File size: 11,499 Bytes
db5855f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "75257e56-c228-4d99-808f-2d6cf7576087",
   "metadata": {},
   "source": [
    "# Person Counting System using YOLOV8 and OpenVINO™"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "719e91cb-62ae-4049-b976-a89c7ebc0a59",
   "metadata": {},
   "source": [
    "In this project, we utilized YOLOV8 Object Counting class to develop a real-time people counting system using the YOLOv8 object detection model, optimized for Intel's OpenVINO toolkit to enhance inferencing speed. This system effectively monitors the number of individuals entering and exiting a room, leveraging the optimized YOLOv8 model for accurate people detection under varied conditions.\n",
    "\n",
    "By utilizing the OpenVINO runtime on Intel hardware, the system achieves significant improvements in processing speed, making it ideal for applications requiring real-time data, such as occupancy management and traffic flow control in public spaces and commercial settings.\n",
    "\n",
    "> **NOTE**: To use this notebook with a webcam, you need to run the notebook on a computer with a webcam. If you run the notebook on a server, the webcam will not work. However, you can still do inference on a video.\n",
    "\n",
    "\n",
    "#### Table of contents:\n",
    "\n",
    "- [Install pre-requisites](#Install-pre-requisites)\n",
    "- [Download Model](#Download-Model)\n",
    "- [Inference function](#Inference-function)\n",
    "- [Run live demo](#Run-live-demo)\n",
    "- [Select inference device](#Select-inference-device) \n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "86727720-ccae-471b-a8b3-b1b6e41f9e94",
   "metadata": {},
   "source": [
    "## Install pre-requisites\n",
    "[back to top ⬆️](#Table-of-contents:)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "74ee9d6e-9025-4179-8b0a-c8517168e5be",
   "metadata": {},
   "outputs": [],
   "source": [
    "%pip install -q \"openvino>=2024.0.0\" \"ultralytics==8.2.24\" \"torch>=2.1\" --extra-index-url https://download.pytorch.org/whl/cpu"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "85b9a300-05e9-4dfb-bfb1-ceba64ef5acc",
   "metadata": {},
   "source": [
    "## Download Model\n",
    "Download and convert YOLOV8 to OpenVINO Intermediate Representation"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "67d375ac",
   "metadata": {},
   "source": [
    "[back to top ⬆️](#Table-of-contents:)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "06461f51-72ab-401c-8c50-bb04c2f6ae88",
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "from pathlib import Path\n",
    "from ultralytics import YOLO\n",
    "\n",
    "models_dir = Path(\"./models\")\n",
    "models_dir.mkdir(exist_ok=True)\n",
    "\n",
    "DET_MODEL_NAME = \"yolov8n\"\n",
    "\n",
    "det_model = YOLO(models_dir / f\"{DET_MODEL_NAME}.pt\")\n",
    "label_map = det_model.model.names\n",
    "\n",
    "# Need to make en empty call to initialize the model\n",
    "res = det_model()\n",
    "det_model_path = models_dir / f\"{DET_MODEL_NAME}_openvino_model/{DET_MODEL_NAME}.xml\"\n",
    "if not det_model_path.exists():\n",
    "    det_model.export(format=\"openvino\", dynamic=True, half=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a40c8848",
   "metadata": {},
   "source": [
    "## Inference function\n",
    "[back to top ⬆️](#Table-of-contents:)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "2ecf6009-cd02-4fa3-9707-a883c5877dc8",
   "metadata": {},
   "outputs": [],
   "source": [
    "from ultralytics import YOLO, solutions\n",
    "import cv2\n",
    "import time\n",
    "import collections\n",
    "import numpy as np\n",
    "from IPython import display\n",
    "import torch\n",
    "import openvino as ov\n",
    "import ipywidgets as widgets\n",
    "\n",
    "\n",
    "def run_inference(source, device):\n",
    "    core = ov.Core()\n",
    "\n",
    "    det_ov_model = core.read_model(det_model_path)\n",
    "    ov_config = {}\n",
    "\n",
    "    if device.value != \"CPU\":\n",
    "        det_ov_model.reshape({0: [1, 3, 640, 640]})\n",
    "    if \"GPU\" in device.value or (\"AUTO\" in device.value and \"GPU\" in core.available_devices):\n",
    "        ov_config = {\"GPU_DISABLE_WINOGRAD_CONVOLUTION\": \"YES\"}\n",
    "    compiled_model = core.compile_model(det_ov_model, device.value, ov_config)\n",
    "\n",
    "    def infer(*args):\n",
    "        result = compiled_model(args)\n",
    "        return torch.from_numpy(result[0])\n",
    "\n",
    "    # Use openVINO as inference engine\n",
    "    det_model.predictor.inference = infer\n",
    "    det_model.predictor.model.pt = False\n",
    "\n",
    "    try:\n",
    "        cap = cv2.VideoCapture(source)\n",
    "        assert cap.isOpened(), \"Error reading video file\"\n",
    "\n",
    "        line_points = [(0, 300), (1080, 300)]  # line or region points\n",
    "        classes_to_count = [0]  # person is class 0 in the COCO dataset\n",
    "\n",
    "        # Init Object Counter\n",
    "        counter = solutions.ObjectCounter(\n",
    "            view_img=False, reg_pts=line_points, classes_names=det_model.names, draw_tracks=True, line_thickness=2, view_in_counts=False, view_out_counts=False\n",
    "        )\n",
    "        # Processing time\n",
    "        processing_times = collections.deque(maxlen=200)\n",
    "\n",
    "        while cap.isOpened():\n",
    "            success, frame = cap.read()\n",
    "            if not success:\n",
    "                print(\"Video frame is empty or video processing has been successfully completed.\")\n",
    "                break\n",
    "\n",
    "            start_time = time.time()\n",
    "            tracks = det_model.track(frame, persist=True, show=False, classes=classes_to_count, verbose=False)\n",
    "            frame = counter.start_counting(frame, tracks)\n",
    "            stop_time = time.time()\n",
    "\n",
    "            processing_times.append(stop_time - start_time)\n",
    "\n",
    "            # Mean processing time [ms].\n",
    "            _, f_width = frame.shape[:2]\n",
    "            processing_time = np.mean(processing_times) * 1000\n",
    "            fps = 1000 / processing_time\n",
    "            cv2.putText(\n",
    "                img=frame,\n",
    "                text=f\"Inference time: {processing_time:.1f}ms ({fps:.1f} FPS)\",\n",
    "                org=(20, 40),\n",
    "                fontFace=cv2.FONT_HERSHEY_COMPLEX,\n",
    "                fontScale=f_width / 1000,\n",
    "                color=(0, 0, 255),\n",
    "                thickness=2,\n",
    "                lineType=cv2.LINE_AA,\n",
    "            )\n",
    "\n",
    "            # Get the counts. Counts are getting as 'OUT'\n",
    "            # Modify this logic accordingly\n",
    "            counts = counter.out_counts\n",
    "\n",
    "            # Define the text to display\n",
    "            text = f\"Count: {counts}\"\n",
    "            fontFace = cv2.FONT_HERSHEY_COMPLEX\n",
    "            fontScale = 0.75  # Adjust scale as needed\n",
    "            thickness = 2\n",
    "\n",
    "            # Calculate the size of the text box\n",
    "            (text_width, text_height), _ = cv2.getTextSize(text, fontFace, fontScale, thickness)\n",
    "\n",
    "            # Define the upper right corner for the text\n",
    "            top_right_corner = (frame.shape[1] - text_width - 20, 40)\n",
    "            # Draw the count of \"OUT\" on the frame\n",
    "            cv2.putText(\n",
    "                img=frame,\n",
    "                text=text,\n",
    "                org=(top_right_corner[0], top_right_corner[1]),\n",
    "                fontFace=fontFace,\n",
    "                fontScale=fontScale,\n",
    "                color=(0, 0, 255),\n",
    "                thickness=thickness,\n",
    "                lineType=cv2.LINE_AA,\n",
    "            )\n",
    "\n",
    "            # Show the frame\n",
    "            _, encoded_img = cv2.imencode(ext=\".jpg\", img=frame, params=[cv2.IMWRITE_JPEG_QUALITY, 100])\n",
    "            # Create an IPython image.\n",
    "            i = display.Image(data=encoded_img)\n",
    "            # Display the image in this notebook.\n",
    "            display.clear_output(wait=True)\n",
    "            display.display(i)\n",
    "    except KeyboardInterrupt:\n",
    "        print(\"Interrupted\")\n",
    "\n",
    "    cap.release()\n",
    "    cv2.destroyAllWindows()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e542d587-7da3-4477-bfad-f9858fd752ae",
   "metadata": {},
   "source": [
    "## Run live demo\n",
    "[back to top ⬆️](#Table-of-contents:)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "e1c479d9-a401-43a4-af69-e4130513c5b5",
   "metadata": {},
   "outputs": [],
   "source": [
    "WEBCAM_INFERENCE = False\n",
    "\n",
    "if WEBCAM_INFERENCE:\n",
    "    VIDEO_SOURCE = 0  # Webcam\n",
    "else:\n",
    "    VIDEO_SOURCE = \"https://github.com/intel-iot-devkit/sample-videos/raw/master/people-detection.mp4\""
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c1fe0dbe-fdcb-468f-804f-d214a6f2257b",
   "metadata": {},
   "source": [
    "> **NOTE**: make sure to restart kernel and run all cells when switching between video and webcam to avoid any errors."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7f673ce4-a237-4ef5-adb8-f51c0fe5b3a9",
   "metadata": {},
   "source": [
    "## Select inference device\n",
    "[back to top ⬆️](#Table-of-contents:)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "312fe227-b67e-47f6-8742-5c5fe01edc41",
   "metadata": {},
   "outputs": [],
   "source": [
    "core = ov.Core()\n",
    "\n",
    "device = widgets.Dropdown(\n",
    "    options=core.available_devices + [\"AUTO\"],\n",
    "    value=\"AUTO\",\n",
    "    description=\"Device:\",\n",
    "    disabled=False,\n",
    ")\n",
    "\n",
    "device"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "45bf1064-8ae5-4036-ba8d-7f330c164dfd",
   "metadata": {},
   "outputs": [],
   "source": [
    "run_inference(\n",
    "    source=VIDEO_SOURCE,\n",
    "    device=device,\n",
    ")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  },
  "openvino_notebooks": {
   "imageUrl": "https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/e0525f8a-4578-4c56-a0a5-ce68e30d2d45",
   "tags": {
    "categories": [
     "Live Demos"
    ],
    "libraries": [],
    "other": [],
    "tasks": [
     "Object Detection"
    ]
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}