Spaces:
Runtime error
Runtime error
File size: 30,834 Bytes
db5855f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "ba0d9296-7fa6-4025-aedf-d2a19b05ff0d",
"metadata": {},
"source": [
"# PaddleOCR with OpenVINO™\n",
"\n",
"This demo shows how to run PP-OCR model on OpenVINO natively. Instead of exporting the PaddlePaddle model to ONNX and then converting to the OpenVINO Intermediate Representation (OpenVINO IR) format with model conversion API, you can now read directly from the PaddlePaddle Model without any conversions. [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR) is an ultra-light OCR model trained with PaddlePaddle deep learning framework, that aims to create multilingual and practical OCR tools. \n",
"\n",
"The PaddleOCR pre-trained model used in the demo refers to the *\"Chinese and English ultra-lightweight PP-OCR model (9.4M)\"*. More open source pre-trained models can be downloaded at [PaddleOCR GitHub](https://github.com/PaddlePaddle/PaddleOCR) or [PaddleOCR Gitee](https://gitee.com/paddlepaddle/PaddleOCR). Working pipeline of the PaddleOCR is as follows:\n",
"\n",
"<img align='center' src= \"https://raw.githubusercontent.com/yoyowz/classification/master/images/pipeline.png\" alt=\"drawing\" width=\"1000\"/>\n",
"\n",
"> **NOTE**: To use this notebook with a webcam, you need to run the notebook on a computer with a webcam. If you run the notebook on a server, the webcam will not work. You can still do inference on a video file.\n",
"\n",
"\n",
"#### Table of contents:\n",
"\n",
"- [Imports](#Imports)\n",
" - [Select inference device](#Select-inference-device)\n",
" - [Models for PaddleOCR](#Models-for-PaddleOCR)\n",
" - [Download the Model for Text **Detection**](#Download-the-Model-for-Text-**Detection**)\n",
" - [Load the Model for Text **Detection**](#Load-the-Model-for-Text-**Detection**)\n",
" - [Download the Model for Text **Recognition**](#Download-the-Model-for-Text-**Recognition**)\n",
" - [Load the Model for Text **Recognition** with Dynamic Shape](#Load-the-Model-for-Text-**Recognition**-with-Dynamic-Shape)\n",
" - [Preprocessing Image Functions for Text Detection and Recognition](#Preprocessing-Image-Functions-for-Text-Detection-and-Recognition)\n",
" - [Postprocessing Image for Text Detection](#Postprocessing-Image-for-Text-Detection)\n",
" - [Main Processing Function for PaddleOCR](#Main-Processing-Function-for-PaddleOCR)\n",
"- [Run Live PaddleOCR with OpenVINO](#Run-Live-PaddleOCR-with-OpenVINO)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "448c7e9e",
"metadata": {},
"outputs": [],
"source": [
"%pip install -q \"openvino>=2023.1.0\"\n",
"%pip install -q \"paddlepaddle>=2.5.1\"\n",
"%pip install -q \"pyclipper>=1.2.1\" \"shapely>=1.7.1\" tqdm"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "0e5a53f7-e1c5-4aca-879f-da2dd081b989",
"metadata": {
"tags": []
},
"source": [
"## Imports\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f9486a04-b8bb-4bf5-9e13-845f2143a71b",
"metadata": {},
"outputs": [],
"source": [
"import cv2\n",
"import numpy as np\n",
"import paddle\n",
"import math\n",
"import time\n",
"import collections\n",
"from PIL import Image\n",
"from pathlib import Path\n",
"import tarfile\n",
"\n",
"import openvino as ov\n",
"from IPython import display\n",
"import copy"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4b54398c",
"metadata": {},
"outputs": [],
"source": [
"# Import local modules\n",
"\n",
"if not Path(\"./notebook_utils.py\").exists():\n",
" # Fetch `notebook_utils` module\n",
" import requests\n",
"\n",
" r = requests.get(\n",
" url=\"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py\",\n",
" )\n",
"\n",
" open(\"notebook_utils.py\", \"w\").write(r.text)\n",
"import notebook_utils as utils\n",
"import pre_post_processing as processing"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "ebe5b65c-ca61-4342-9e3b-475f76d1c096",
"metadata": {},
"source": [
"### Select inference device\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"select device from dropdown list for running inference using OpenVINO"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "236d4528-1963-4776-bcaa-c95bd94430b4",
"metadata": {},
"outputs": [],
"source": [
"import ipywidgets as widgets\n",
"\n",
"core = ov.Core()\n",
"\n",
"device = widgets.Dropdown(\n",
" options=core.available_devices + [\"AUTO\"],\n",
" value=\"AUTO\",\n",
" description=\"Device:\",\n",
" disabled=False,\n",
")\n",
"\n",
"device"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "ee4ea41d-18a8-4914-b367-d5717111d8e8",
"metadata": {},
"source": [
"### Models for PaddleOCR\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"PaddleOCR includes two parts of deep learning models, text detection and text recognition. Pre-trained models used in the demo are downloaded and stored in the \"model\" folder.\n",
"\n",
"Only a few lines of code are required to run the model. First, initialize the runtime for inference. Then, read the network architecture and model weights from the `.pdmodel` and `.pdiparams` files to load to CPU/GPU."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "789f3c2f-d692-458e-8ec9-b7c6e63e3c49",
"metadata": {},
"outputs": [],
"source": [
"# Define the function to download text detection and recognition models from PaddleOCR resources.\n",
"\n",
"\n",
"def run_model_download(model_url: str, model_file_path: Path) -> None:\n",
" \"\"\"\n",
" Download pre-trained models from PaddleOCR resources\n",
"\n",
" Parameters:\n",
" model_url: url link to pre-trained models\n",
" model_file_path: file path to store the downloaded model\n",
" \"\"\"\n",
" archive_path = model_file_path.absolute().parent.parent / model_url.split(\"/\")[-1]\n",
" if model_file_path.is_file():\n",
" print(\"Model already exists\")\n",
" else:\n",
" # Download the model from the server, and untar it.\n",
" print(\"Downloading the pre-trained model... May take a while...\")\n",
"\n",
" # Create a directory.\n",
" utils.download_file(model_url, archive_path.name, archive_path.parent)\n",
" print(\"Model Downloaded\")\n",
"\n",
" file = tarfile.open(archive_path)\n",
" res = file.extractall(archive_path.parent)\n",
" file.close()\n",
" if not res:\n",
" print(f\"Model Extracted to {model_file_path}.\")\n",
" else:\n",
" print(\"Error Extracting the model. Please check the network.\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "e541150c-0f98-41c6-a97c-97acb26efd2f",
"metadata": {},
"source": [
"#### Download the Model for Text **Detection**\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "02fe27ea-0aaf-4ecb-bce2-858d70c84e93",
"metadata": {},
"outputs": [],
"source": [
"# A directory where the model will be downloaded.\n",
"\n",
"det_model_url = \"https://storage.openvinotoolkit.org/repositories/openvino_notebooks/models/paddle-ocr/ch_PP-OCRv3_det_infer.tar\"\n",
"det_model_file_path = Path(\"model/ch_PP-OCRv3_det_infer/inference.pdmodel\")\n",
"\n",
"run_model_download(det_model_url, det_model_file_path)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "2f454531-81f0-4468-9867-3f9de9775aaf",
"metadata": {},
"source": [
"#### Load the Model for Text **Detection**\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f9c5c83a-961c-4d98-8b20-5e96c8ef71f3",
"metadata": {},
"outputs": [],
"source": [
"# Initialize OpenVINO Runtime for text detection.\n",
"core = ov.Core()\n",
"det_model = core.read_model(model=det_model_file_path)\n",
"det_compiled_model = core.compile_model(model=det_model, device_name=device.value)\n",
"\n",
"# Get input and output nodes for text detection.\n",
"det_input_layer = det_compiled_model.input(0)\n",
"det_output_layer = det_compiled_model.output(0)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "5ec5c940-626c-4cf7-a90f-833200969846",
"metadata": {},
"source": [
"#### Download the Model for Text **Recognition**\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "89c0a07a-8186-47b5-ad95-f104a84d13d8",
"metadata": {},
"outputs": [],
"source": [
"rec_model_url = \"https://storage.openvinotoolkit.org/repositories/openvino_notebooks/models/paddle-ocr/ch_PP-OCRv3_rec_infer.tar\"\n",
"rec_model_file_path = Path(\"model/ch_PP-OCRv3_rec_infer/inference.pdmodel\")\n",
"\n",
"run_model_download(rec_model_url, rec_model_file_path)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "20155aeb-401a-4759-baee-dcb24a605ece",
"metadata": {},
"source": [
"#### Load the Model for Text **Recognition** with Dynamic Shape\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "927c2017-33af-4449-a7a4-10dfea86c110",
"metadata": {},
"source": [
"Input to text recognition model refers to detected bounding boxes with different image sizes, for example, dynamic input shapes. Hence:\n",
"\n",
"1. Input dimension with dynamic input shapes needs to be specified before loading text recognition model.\n",
"2. Dynamic shape is specified by assigning -1 to the input dimension or by setting the upper bound of the input dimension using, for example, `Dimension(1, 512)`."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3d196913-6542-4177-87ab-c5aa1994f8e8",
"metadata": {},
"outputs": [],
"source": [
"# Read the model and corresponding weights from a file.\n",
"rec_model = core.read_model(model=rec_model_file_path)\n",
"\n",
"# Assign dynamic shapes to every input layer on the last dimension.\n",
"for input_layer in rec_model.inputs:\n",
" input_shape = input_layer.partial_shape\n",
" input_shape[3] = -1\n",
" rec_model.reshape({input_layer: input_shape})\n",
"\n",
"rec_compiled_model = core.compile_model(model=rec_model, device_name=\"AUTO\")\n",
"\n",
"# Get input and output nodes.\n",
"rec_input_layer = rec_compiled_model.input(0)\n",
"rec_output_layer = rec_compiled_model.output(0)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "573a1a11-faec-41af-bf43-08b90d28cec3",
"metadata": {},
"source": [
"### Preprocessing Image Functions for Text Detection and Recognition\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "fb3befa4-1cf8-4ac2-a5a0-e0e73498d755",
"metadata": {},
"source": [
"Define preprocessing functions for text detection and recognition:\n",
"1. Preprocessing for text detection: resize and normalize input images.\n",
"2. Preprocessing for text recognition: resize and normalize detected box images to the same size (for example, `(3, 32, 320)` size for images with Chinese text) for easy batching in inference."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "93bc8364-109b-4a32-b12b-bcb85f23b38c",
"metadata": {},
"outputs": [],
"source": [
"# Preprocess for text detection.\n",
"def image_preprocess(input_image, size):\n",
" \"\"\"\n",
" Preprocess input image for text detection\n",
"\n",
" Parameters:\n",
" input_image: input image\n",
" size: value for the image to be resized for text detection model\n",
" \"\"\"\n",
" img = cv2.resize(input_image, (size, size))\n",
" img = np.transpose(img, [2, 0, 1]) / 255\n",
" img = np.expand_dims(img, 0)\n",
" # NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}\n",
" img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))\n",
" img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))\n",
" img -= img_mean\n",
" img /= img_std\n",
" return img.astype(np.float32)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9329d709-14bc-45aa-a1d7-d0d6d608933b",
"metadata": {},
"outputs": [],
"source": [
"# Preprocess for text recognition.\n",
"def resize_norm_img(img, max_wh_ratio):\n",
" \"\"\"\n",
" Resize input image for text recognition\n",
"\n",
" Parameters:\n",
" img: bounding box image from text detection\n",
" max_wh_ratio: value for the resizing for text recognition model\n",
" \"\"\"\n",
" rec_image_shape = [3, 48, 320]\n",
" imgC, imgH, imgW = rec_image_shape\n",
" assert imgC == img.shape[2]\n",
" character_type = \"ch\"\n",
" if character_type == \"ch\":\n",
" imgW = int((32 * max_wh_ratio))\n",
" h, w = img.shape[:2]\n",
" ratio = w / float(h)\n",
" if math.ceil(imgH * ratio) > imgW:\n",
" resized_w = imgW\n",
" else:\n",
" resized_w = int(math.ceil(imgH * ratio))\n",
" resized_image = cv2.resize(img, (resized_w, imgH))\n",
" resized_image = resized_image.astype(\"float32\")\n",
" resized_image = resized_image.transpose((2, 0, 1)) / 255\n",
" resized_image -= 0.5\n",
" resized_image /= 0.5\n",
" padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)\n",
" padding_im[:, :, 0:resized_w] = resized_image\n",
" return padding_im\n",
"\n",
"\n",
"def prep_for_rec(dt_boxes, frame):\n",
" \"\"\"\n",
" Preprocessing of the detected bounding boxes for text recognition\n",
"\n",
" Parameters:\n",
" dt_boxes: detected bounding boxes from text detection\n",
" frame: original input frame\n",
" \"\"\"\n",
" ori_im = frame.copy()\n",
" img_crop_list = []\n",
" for bno in range(len(dt_boxes)):\n",
" tmp_box = copy.deepcopy(dt_boxes[bno])\n",
" img_crop = processing.get_rotate_crop_image(ori_im, tmp_box)\n",
" img_crop_list.append(img_crop)\n",
"\n",
" img_num = len(img_crop_list)\n",
" # Calculate the aspect ratio of all text bars.\n",
" width_list = []\n",
" for img in img_crop_list:\n",
" width_list.append(img.shape[1] / float(img.shape[0]))\n",
"\n",
" # Sorting can speed up the recognition process.\n",
" indices = np.argsort(np.array(width_list))\n",
" return img_crop_list, img_num, indices\n",
"\n",
"\n",
"def batch_text_box(img_crop_list, img_num, indices, beg_img_no, batch_num):\n",
" \"\"\"\n",
" Batch for text recognition\n",
"\n",
" Parameters:\n",
" img_crop_list: processed detected bounding box images\n",
" img_num: number of bounding boxes from text detection\n",
" indices: sorting for bounding boxes to speed up text recognition\n",
" beg_img_no: the beginning number of bounding boxes for each batch of text recognition inference\n",
" batch_num: number of images for each batch\n",
" \"\"\"\n",
" norm_img_batch = []\n",
" max_wh_ratio = 0\n",
" end_img_no = min(img_num, beg_img_no + batch_num)\n",
" for ino in range(beg_img_no, end_img_no):\n",
" h, w = img_crop_list[indices[ino]].shape[0:2]\n",
" wh_ratio = w * 1.0 / h\n",
" max_wh_ratio = max(max_wh_ratio, wh_ratio)\n",
" for ino in range(beg_img_no, end_img_no):\n",
" norm_img = resize_norm_img(img_crop_list[indices[ino]], max_wh_ratio)\n",
" norm_img = norm_img[np.newaxis, :]\n",
" norm_img_batch.append(norm_img)\n",
"\n",
" norm_img_batch = np.concatenate(norm_img_batch)\n",
" norm_img_batch = norm_img_batch.copy()\n",
" return norm_img_batch"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "5ee36029-eabd-4ffc-ab45-ac293b62f32b",
"metadata": {},
"source": [
"### Postprocessing Image for Text Detection\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "409df7bc-2236-47ef-8645-48e9e40d05f1",
"metadata": {},
"outputs": [],
"source": [
"def post_processing_detection(frame, det_results):\n",
" \"\"\"\n",
" Postprocess the results from text detection into bounding boxes\n",
"\n",
" Parameters:\n",
" frame: input image\n",
" det_results: inference results from text detection model\n",
" \"\"\"\n",
" ori_im = frame.copy()\n",
" data = {\"image\": frame}\n",
" data_resize = processing.DetResizeForTest(data)\n",
" data_list = []\n",
" keep_keys = [\"image\", \"shape\"]\n",
" for key in keep_keys:\n",
" data_list.append(data_resize[key])\n",
" img, shape_list = data_list\n",
"\n",
" shape_list = np.expand_dims(shape_list, axis=0)\n",
" pred = det_results[0]\n",
" if isinstance(pred, paddle.Tensor):\n",
" pred = pred.numpy()\n",
" segmentation = pred > 0.3\n",
"\n",
" boxes_batch = []\n",
" for batch_index in range(pred.shape[0]):\n",
" src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]\n",
" mask = segmentation[batch_index]\n",
" boxes, scores = processing.boxes_from_bitmap(pred[batch_index], mask, src_w, src_h)\n",
" boxes_batch.append({\"points\": boxes})\n",
" post_result = boxes_batch\n",
" dt_boxes = post_result[0][\"points\"]\n",
" dt_boxes = processing.filter_tag_det_res(dt_boxes, ori_im.shape)\n",
" return dt_boxes"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "01d3695c-42c3-43d3-8472-9f16913182bf",
"metadata": {},
"source": [
"### Main Processing Function for PaddleOCR\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "17ce8c76-3ea5-402c-b820-a403bf12cc05",
"metadata": {},
"source": [
"Run `paddleOCR` function in different operations, either a webcam or a video file. See the list of procedures below:\n",
"\n",
"1. Create a video player to play with target fps (`utils.VideoPlayer`).\n",
"2. Prepare a set of frames for text detection and recognition.\n",
"3. Run AI inference for both text detection and recognition.\n",
"4. Visualize the results."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "874b545f",
"metadata": {},
"outputs": [],
"source": [
"# Download font and a character dictionary for printing OCR results.\n",
"font_path = utils.download_file(\n",
" url=\"https://raw.githubusercontent.com/Halfish/lstm-ctc-ocr/master/fonts/simfang.ttf\",\n",
" directory=\"fonts\",\n",
")\n",
"character_dictionary_path = utils.download_file(\n",
" url=\"https://raw.githubusercontent.com/WenmuZhou/PytorchOCR/master/torchocr/datasets/alphabets/ppocr_keys_v1.txt\",\n",
" directory=\"fonts\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "de5b68ee-bd25-4dd8-9e87-3fe6971c6e64",
"metadata": {},
"outputs": [],
"source": [
"def run_paddle_ocr(source=0, flip=False, use_popup=False, skip_first_frames=0):\n",
" \"\"\"\n",
" Main function to run the paddleOCR inference:\n",
" 1. Create a video player to play with target fps (utils.VideoPlayer).\n",
" 2. Prepare a set of frames for text detection and recognition.\n",
" 3. Run AI inference for both text detection and recognition.\n",
" 4. Visualize the results.\n",
"\n",
" Parameters:\n",
" source: The webcam number to feed the video stream with primary webcam set to \"0\", or the video path.\n",
" flip: To be used by VideoPlayer function for flipping capture image.\n",
" use_popup: False for showing encoded frames over this notebook, True for creating a popup window.\n",
" skip_first_frames: Number of frames to skip at the beginning of the video.\n",
" \"\"\"\n",
" # Create a video player to play with target fps.\n",
" player = None\n",
" try:\n",
" player = utils.VideoPlayer(source=source, flip=flip, fps=30, skip_first_frames=skip_first_frames)\n",
" # Start video capturing.\n",
" player.start()\n",
" if use_popup:\n",
" title = \"Press ESC to Exit\"\n",
" cv2.namedWindow(winname=title, flags=cv2.WINDOW_GUI_NORMAL | cv2.WINDOW_AUTOSIZE)\n",
"\n",
" processing_times = collections.deque()\n",
" while True:\n",
" # Grab the frame.\n",
" frame = player.next()\n",
" if frame is None:\n",
" print(\"Source ended\")\n",
" break\n",
" # If the frame is larger than full HD, reduce size to improve the performance.\n",
" scale = 1280 / max(frame.shape)\n",
" if scale < 1:\n",
" frame = cv2.resize(\n",
" src=frame,\n",
" dsize=None,\n",
" fx=scale,\n",
" fy=scale,\n",
" interpolation=cv2.INTER_AREA,\n",
" )\n",
" # Preprocess the image for text detection.\n",
" test_image = image_preprocess(frame, 640)\n",
"\n",
" # Measure processing time for text detection.\n",
" start_time = time.time()\n",
" # Perform the inference step.\n",
" det_results = det_compiled_model([test_image])[det_output_layer]\n",
" stop_time = time.time()\n",
"\n",
" # Postprocessing for Paddle Detection.\n",
" dt_boxes = post_processing_detection(frame, det_results)\n",
"\n",
" processing_times.append(stop_time - start_time)\n",
" # Use processing times from last 200 frames.\n",
" if len(processing_times) > 200:\n",
" processing_times.popleft()\n",
" processing_time_det = np.mean(processing_times) * 1000\n",
"\n",
" # Preprocess detection results for recognition.\n",
" dt_boxes = processing.sorted_boxes(dt_boxes)\n",
" batch_num = 6\n",
" img_crop_list, img_num, indices = prep_for_rec(dt_boxes, frame)\n",
"\n",
" # For storing recognition results, include two parts:\n",
" # txts are the recognized text results, scores are the recognition confidence level.\n",
" rec_res = [[\"\", 0.0]] * img_num\n",
" txts = []\n",
" scores = []\n",
"\n",
" for beg_img_no in range(0, img_num, batch_num):\n",
" # Recognition starts from here.\n",
" norm_img_batch = batch_text_box(img_crop_list, img_num, indices, beg_img_no, batch_num)\n",
"\n",
" # Run inference for text recognition.\n",
" rec_results = rec_compiled_model([norm_img_batch])[rec_output_layer]\n",
"\n",
" # Postprocessing recognition results.\n",
" postprocess_op = processing.build_post_process(processing.postprocess_params)\n",
" rec_result = postprocess_op(rec_results)\n",
" for rno in range(len(rec_result)):\n",
" rec_res[indices[beg_img_no + rno]] = rec_result[rno]\n",
" if rec_res:\n",
" txts = [rec_res[i][0] for i in range(len(rec_res))]\n",
" scores = [rec_res[i][1] for i in range(len(rec_res))]\n",
"\n",
" image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))\n",
" boxes = dt_boxes\n",
" # Draw text recognition results beside the image.\n",
" draw_img = processing.draw_ocr_box_txt(image, boxes, txts, scores, drop_score=0.5, font_path=str(font_path))\n",
"\n",
" # Visualize the PaddleOCR results.\n",
" f_height, f_width = draw_img.shape[:2]\n",
" fps = 1000 / processing_time_det\n",
" cv2.putText(\n",
" img=draw_img,\n",
" text=f\"Inference time: {processing_time_det:.1f}ms ({fps:.1f} FPS)\",\n",
" org=(20, 40),\n",
" fontFace=cv2.FONT_HERSHEY_COMPLEX,\n",
" fontScale=f_width / 1000,\n",
" color=(0, 0, 255),\n",
" thickness=1,\n",
" lineType=cv2.LINE_AA,\n",
" )\n",
"\n",
" # Use this workaround if there is flickering.\n",
" if use_popup:\n",
" draw_img = cv2.cvtColor(draw_img, cv2.COLOR_RGB2BGR)\n",
" cv2.imshow(winname=title, mat=draw_img)\n",
" key = cv2.waitKey(1)\n",
" # escape = 27\n",
" if key == 27:\n",
" break\n",
" else:\n",
" # Encode numpy array to jpg.\n",
" draw_img = cv2.cvtColor(draw_img, cv2.COLOR_RGB2BGR)\n",
" _, encoded_img = cv2.imencode(ext=\".jpg\", img=draw_img, params=[cv2.IMWRITE_JPEG_QUALITY, 100])\n",
" # Create an IPython image.\n",
" i = display.Image(data=encoded_img)\n",
" # Display the image in this notebook.\n",
" display.clear_output(wait=True)\n",
" display.display(i)\n",
"\n",
" # ctrl-c\n",
" except KeyboardInterrupt:\n",
" print(\"Interrupted\")\n",
" # any different error\n",
" except RuntimeError as e:\n",
" print(e)\n",
" finally:\n",
" if player is not None:\n",
" # Stop capturing.\n",
" player.stop()\n",
" if use_popup:\n",
" cv2.destroyAllWindows()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "92f8855f-418a-4bda-8799-0953dda895c5",
"metadata": {},
"source": [
"## Run Live PaddleOCR with OpenVINO\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "7642697d-d000-4a10-8e7b-2a519cf9e687",
"metadata": {},
"source": [
"Use a webcam as the video input. By default, the primary webcam is set with `source=0`. If you have multiple webcams, each one will be assigned a consecutive number starting at 0. Set `flip=True` when using a front-facing camera. Some web browsers, especially Mozilla Firefox, may cause flickering. If you experience flickering, set `use_popup=True`. \n",
"\n",
"> **NOTE**: Popup mode may not work if you run this notebook on a remote computer.\n",
"\n",
"If you do not have a webcam, you can still run this demo with a video file. Any [format supported by OpenCV](https://docs.opencv.org/4.5.1/dd/d43/tutorial_py_video_display.html) will work.\n",
"\n",
"Run live PaddleOCR:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dc274952-19aa-480d-ba50-a1146a89771b",
"metadata": {},
"outputs": [],
"source": [
"USE_WEBCAM = False\n",
"\n",
"cam_id = 0\n",
"video_file = \"https://raw.githubusercontent.com/yoyowz/classification/master/images/test.mp4\"\n",
"\n",
"source = cam_id if USE_WEBCAM else video_file\n",
"\n",
"run_paddle_ocr(source, flip=False, use_popup=False)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
},
"openvino_notebooks": {
"imageUrl": "https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/paddle-ocr-webcam/paddle-ocr-webcam.gif?raw=true",
"tags": {
"categories": [
"Live Demos"
],
"libraries": [],
"other": [],
"tasks": [
"Video-to-Text"
]
}
},
"vscode": {
"interpreter": {
"hash": "cec18e25feb9469b5ff1085a8097bdcd86db6a4ac301d6aeff87d0f3e7ce4ca5"
}
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|