File size: 3,434 Bytes
db5855f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import cv2
import numpy as np
from PIL import Image


class Detection(object):
    """

    This class represents a bounding box detection in a single image.



    Parameters

    ----------

    tlwh : array_like

        Bounding box in format `(x, y, w, h)`.

    confidence : float

        Detector confidence score.

    feature : array_like

        A feature vector that describes the object contained in this image.



    Attributes

    ----------

    tlwh : ndarray

        Bounding box in format `(top left x, top left y, width, height)`.

    confidence : ndarray

        Detector confidence score.

    feature : ndarray | NoneType

        A feature vector that describes the object contained in this image.



    """

    def __init__(self, tlwh, feature):
        self.tlwh = np.asarray(tlwh, dtype=np.float32)
        self.feature = np.asarray(feature, dtype=np.float32)

    def to_tlbr(self):
        """Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,

        `(top left, bottom right)`.

        """
        ret = self.tlwh.copy()
        ret[2:] += ret[:2]
        return ret

    def to_xyah(self):
        """Convert bounding box to format `(center x, center y, aspect ratio,

        height)`, where the aspect ratio is `width / height`.

        """
        ret = self.tlwh.copy()
        ret[:2] += ret[2:] / 2
        ret[2] /= ret[3]
        return ret


def xywh_to_xyxy(bbox_xywh, org_h, org_w):
    x, y, w, h = bbox_xywh
    x1 = max(int(x - w / 2), 0)
    x2 = min(int(x + w / 2), org_w - 1)
    y1 = max(int(y - h / 2), 0)
    y2 = min(int(y + h / 2), org_h - 1)
    return x1, y1, x2, y2


def xywh_to_tlwh(bbox_xywh):
    bbox_tlwh = bbox_xywh.copy()
    bbox_tlwh[:, 0] = bbox_xywh[:, 0] - bbox_xywh[:, 2] / 2.0
    bbox_tlwh[:, 1] = bbox_xywh[:, 1] - bbox_xywh[:, 3] / 2.0
    return bbox_tlwh


def tlwh_to_xyxy(bbox_tlwh, org_h, org_w):
    x, y, w, h = bbox_tlwh
    x1 = max(int(x), 0)
    x2 = min(int(x + w), org_w - 1)
    y1 = max(int(y), 0)
    y2 = min(int(y + h), org_h - 1)
    return x1, y1, x2, y2


def xyxy_to_tlwh(bbox_xyxy):
    x1, y1, x2, y2 = bbox_xyxy
    t = x1
    l = y1
    w = int(x2 - x1)
    h = int(y2 - y1)
    return t, l, w, h


def compute_color_for_labels(label):
    """

    Simple function that adds fixed color depending on the class

    """
    palette = (2**11 - 1, 2**15 - 1, 2**20 - 1)
    color = [int((p * (label**2 - label + 1)) % 255) for p in palette]
    return tuple(color)


def draw_boxes(img, bbox, identities=None, offset=(0, 0)):
    for i, box in enumerate(bbox):
        x1, y1, x2, y2 = [int(i) for i in box]
        x1 += offset[0]
        x2 += offset[0]
        y1 += offset[1]
        y2 += offset[1]
        # box text and bar
        id = int(identities[i]) if identities is not None else 0
        color = compute_color_for_labels(id)
        label = "{}{:d}".format("", id)
        t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 2, 2)[0]
        cv2.rectangle(img, (x1, y1), (x2, y2), color, 3)
        cv2.rectangle(img, (x1, y1), (x1 + t_size[0] + 3, y1 + t_size[1] + 4), color, -1)
        cv2.putText(
            img,
            label,
            (x1, y1 + t_size[1] + 4),
            cv2.FONT_HERSHEY_PLAIN,
            2,
            [255, 255, 255],
            2,
        )
    return img