame.shape[:2]\n",
    "    # The 'results' variable is a [1, 1, 100, 7] tensor.\n",
    "    results = results.squeeze()\n",
    "    boxes = []\n",
    "    labels = []\n",
    "    scores = []\n",
    "    for _, label, score, xmin, ymin, xmax, ymax in results:\n",
    "        # Create a box with pixels coordinates from the box with normalized coordinates [0,1].\n",
    "        boxes.append(tuple(map(int, (xmin * w, ymin * h, (xmax - xmin) * w, (ymax - ymin) * h))))\n",
    "        labels.append(int(label))\n",
    "        scores.append(float(score))\n",
    "\n",
    "    # Apply non-maximum suppression to get rid of many overlapping entities.\n",
    "    # See https://paperswithcode.com/method/non-maximum-suppression\n",
    "    # This algorithm returns indices of objects to keep.\n",
    "    indices = cv2.dnn.NMSBoxes(bboxes=boxes, scores=scores, score_threshold=thresh, nms_threshold=0.6)\n",
    "\n",
    "    # If there are no boxes.\n",
    "    if len(indices) == 0:\n",
    "        return []\n",
    "\n",
    "    # Filter detected objects.\n",
    "    return [(labels[idx], scores[idx], boxes[idx]) for idx in indices.flatten()]\n",
    "\n",
    "\n",
    "def draw_boxes(frame, boxes):\n",
    "    for label, score, box in boxes:\n",
    "        # Choose color for the label.\n",
    "        color = tuple(map(int, colors[label]))\n",
    "        # Draw a box.\n",
    "        x2 = box[0] + box[2]\n",
    "        y2 = box[1] + box[3]\n",
    "        cv2.rectangle(img=frame, pt1=box[:2], pt2=(x2, y2), color=color, thickness=3)\n",
    "\n",
    "        # Draw a label name inside the box.\n",
    "        cv2.putText(\n",
    "            img=frame,\n",
    "            text=f\"{classes[label]} {score:.2f}\",\n",
    "            org=(box[0] + 10, box[1] + 30),\n",
    "            fontFace=cv2.FONT_HERSHEY_COMPLEX,\n",
    "            fontScale=frame.shape[1] / 1000,\n",
    "            color=color,\n",
    "            thickness=1,\n",
    "            lineType=cv2.LINE_AA,\n",
    "        )\n",
    "\n",
    "    return frame"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Main Processing Function\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "Run object detection on the specified source. Either a webcam or a video file."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Main processing function to run object detection.\n",
    "def run_object_detection(source=0, flip=False, use_popup=False, skip_first_frames=0):\n",
    "    player = None\n",
    "    try:\n",
    "        # Create a video player to play with target fps.\n",
    "        player = utils.VideoPlayer(source=source, flip=flip, fps=30, skip_first_frames=skip_first_frames)\n",
    "        # Start capturing.\n",
    "        player.start()\n",
    "        if use_popup:\n",
    "            title = \"Press ESC to Exit\"\n",
    "            cv2.namedWindow(winname=title, flags=cv2.WINDOW_GUI_NORMAL | cv2.WINDOW_AUTOSIZE)\n",
    "\n",
    "        processing_times = collections.deque()\n",
    "        while True:\n",
    "            # Grab the frame.\n",
    "            frame = player.next()\n",
    "            if frame is None:\n",
    "                print(\"Source ended\")\n",
    "                break\n",
    "            # If the frame is larger than full HD, reduce size to improve the performance.\n",
    "            scale = 1280 / max(frame.shape)\n",
    "            if scale < 1:\n",
    "                frame = cv2.resize(\n",
    "                    src=frame,\n",
    "                    dsize=None,\n",
    "                    fx=scale,\n",
    "                    fy=scale,\n",
    "                    interpolation=cv2.INTER_AREA,\n",
    "                )\n",
    "\n",
    "            # Resize the image and change dims to fit neural network input.\n",
    "            input_img = cv2.resize(src=frame, dsize=(width, height), interpolation=cv2.INTER_AREA)\n",
    "            # Create a batch of images (size = 1).\n",
    "            input_img = input_img[np.newaxis, ...]\n",
    "\n",
    "            # Measure processing time.\n",
    "\n",
    "            start_time = time.time()\n",
    "            # Get the results.\n",
    "            results = compiled_model([input_img])[output_layer]\n",
    "            stop_time = time.time()\n",
    "            # Get poses from network results.\n",
    "            boxes = process_results(frame=frame, results=results)\n",
    "\n",
    "            # Draw boxes on a frame.\n",
    "            frame = draw_boxes(frame=frame, boxes=boxes)\n",
    "\n",
    "            processing_times.append(stop_time - start_time)\n",
    "            # Use processing times from last 200 frames.\n",
    "            if len(processing_times) > 200:\n",
    "                processing_times.popleft()\n",
    "\n",
    "            _, f_width = frame.shape[:2]\n",
    "            # Mean processing time [ms].\n",
    "            processing_time = np.mean(processing_times) * 1000\n",
    "            fps = 1000 / processing_time\n",
    "            cv2.putText(\n",
    "                img=frame,\n",
    "                text=f\"Inference time: {processing_time:.1f}ms ({fps:.1f} FPS)\",\n",
    "                org=(20, 40),\n",
    "                fontFace=cv2.FONT_HERSHEY_COMPLEX,\n",
    "                fontScale=f_width / 1000,\n",
    "                color=(0, 0, 255),\n",
    "                thickness=1,\n",
    "                lineType=cv2.LINE_AA,\n",
    "            )\n",
    "\n",
    "            # Use this workaround if there is flickering.\n",
    "            if use_popup:\n",
    "                cv2.imshow(winname=title, mat=frame)\n",
    "                key = cv2.waitKey(1)\n",
    "                # escape = 27\n",
    "                if key == 27:\n",
    "                    break\n",
    "            else:\n",
    "                # Encode numpy array to jpg.\n",
    "                _, encoded_img = cv2.imencode(ext=\".jpg\", img=frame, params=[cv2.IMWRITE_JPEG_QUALITY, 100])\n",
    "                # Create an IPython image.\n",
    "                i = display.Image(data=encoded_img)\n",
    "                # Display the image in this notebook.\n",
    "                display.clear_output(wait=True)\n",
    "                display.display(i)\n",
    "    # ctrl-c\n",
    "    except KeyboardInterrupt:\n",
    "        print(\"Interrupted\")\n",
    "    # any different error\n",
    "    except RuntimeError as e:\n",
    "        print(e)\n",
    "    finally:\n",
    "        if player is not None:\n",
    "            # Stop capturing.\n",
    "            player.stop()\n",
    "        if use_popup:\n",
    "            cv2.destroyAllWindows()"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Run\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "### Run Live Object Detection\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "Use a webcam as the video input. By default, the primary webcam is set with `source=0`. If you have multiple webcams, each one will be assigned a consecutive number starting at 0. Set `flip=True` when using a front-facing camera. Some web browsers, especially Mozilla Firefox, may cause flickering. If you experience flickering, set `use_popup=True`.\n",
    "\n",
    "> **NOTE**: To use this notebook with a webcam, you need to run the notebook on a computer with a webcam. If you run the notebook on a server (for example, Binder), the webcam will not work. Popup mode may not work if you run this notebook on a remote computer (for example, Binder).\n",
    "\n",
    "If you do not have a webcam, you can still run this demo with a video file. Any [format supported by OpenCV](https://docs.opencv.org/4.5.1/dd/d43/tutorial_py_video_display.html) will work.\n",
    "\n",
    "Run the object detection:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "USE_WEBCAM = False\n",
    "\n",
    "video_file = \"https://storage.openvinotoolkit.org/repositories/openvino_notebooks/data/data/video/Coco%20Walking%20in%20Berkeley.mp4\"\n",
    "cam_id = 0\n",
    "\n",
    "source = cam_id if USE_WEBCAM else video_file\n",
    "\n",
    "run_object_detection(source=source, flip=isinstance(source, int), use_popup=False)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## References\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "1. [SSDLite MobileNetV2](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/ssdlite_mobilenet_v2)\n",
    "2. [Open Model Zoo](https://github.com/openvinotoolkit/open_model_zoo/)\n",
    "3. [Non-Maximum Suppression](https://paperswithcode.com/method/non-maximum-suppression)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  },
  "openvino_notebooks": {
   "imageUrl": "https://user-images.githubusercontent.com/4547501/141471665-82b28c86-cf64-4bfe-98b3-c314658f2d96.gif",
   "tags": {
    "categories": [
     "Live Demos"
    ],
    "libraries": [],
    "other": [],
    "tasks": [
     "Object Detection"
    ]
   }
  },
  "widgets": {
   "application/vnd.jupyter.widget-state+json": {
    "state": {},
    "version_major": 2,
    "version_minor": 0
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}