Spaces:
Runtime error
Runtime error
File size: 11,499 Bytes
db5855f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
{
"cells": [
{
"cell_type": "markdown",
"id": "75257e56-c228-4d99-808f-2d6cf7576087",
"metadata": {},
"source": [
"# Person Counting System using YOLOV8 and OpenVINO™"
]
},
{
"cell_type": "markdown",
"id": "719e91cb-62ae-4049-b976-a89c7ebc0a59",
"metadata": {},
"source": [
"In this project, we utilized YOLOV8 Object Counting class to develop a real-time people counting system using the YOLOv8 object detection model, optimized for Intel's OpenVINO toolkit to enhance inferencing speed. This system effectively monitors the number of individuals entering and exiting a room, leveraging the optimized YOLOv8 model for accurate people detection under varied conditions.\n",
"\n",
"By utilizing the OpenVINO runtime on Intel hardware, the system achieves significant improvements in processing speed, making it ideal for applications requiring real-time data, such as occupancy management and traffic flow control in public spaces and commercial settings.\n",
"\n",
"> **NOTE**: To use this notebook with a webcam, you need to run the notebook on a computer with a webcam. If you run the notebook on a server, the webcam will not work. However, you can still do inference on a video.\n",
"\n",
"\n",
"#### Table of contents:\n",
"\n",
"- [Install pre-requisites](#Install-pre-requisites)\n",
"- [Download Model](#Download-Model)\n",
"- [Inference function](#Inference-function)\n",
"- [Run live demo](#Run-live-demo)\n",
"- [Select inference device](#Select-inference-device) \n"
]
},
{
"cell_type": "markdown",
"id": "86727720-ccae-471b-a8b3-b1b6e41f9e94",
"metadata": {},
"source": [
"## Install pre-requisites\n",
"[back to top ⬆️](#Table-of-contents:)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "74ee9d6e-9025-4179-8b0a-c8517168e5be",
"metadata": {},
"outputs": [],
"source": [
"%pip install -q \"openvino>=2024.0.0\" \"ultralytics==8.2.24\" \"torch>=2.1\" --extra-index-url https://download.pytorch.org/whl/cpu"
]
},
{
"cell_type": "markdown",
"id": "85b9a300-05e9-4dfb-bfb1-ceba64ef5acc",
"metadata": {},
"source": [
"## Download Model\n",
"Download and convert YOLOV8 to OpenVINO Intermediate Representation"
]
},
{
"cell_type": "markdown",
"id": "67d375ac",
"metadata": {},
"source": [
"[back to top ⬆️](#Table-of-contents:)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "06461f51-72ab-401c-8c50-bb04c2f6ae88",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"from pathlib import Path\n",
"from ultralytics import YOLO\n",
"\n",
"models_dir = Path(\"./models\")\n",
"models_dir.mkdir(exist_ok=True)\n",
"\n",
"DET_MODEL_NAME = \"yolov8n\"\n",
"\n",
"det_model = YOLO(models_dir / f\"{DET_MODEL_NAME}.pt\")\n",
"label_map = det_model.model.names\n",
"\n",
"# Need to make en empty call to initialize the model\n",
"res = det_model()\n",
"det_model_path = models_dir / f\"{DET_MODEL_NAME}_openvino_model/{DET_MODEL_NAME}.xml\"\n",
"if not det_model_path.exists():\n",
" det_model.export(format=\"openvino\", dynamic=True, half=True)"
]
},
{
"cell_type": "markdown",
"id": "a40c8848",
"metadata": {},
"source": [
"## Inference function\n",
"[back to top ⬆️](#Table-of-contents:)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "2ecf6009-cd02-4fa3-9707-a883c5877dc8",
"metadata": {},
"outputs": [],
"source": [
"from ultralytics import YOLO, solutions\n",
"import cv2\n",
"import time\n",
"import collections\n",
"import numpy as np\n",
"from IPython import display\n",
"import torch\n",
"import openvino as ov\n",
"import ipywidgets as widgets\n",
"\n",
"\n",
"def run_inference(source, device):\n",
" core = ov.Core()\n",
"\n",
" det_ov_model = core.read_model(det_model_path)\n",
" ov_config = {}\n",
"\n",
" if device.value != \"CPU\":\n",
" det_ov_model.reshape({0: [1, 3, 640, 640]})\n",
" if \"GPU\" in device.value or (\"AUTO\" in device.value and \"GPU\" in core.available_devices):\n",
" ov_config = {\"GPU_DISABLE_WINOGRAD_CONVOLUTION\": \"YES\"}\n",
" compiled_model = core.compile_model(det_ov_model, device.value, ov_config)\n",
"\n",
" def infer(*args):\n",
" result = compiled_model(args)\n",
" return torch.from_numpy(result[0])\n",
"\n",
" # Use openVINO as inference engine\n",
" det_model.predictor.inference = infer\n",
" det_model.predictor.model.pt = False\n",
"\n",
" try:\n",
" cap = cv2.VideoCapture(source)\n",
" assert cap.isOpened(), \"Error reading video file\"\n",
"\n",
" line_points = [(0, 300), (1080, 300)] # line or region points\n",
" classes_to_count = [0] # person is class 0 in the COCO dataset\n",
"\n",
" # Init Object Counter\n",
" counter = solutions.ObjectCounter(\n",
" view_img=False, reg_pts=line_points, classes_names=det_model.names, draw_tracks=True, line_thickness=2, view_in_counts=False, view_out_counts=False\n",
" )\n",
" # Processing time\n",
" processing_times = collections.deque(maxlen=200)\n",
"\n",
" while cap.isOpened():\n",
" success, frame = cap.read()\n",
" if not success:\n",
" print(\"Video frame is empty or video processing has been successfully completed.\")\n",
" break\n",
"\n",
" start_time = time.time()\n",
" tracks = det_model.track(frame, persist=True, show=False, classes=classes_to_count, verbose=False)\n",
" frame = counter.start_counting(frame, tracks)\n",
" stop_time = time.time()\n",
"\n",
" processing_times.append(stop_time - start_time)\n",
"\n",
" # Mean processing time [ms].\n",
" _, f_width = frame.shape[:2]\n",
" processing_time = np.mean(processing_times) * 1000\n",
" fps = 1000 / processing_time\n",
" cv2.putText(\n",
" img=frame,\n",
" text=f\"Inference time: {processing_time:.1f}ms ({fps:.1f} FPS)\",\n",
" org=(20, 40),\n",
" fontFace=cv2.FONT_HERSHEY_COMPLEX,\n",
" fontScale=f_width / 1000,\n",
" color=(0, 0, 255),\n",
" thickness=2,\n",
" lineType=cv2.LINE_AA,\n",
" )\n",
"\n",
" # Get the counts. Counts are getting as 'OUT'\n",
" # Modify this logic accordingly\n",
" counts = counter.out_counts\n",
"\n",
" # Define the text to display\n",
" text = f\"Count: {counts}\"\n",
" fontFace = cv2.FONT_HERSHEY_COMPLEX\n",
" fontScale = 0.75 # Adjust scale as needed\n",
" thickness = 2\n",
"\n",
" # Calculate the size of the text box\n",
" (text_width, text_height), _ = cv2.getTextSize(text, fontFace, fontScale, thickness)\n",
"\n",
" # Define the upper right corner for the text\n",
" top_right_corner = (frame.shape[1] - text_width - 20, 40)\n",
" # Draw the count of \"OUT\" on the frame\n",
" cv2.putText(\n",
" img=frame,\n",
" text=text,\n",
" org=(top_right_corner[0], top_right_corner[1]),\n",
" fontFace=fontFace,\n",
" fontScale=fontScale,\n",
" color=(0, 0, 255),\n",
" thickness=thickness,\n",
" lineType=cv2.LINE_AA,\n",
" )\n",
"\n",
" # Show the frame\n",
" _, encoded_img = cv2.imencode(ext=\".jpg\", img=frame, params=[cv2.IMWRITE_JPEG_QUALITY, 100])\n",
" # Create an IPython image.\n",
" i = display.Image(data=encoded_img)\n",
" # Display the image in this notebook.\n",
" display.clear_output(wait=True)\n",
" display.display(i)\n",
" except KeyboardInterrupt:\n",
" print(\"Interrupted\")\n",
"\n",
" cap.release()\n",
" cv2.destroyAllWindows()"
]
},
{
"cell_type": "markdown",
"id": "e542d587-7da3-4477-bfad-f9858fd752ae",
"metadata": {},
"source": [
"## Run live demo\n",
"[back to top ⬆️](#Table-of-contents:)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "e1c479d9-a401-43a4-af69-e4130513c5b5",
"metadata": {},
"outputs": [],
"source": [
"WEBCAM_INFERENCE = False\n",
"\n",
"if WEBCAM_INFERENCE:\n",
" VIDEO_SOURCE = 0 # Webcam\n",
"else:\n",
" VIDEO_SOURCE = \"https://github.com/intel-iot-devkit/sample-videos/raw/master/people-detection.mp4\""
]
},
{
"cell_type": "markdown",
"id": "c1fe0dbe-fdcb-468f-804f-d214a6f2257b",
"metadata": {},
"source": [
"> **NOTE**: make sure to restart kernel and run all cells when switching between video and webcam to avoid any errors."
]
},
{
"cell_type": "markdown",
"id": "7f673ce4-a237-4ef5-adb8-f51c0fe5b3a9",
"metadata": {},
"source": [
"## Select inference device\n",
"[back to top ⬆️](#Table-of-contents:)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "312fe227-b67e-47f6-8742-5c5fe01edc41",
"metadata": {},
"outputs": [],
"source": [
"core = ov.Core()\n",
"\n",
"device = widgets.Dropdown(\n",
" options=core.available_devices + [\"AUTO\"],\n",
" value=\"AUTO\",\n",
" description=\"Device:\",\n",
" disabled=False,\n",
")\n",
"\n",
"device"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "45bf1064-8ae5-4036-ba8d-7f330c164dfd",
"metadata": {},
"outputs": [],
"source": [
"run_inference(\n",
" source=VIDEO_SOURCE,\n",
" device=device,\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
},
"openvino_notebooks": {
"imageUrl": "https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/e0525f8a-4578-4c56-a0a5-ce68e30d2d45",
"tags": {
"categories": [
"Live Demos"
],
"libraries": [],
"other": [],
"tasks": [
"Object Detection"
]
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|