Spaces:
Runtime error
Runtime error
File size: 23,655 Bytes
db5855f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "fefeca4e-2808-4f33-a346-07f7e12bc59e",
"metadata": {},
"source": [
"# OpenVINO Tokenizers: Incorporate Text Processing Into OpenVINO Pipelines\n",
"\n",
"<center><img src=\"https://github.com/openvinotoolkit/openvino_notebooks/assets/51917466/047f9167-a4ef-4d3d-a33b-d124541f9e2c\"></center>\n",
"\n",
"OpenVINO Tokenizers is an OpenVINO extension and a Python library designed to streamline tokenizer conversion for seamless integration into your projects. It supports Python and C++ environments and is compatible with all major platforms: Linux, Windows, and MacOS.\n",
"\n",
"\n",
"#### Table of contents:\n",
"- [Tokenization Basics](#Tokenization-Basics)\n",
"- [Acquiring OpenVINO Tokenizers](#Acquiring-OpenVINO-Tokenizers)\n",
" - [Convert Tokenizer from HuggingFace Hub with CLI Tool](#Convert-Tokenizer-from_HuggingFace-Hub-with-CLI-Tool)\n",
" - [Convert Tokenizer from HuggingFace Hub with Python API](#Convert-Tokenizer-from-HuggingFace-Hub-with-Python-API)\n",
"- [Text Generation Pipeline with OpenVINO Tokenizers](#Text-Generation-Pipeline-with-OpenVINO-Tokenizers)\n",
"- [Merge Tokenizer into a Model](#Merge-Tokenizer-into-a-Model)\n",
"- [Conclusion](#Conclusion)\n",
"- [Links](#Links)\n",
"\n",
"\n",
"## Tokenization Basics\n",
"\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"One does not simply put text into a neural network, only numbers. The process of transforming text into a sequence of numbers is called **tokenization**. It usually contains several steps that transform the original string, splitting it into parts - tokens - with an associated number in a dictionary. You can check the [interactive GPT-4 tokenizer](https://platform.openai.com/tokenizer) to gain an intuitive understanding of the principles of tokenizer work.\n",
"\n",
"<center><img src=\"https://github.com/openvinotoolkit/openvino_notebooks/assets/51917466/55cc2420-da2a-4022-bae3-84d566a68e4c\"></center>\n",
"\n",
"There are two important points in the tokenizer-model relation:\n",
"1. Every neural network with text input is paired with a tokenizer and _cannot be used without it_.\n",
"2. To reproduce the model's accuracy on a specific task, it is essential to _utilize the same tokenizer employed during the model training_.\n",
"\n",
"That is why almost all model repositories on [HuggingFace Hub](https://HuggingFace.co/models) also contain tokenizer files (`tokenizer.json`, `vocab.txt`, `merges.txt`, etc.).\n",
"\n",
"The process of transforming a sequence of numbers into a string is called **detokenization**. Detokenizer can share the token dictionary with a tokenizer, like any LLM chat model, or operate with an entirely distinct dictionary. For instance, translation models dealing with different source and target languages often necessitate separate dictionaries.\n",
"\n",
"<center><img src=\"https://github.com/openvinotoolkit/openvino_notebooks/assets/51917466/942f1692-b7f2-4aca-93ef-32e9866c204f\"></center>\n",
"\n",
"Some tasks only need a tokenizer, like text classification, named entity recognition, question answering, and feature extraction. On the other hand, for tasks such as text generation, chat, translation, and abstractive summarization, both a tokenizer and a detokenizer are required."
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "8d502090-78eb-454c-a7a6-03b128f95ff6",
"metadata": {},
"source": [
"## Acquiring OpenVINO Tokenizers\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"OpenVINO Tokenizers Python library allows you to convert HuggingFace tokenizers into OpenVINO models. To install all required dependencies use `pip install openvino-tokenizers[transformers]`."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0c698c94-b852-4b06-b699-7d417fb55e10",
"metadata": {},
"outputs": [],
"source": [
"%pip install -Uq pip\n",
"%pip install --pre -Uq openvino-tokenizers[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly\n",
"%pip install \"torch>=2.1\" --extra-index-url https://download.pytorch.org/whl/cpu"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "576b3d35-1282-4328-aa11-e871759a6dbb",
"metadata": {},
"outputs": [],
"source": [
"from pathlib import Path\n",
"\n",
"\n",
"tokenizer_dir = Path(\"tokenizer/\")\n",
"model_id = \"TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T\""
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "0da69135-265e-482f-a399-521e3980dec7",
"metadata": {},
"source": [
"### Convert Tokenizer from HuggingFace Hub with CLI Tool\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"The first way is to use the CLI utility, bundled with OpenVINO Tokenizers. Use `--with-detokenizer` flag to add the detokenizer model to the output. By setting `--clean-up-tokenization-spaces=False` we ensure that the detokenizer correctly decodes a code-generation model output. `--trust-remote-code` flag works the same way as passing `trust_remote_code=True` to `AutoTokenizer.from_pretrained` constructor."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "f8ff589d-2f44-4812-894a-ba25a826292e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loading Huggingface Tokenizer...\n",
"Converting Huggingface Tokenizer to OpenVINO...\n",
"Saved OpenVINO Tokenizer: tokenizer/openvino_tokenizer.xml, tokenizer/openvino_tokenizer.bin\n",
"Saved OpenVINO Detokenizer: tokenizer/openvino_detokenizer.xml, tokenizer/openvino_detokenizer.bin\n"
]
}
],
"source": [
"!convert_tokenizer $model_id --with-detokenizer -o $tokenizer_dir"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "e6cbb08b-f980-458e-8c5b-0d752d47aa26",
"metadata": {},
"source": [
"> ⚠️ If you have any problems with the command above on MacOS, try to [install tbb](https://formulae.brew.sh/formula/tbb#default).\n",
"\n",
"The result is two OpenVINO models: `openvino_tokenizer` and `openvino_detokenizer`. Both can be interacted with using `read_model`, `compile_model` and `save_model`, similar to any other OpenVINO model.\n",
"\n",
"### Convert Tokenizer from HuggingFace Hub with Python API\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"The other method is to pass HuggingFace `hf_tokenizer` object to `convert_tokenizer` function:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "a517c20c-b375-4ebc-b8a5-9eaae31bf62b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(<Model: 'tokenizer'\n",
" inputs[\n",
" <ConstOutput: names[string_input] shape[?] type: string>\n",
" ]\n",
" outputs[\n",
" <ConstOutput: names[input_ids] shape[?,?] type: i64>,\n",
" <ConstOutput: names[attention_mask] shape[?,?] type: i64>\n",
" ]>,\n",
" <Model: 'detokenizer'\n",
" inputs[\n",
" <ConstOutput: names[Parameter_21] shape[?,?] type: i64>\n",
" ]\n",
" outputs[\n",
" <ConstOutput: names[string_output] shape[?] type: string>\n",
" ]>)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from transformers import AutoTokenizer\n",
"from openvino_tokenizers import convert_tokenizer\n",
"\n",
"\n",
"hf_tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
"ov_tokenizer, ov_detokenizer = convert_tokenizer(hf_tokenizer, with_detokenizer=True)\n",
"ov_tokenizer, ov_detokenizer"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "cd211b9f-37a9-4ae7-bc3e-4619643c08b8",
"metadata": {},
"source": [
"That way you get OpenVINO model objects. Use `save_model` function from OpenVINO to reuse converted tokenizers later:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "eefda978-2668-4486-825e-30a1afbd240b",
"metadata": {},
"outputs": [],
"source": [
"from openvino import save_model\n",
"\n",
"\n",
"save_model(ov_tokenizer, tokenizer_dir / \"openvino_tokenizer.xml\")\n",
"save_model(ov_detokenizer, tokenizer_dir / \"openvino_detokenizer.xml\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "0b16883a-2a69-4ae7-ab57-99d9b35784e1",
"metadata": {},
"source": [
"To use the tokenizer, compile the converted model and input a list of strings. It's essential to be aware that not all original tokenizers support multiple strings (also called batches) as input. This limitation arises from the requirement for all resulting number sequences to maintain the same length. To address this, a padding token must be specified, which will be appended to shorter tokenized strings. In cases where no padding token is determined in the original tokenizer, OpenVINO Tokenizers defaults to using $0$ for padding. Presently, _only right-side padding is supported_, typically used for classification tasks, but not suitable for text generation."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "0fb96120-57f4-4f2d-b585-84ce0367cb51",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Token ids: [[ 1 4321]\n",
" [ 1 6031]]\n",
"Detokenized text: ['<s> Test' '<s> strings']\n"
]
}
],
"source": [
"from openvino import compile_model\n",
"\n",
"\n",
"tokenizer, detokenizer = compile_model(ov_tokenizer), compile_model(ov_detokenizer)\n",
"test_strings = [\"Test\", \"strings\"]\n",
"\n",
"token_ids = tokenizer(test_strings)[\"input_ids\"]\n",
"print(f\"Token ids: {token_ids}\")\n",
"\n",
"detokenized_text = detokenizer(token_ids)[\"string_output\"]\n",
"print(f\"Detokenized text: {detokenized_text}\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "e602d7b3-b1cb-46eb-9738-4fbb41bb2b83",
"metadata": {},
"source": [
"We can compare the result of converted (de)tokenizer with the original one:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "753727b4-0318-4806-90f3-a9c9c56a4297",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Token ids: [[1, 4321], [1, 6031]]\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2024-04-02 18:45:50.238827: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
"2024-04-02 18:45:50.275055: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
"2024-04-02 18:45:50.909410: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Detokenized text: ['<s> Test', '<s> strings']\n"
]
}
],
"source": [
"hf_token_ids = hf_tokenizer(test_strings).input_ids\n",
"print(f\"Token ids: {hf_token_ids}\")\n",
"\n",
"hf_detokenized_text = hf_tokenizer.batch_decode(hf_token_ids)\n",
"print(f\"Detokenized text: {hf_detokenized_text}\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "9deb9c29-31e0-436c-9f52-4e396a37283f",
"metadata": {},
"source": [
"## Text Generation Pipeline with OpenVINO Tokenizers\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Let's build a text generation pipeline with OpenVINO Tokenizers and minimal dependencies. To obtain an OpenVINO model we will use the Optimum library. The latest version allows you to get a so-called [stateful model](https://docs.openvino.ai/2024/openvino-workflow/running-inference/stateful-models.html).\n",
"\n",
"The original `TinyLlama-1.1B-intermediate-step-1431k-3T` model is 4.4Gb. To reduce network and disk usage we will load a converted model which has also been compressed to `int8`. The original conversion command is commented."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "a9870da3-477f-49c5-af80-ef081f92abeb",
"metadata": {},
"outputs": [],
"source": [
"model_dir = Path(Path(model_id).name)\n",
"\n",
"if not model_dir.exists():\n",
" # converting the original model\n",
" # %pip install -U \"git+https://github.com/huggingface/optimum-intel.git\" \"nncf>=2.8.0\" onnx\n",
" # %optimum-cli export openvino -m $model_id --task text-generation-with-past $model_dir\n",
"\n",
" # load already converted model\n",
" from huggingface_hub import hf_hub_download\n",
"\n",
" hf_hub_download(\n",
" \"chgk13/TinyLlama-1.1B-intermediate-step-1431k-3T\",\n",
" filename=\"openvino_model.xml\",\n",
" local_dir=model_dir,\n",
" )\n",
" hf_hub_download(\n",
" \"chgk13/TinyLlama-1.1B-intermediate-step-1431k-3T\",\n",
" filename=\"openvino_model.bin\",\n",
" local_dir=model_dir,\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "fe7c0342-0e40-4f17-8340-a0ff0c99b6f1",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"from tqdm.notebook import trange\n",
"from pathlib import Path\n",
"from openvino_tokenizers import add_greedy_decoding\n",
"from openvino_tokenizers.constants import EOS_TOKEN_ID_NAME\n",
"from openvino import Core\n",
"\n",
"\n",
"core = Core()\n",
"\n",
"# add the greedy decoding subgraph on top of LLM to get the most probable token as an output\n",
"ov_model = add_greedy_decoding(core.read_model(model_dir / \"openvino_model.xml\"))\n",
"compiled_model = core.compile_model(ov_model)\n",
"infer_request = compiled_model.create_infer_request()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "f6f53a35-446d-4a07-9e67-5794a53b12ba",
"metadata": {},
"source": [
"The `infer_request` object provides control over the model's state - a Key-Value cache that speeds up inference by reducing computations Multiple inference requests can be created, and each request maintains a distinct and separate state.."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "58a493cc-e29d-46b5-bb6c-d28e17651d85",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "af5dd23fe83c4fed8ce6b7b0a8ed41e9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/10 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Prompt:\n",
"Quick brown fox jumped\n",
"Generated:\n",
"over the fence.\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
}
],
"source": [
"text_input = [\"Quick brown fox jumped\"]\n",
"\n",
"model_input = {name.any_name: output for name, output in tokenizer(text_input).items()}\n",
"\n",
"if \"position_ids\" in (input.any_name for input in infer_request.model_inputs):\n",
" model_input[\"position_ids\"] = np.arange(model_input[\"input_ids\"].shape[1], dtype=np.int64)[np.newaxis, :]\n",
"\n",
"# no beam search, set idx to 0\n",
"model_input[\"beam_idx\"] = np.array([0], dtype=np.int32)\n",
"# end of sentence token is that model signifies the end of text generation\n",
"# read EOS token ID from rt_info of tokenizer/detokenizer ov.Model object\n",
"eos_token = ov_tokenizer.get_rt_info(EOS_TOKEN_ID_NAME).value\n",
"\n",
"tokens_result = np.array([[]], dtype=np.int64)\n",
"\n",
"# reset KV cache inside the model before inference\n",
"infer_request.reset_state()\n",
"max_infer = 10\n",
"\n",
"for _ in trange(max_infer):\n",
" infer_request.start_async(model_input)\n",
" infer_request.wait()\n",
"\n",
" # get a prediction for the last token on the first inference\n",
" output_token = infer_request.get_output_tensor().data[:, -1:]\n",
" tokens_result = np.hstack((tokens_result, output_token))\n",
" if output_token[0, 0] == eos_token:\n",
" break\n",
"\n",
" # prepare input for new inference\n",
" model_input[\"input_ids\"] = output_token\n",
" model_input[\"attention_mask\"] = np.hstack((model_input[\"attention_mask\"].data, [[1]]))\n",
" model_input[\"position_ids\"] = np.hstack(\n",
" (\n",
" model_input[\"position_ids\"].data,\n",
" [[model_input[\"position_ids\"].data.shape[-1]]],\n",
" )\n",
" )\n",
"\n",
"text_result = detokenizer(tokens_result)[\"string_output\"]\n",
"print(f\"Prompt:\\n{text_input[0]}\")\n",
"print(f\"Generated:\\n{text_result[0]}\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "7beb6ec6-2484-44ce-b61b-c7ae605dffee",
"metadata": {},
"source": [
"## Merge Tokenizer into a Model\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Packages like `tensorflow-text` offer the convenience of integrating text processing directly into the model, streamlining both distribution and usage. Similarly, with OpenVINO Tokenizers, you can create models that combine a converted tokenizer and a model. It's important to note that not all scenarios benefit from this merge. In cases where a tokenizer is used once and a model is inferred multiple times, as seen in the earlier text generation example, maintaining a separate (de)tokenizer and model is advisable to prevent unnecessary tokenization-detokenization cycles during inference. Conversely, if both a tokenizer and a model are used once in each pipeline inference, merging simplifies the workflow and aids in avoiding the creation of intermediate objects:\n",
"\n",
"<center><img src=\"https://github.com/openvinotoolkit/openvino_notebooks/assets/51917466/d4ece285-e445-4b76-a1ab-356427900860\"></center>\n",
"\n",
"The OpenVINO Python API allows you to avoid this by using the `share_inputs` option during inference, but it requires additional input from a developer every time the model is inferred. Combining the models and tokenizers simplifies memory management."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "c044b56b-dae0-4fdb-97df-2aa555285f35",
"metadata": {},
"outputs": [],
"source": [
"model_id = \"mrm8488/bert-tiny-finetuned-sms-spam-detection\"\n",
"model_dir = Path(Path(model_id).name)\n",
"\n",
"if not model_dir.exists():\n",
" %pip install -qU git+https://github.com/huggingface/optimum-intel.git onnx\n",
" !optimum-cli export openvino --model $model_id --task text-classification $model_dir\n",
" !convert_tokenizer $model_id -o $model_dir"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "c6a42d4c-1982-41b9-9612-aa19138518ac",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Logits: [[ 1.2007061 -1.4698029]]\n"
]
}
],
"source": [
"from openvino import Core, save_model\n",
"from openvino_tokenizers import connect_models\n",
"\n",
"\n",
"core = Core()\n",
"text_input = [\"Free money!!!\"]\n",
"\n",
"ov_tokenizer = core.read_model(model_dir / \"openvino_tokenizer.xml\")\n",
"ov_model = core.read_model(model_dir / \"openvino_model.xml\")\n",
"combined_model = connect_models(ov_tokenizer, ov_model)\n",
"save_model(combined_model, model_dir / \"combined_openvino_model.xml\")\n",
"\n",
"compiled_combined_model = core.compile_model(combined_model)\n",
"openvino_output = compiled_combined_model(text_input)\n",
"\n",
"print(f\"Logits: {openvino_output['logits']}\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "5e5e3084-e206-4b39-8ca0-2ee087af10ef",
"metadata": {},
"source": [
"## Conclusion\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"The OpenVINO Tokenizers integrate text processing operations into the OpenVINO ecosystem. Enabling the conversion of HuggingFace tokenizers into OpenVINO models, the library allows efficient deployment of deep learning pipelines across varied environments. The feature of combining tokenizers and models not only simplifies memory management but also helps to streamline model usage and deployment.\n",
"\n",
"\n",
"## Links\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"- [Installation instructions for different environments](https://github.com/openvinotoolkit/openvino_tokenizers?tab=readme-ov-file#installation)\n",
"- [Supported Tokenizer Types](https://github.com/openvinotoolkit/openvino_tokenizers?tab=readme-ov-file#supported-tokenizer-types)\n",
"- [OpenVINO.GenAI repository with the C++ example of OpenVINO Tokenizers usage](https://github.com/openvinotoolkit/openvino.genai/tree/master/text_generation/causal_lm/cpp)\n",
"- [HuggingFace Tokenizers Comparison Table](https://github.com/openvinotoolkit/openvino_tokenizers?tab=readme-ov-file#output-match-by-model)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
},
"openvino_notebooks": {
"imageUrl": "https://github.com/openvinotoolkit/openvino_notebooks/assets/51917466/047f9167-a4ef-4d3d-a33b-d124541f9e2c",
"tags": {
"categories": [
"API Overview",
"Convert",
"Optimize"
],
"libraries": [],
"other": [],
"tasks": [
"Text Classification",
"Text Generation"
]
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|