Spaces:
Runtime error
Runtime error
File size: 37,524 Bytes
db5855f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Live Human Pose Estimation with OpenVINO™\n",
"\n",
"This notebook demonstrates live pose estimation with OpenVINO, using the OpenPose [human-pose-estimation-0001](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/intel/human-pose-estimation-0001) model from [Open Model Zoo](https://github.com/openvinotoolkit/open_model_zoo/). Final part of this notebook shows live inference results from a webcam. Additionally, you can also upload a video file.\n",
"\n",
"> **NOTE**: To use a webcam, you must run this Jupyter notebook on a computer with a webcam. If you run on a server, the webcam will not work. However, you can still do inference on a video in the final step.\n",
"\n",
"#### Table of contents:\n",
"\n",
"- [Imports](#Imports)\n",
"- [The model](#The-model)\n",
" - [Download the model](#Download-the-model)\n",
" - [Load the model](#Load-the-model)\n",
"- [Processing](#Processing)\n",
" - [OpenPose Decoder](#OpenPose-Decoder)\n",
" - [Process Results](#Process-Results)\n",
" - [Draw Pose Overlays](#Draw-Pose-Overlays)\n",
" - [Main Processing Function](#Main-Processing-Function)\n",
"- [Run](#Run)\n",
" - [Run Live Pose Estimation](#Run-Live-Pose-Estimation)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install -q \"openvino>=2023.1.0\" opencv-python tqdm"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Imports\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import collections\n",
"import time\n",
"from pathlib import Path\n",
"\n",
"import cv2\n",
"import numpy as np\n",
"from IPython import display\n",
"from numpy.lib.stride_tricks import as_strided\n",
"import openvino as ov\n",
"\n",
"# Fetch `notebook_utils` module\n",
"import requests\n",
"\n",
"r = requests.get(\n",
" url=\"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py\",\n",
")\n",
"\n",
"open(\"notebook_utils.py\", \"w\").write(r.text)\n",
"import notebook_utils as utils"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## The model\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"### Download the model\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Use the `download_file`, a function from the `notebook_utils` file. It automatically creates a directory structure and downloads the selected model.\n",
"\n",
"If you want to download another model, replace the name of the model and precision in the code below. \n",
"\n",
"> **NOTE**: This may require a different pose decoder."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# A directory where the model will be downloaded.\n",
"base_model_dir = Path(\"model\")\n",
"\n",
"# The name of the model from Open Model Zoo.\n",
"model_name = \"human-pose-estimation-0001\"\n",
"# Selected precision (FP32, FP16, FP16-INT8).\n",
"precision = \"FP16-INT8\"\n",
"\n",
"model_path = base_model_dir / \"intel\" / model_name / precision / f\"{model_name}.xml\"\n",
"\n",
"if not model_path.exists():\n",
" model_url_dir = f\"https://storage.openvinotoolkit.org/repositories/open_model_zoo/2022.1/models_bin/3/{model_name}/{precision}/\"\n",
" utils.download_file(model_url_dir + model_name + \".xml\", model_path.name, model_path.parent)\n",
" utils.download_file(\n",
" model_url_dir + model_name + \".bin\",\n",
" model_path.with_suffix(\".bin\").name,\n",
" model_path.parent,\n",
" )"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load the model\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Downloaded models are located in a fixed structure, which indicates a vendor, the name of the model and a precision.\n",
"\n",
"Only a few lines of code are required to run the model. First, initialize OpenVINO Runtime. Then, read the network architecture and model weights from the `.bin` and `.xml` files to compile it for the desired device. Select device from dropdown list for running inference using OpenVINO."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import ipywidgets as widgets\n",
"\n",
"core = ov.Core()\n",
"\n",
"device = widgets.Dropdown(\n",
" options=core.available_devices + [\"AUTO\"],\n",
" value=\"AUTO\",\n",
" description=\"Device:\",\n",
" disabled=False,\n",
")\n",
"\n",
"device"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Initialize OpenVINO Runtime\n",
"core = ov.Core()\n",
"# Read the network from a file.\n",
"model = core.read_model(model_path)\n",
"# Let the AUTO device decide where to load the model (you can use CPU, GPU as well).\n",
"compiled_model = core.compile_model(model=model, device_name=device.value, config={\"PERFORMANCE_HINT\": \"LATENCY\"})\n",
"\n",
"# Get the input and output names of nodes.\n",
"input_layer = compiled_model.input(0)\n",
"output_layers = compiled_model.outputs\n",
"\n",
"# Get the input size.\n",
"height, width = list(input_layer.shape)[2:]"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Input layer has the name of the input node and output layers contain names of output nodes of the network. In the case of OpenPose Model, there is 1 input and 2 outputs: PAFs and keypoints heatmap."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"input_layer.any_name, [o.any_name for o in output_layers]"
]
},
{
"cell_type": "markdown",
"metadata": {
"jp-MarkdownHeadingCollapsed": true
},
"source": [
"### OpenPose Decoder\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"To transform the raw results from the neural network into pose estimations, you need OpenPose Decoder. It is provided in the [Open Model Zoo](https://github.com/openvinotoolkit/open_model_zoo/blob/master/demos/common/python/openvino/model_zoo/model_api/models/open_pose.py) and compatible with the `human-pose-estimation-0001` model.\n",
"\n",
"If you choose a model other than `human-pose-estimation-0001` you will need another decoder (for example, `AssociativeEmbeddingDecoder`), which is available in the [demos section](https://github.com/openvinotoolkit/open_model_zoo/blob/master/demos/common/python/openvino/model_zoo/model_api/models/hpe_associative_embedding.py) of Open Model Zoo."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# code from https://github.com/openvinotoolkit/open_model_zoo/blob/9296a3712069e688fe64ea02367466122c8e8a3b/demos/common/python/models/open_pose.py#L135\n",
"class OpenPoseDecoder:\n",
" BODY_PARTS_KPT_IDS = (\n",
" (1, 2),\n",
" (1, 5),\n",
" (2, 3),\n",
" (3, 4),\n",
" (5, 6),\n",
" (6, 7),\n",
" (1, 8),\n",
" (8, 9),\n",
" (9, 10),\n",
" (1, 11),\n",
" (11, 12),\n",
" (12, 13),\n",
" (1, 0),\n",
" (0, 14),\n",
" (14, 16),\n",
" (0, 15),\n",
" (15, 17),\n",
" (2, 16),\n",
" (5, 17),\n",
" )\n",
" BODY_PARTS_PAF_IDS = (\n",
" 12,\n",
" 20,\n",
" 14,\n",
" 16,\n",
" 22,\n",
" 24,\n",
" 0,\n",
" 2,\n",
" 4,\n",
" 6,\n",
" 8,\n",
" 10,\n",
" 28,\n",
" 30,\n",
" 34,\n",
" 32,\n",
" 36,\n",
" 18,\n",
" 26,\n",
" )\n",
"\n",
" def __init__(\n",
" self,\n",
" num_joints=18,\n",
" skeleton=BODY_PARTS_KPT_IDS,\n",
" paf_indices=BODY_PARTS_PAF_IDS,\n",
" max_points=100,\n",
" score_threshold=0.1,\n",
" min_paf_alignment_score=0.05,\n",
" delta=0.5,\n",
" ):\n",
" self.num_joints = num_joints\n",
" self.skeleton = skeleton\n",
" self.paf_indices = paf_indices\n",
" self.max_points = max_points\n",
" self.score_threshold = score_threshold\n",
" self.min_paf_alignment_score = min_paf_alignment_score\n",
" self.delta = delta\n",
"\n",
" self.points_per_limb = 10\n",
" self.grid = np.arange(self.points_per_limb, dtype=np.float32).reshape(1, -1, 1)\n",
"\n",
" def __call__(self, heatmaps, nms_heatmaps, pafs):\n",
" batch_size, _, h, w = heatmaps.shape\n",
" assert batch_size == 1, \"Batch size of 1 only supported\"\n",
"\n",
" keypoints = self.extract_points(heatmaps, nms_heatmaps)\n",
" pafs = np.transpose(pafs, (0, 2, 3, 1))\n",
"\n",
" if self.delta > 0:\n",
" for kpts in keypoints:\n",
" kpts[:, :2] += self.delta\n",
" np.clip(kpts[:, 0], 0, w - 1, out=kpts[:, 0])\n",
" np.clip(kpts[:, 1], 0, h - 1, out=kpts[:, 1])\n",
"\n",
" pose_entries, keypoints = self.group_keypoints(keypoints, pafs, pose_entry_size=self.num_joints + 2)\n",
" poses, scores = self.convert_to_coco_format(pose_entries, keypoints)\n",
" if len(poses) > 0:\n",
" poses = np.asarray(poses, dtype=np.float32)\n",
" poses = poses.reshape((poses.shape[0], -1, 3))\n",
" else:\n",
" poses = np.empty((0, 17, 3), dtype=np.float32)\n",
" scores = np.empty(0, dtype=np.float32)\n",
"\n",
" return poses, scores\n",
"\n",
" def extract_points(self, heatmaps, nms_heatmaps):\n",
" batch_size, channels_num, h, w = heatmaps.shape\n",
" assert batch_size == 1, \"Batch size of 1 only supported\"\n",
" assert channels_num >= self.num_joints\n",
"\n",
" xs, ys, scores = self.top_k(nms_heatmaps)\n",
" masks = scores > self.score_threshold\n",
" all_keypoints = []\n",
" keypoint_id = 0\n",
" for k in range(self.num_joints):\n",
" # Filter low-score points.\n",
" mask = masks[0, k]\n",
" x = xs[0, k][mask].ravel()\n",
" y = ys[0, k][mask].ravel()\n",
" score = scores[0, k][mask].ravel()\n",
" n = len(x)\n",
" if n == 0:\n",
" all_keypoints.append(np.empty((0, 4), dtype=np.float32))\n",
" continue\n",
" # Apply quarter offset to improve localization accuracy.\n",
" x, y = self.refine(heatmaps[0, k], x, y)\n",
" np.clip(x, 0, w - 1, out=x)\n",
" np.clip(y, 0, h - 1, out=y)\n",
" # Pack resulting points.\n",
" keypoints = np.empty((n, 4), dtype=np.float32)\n",
" keypoints[:, 0] = x\n",
" keypoints[:, 1] = y\n",
" keypoints[:, 2] = score\n",
" keypoints[:, 3] = np.arange(keypoint_id, keypoint_id + n)\n",
" keypoint_id += n\n",
" all_keypoints.append(keypoints)\n",
" return all_keypoints\n",
"\n",
" def top_k(self, heatmaps):\n",
" N, K, _, W = heatmaps.shape\n",
" heatmaps = heatmaps.reshape(N, K, -1)\n",
" # Get positions with top scores.\n",
" ind = heatmaps.argpartition(-self.max_points, axis=2)[:, :, -self.max_points :]\n",
" scores = np.take_along_axis(heatmaps, ind, axis=2)\n",
" # Keep top scores sorted.\n",
" subind = np.argsort(-scores, axis=2)\n",
" ind = np.take_along_axis(ind, subind, axis=2)\n",
" scores = np.take_along_axis(scores, subind, axis=2)\n",
" y, x = np.divmod(ind, W)\n",
" return x, y, scores\n",
"\n",
" @staticmethod\n",
" def refine(heatmap, x, y):\n",
" h, w = heatmap.shape[-2:]\n",
" valid = np.logical_and(np.logical_and(x > 0, x < w - 1), np.logical_and(y > 0, y < h - 1))\n",
" xx = x[valid]\n",
" yy = y[valid]\n",
" dx = np.sign(heatmap[yy, xx + 1] - heatmap[yy, xx - 1], dtype=np.float32) * 0.25\n",
" dy = np.sign(heatmap[yy + 1, xx] - heatmap[yy - 1, xx], dtype=np.float32) * 0.25\n",
" x = x.astype(np.float32)\n",
" y = y.astype(np.float32)\n",
" x[valid] += dx\n",
" y[valid] += dy\n",
" return x, y\n",
"\n",
" @staticmethod\n",
" def is_disjoint(pose_a, pose_b):\n",
" pose_a = pose_a[:-2]\n",
" pose_b = pose_b[:-2]\n",
" return np.all(np.logical_or.reduce((pose_a == pose_b, pose_a < 0, pose_b < 0)))\n",
"\n",
" def update_poses(\n",
" self,\n",
" kpt_a_id,\n",
" kpt_b_id,\n",
" all_keypoints,\n",
" connections,\n",
" pose_entries,\n",
" pose_entry_size,\n",
" ):\n",
" for connection in connections:\n",
" pose_a_idx = -1\n",
" pose_b_idx = -1\n",
" for j, pose in enumerate(pose_entries):\n",
" if pose[kpt_a_id] == connection[0]:\n",
" pose_a_idx = j\n",
" if pose[kpt_b_id] == connection[1]:\n",
" pose_b_idx = j\n",
" if pose_a_idx < 0 and pose_b_idx < 0:\n",
" # Create new pose entry.\n",
" pose_entry = np.full(pose_entry_size, -1, dtype=np.float32)\n",
" pose_entry[kpt_a_id] = connection[0]\n",
" pose_entry[kpt_b_id] = connection[1]\n",
" pose_entry[-1] = 2\n",
" pose_entry[-2] = np.sum(all_keypoints[connection[0:2], 2]) + connection[2]\n",
" pose_entries.append(pose_entry)\n",
" elif pose_a_idx >= 0 and pose_b_idx >= 0 and pose_a_idx != pose_b_idx:\n",
" # Merge two poses are disjoint merge them, otherwise ignore connection.\n",
" pose_a = pose_entries[pose_a_idx]\n",
" pose_b = pose_entries[pose_b_idx]\n",
" if self.is_disjoint(pose_a, pose_b):\n",
" pose_a += pose_b\n",
" pose_a[:-2] += 1\n",
" pose_a[-2] += connection[2]\n",
" del pose_entries[pose_b_idx]\n",
" elif pose_a_idx >= 0 and pose_b_idx >= 0:\n",
" # Adjust score of a pose.\n",
" pose_entries[pose_a_idx][-2] += connection[2]\n",
" elif pose_a_idx >= 0:\n",
" # Add a new limb into pose.\n",
" pose = pose_entries[pose_a_idx]\n",
" if pose[kpt_b_id] < 0:\n",
" pose[-2] += all_keypoints[connection[1], 2]\n",
" pose[kpt_b_id] = connection[1]\n",
" pose[-2] += connection[2]\n",
" pose[-1] += 1\n",
" elif pose_b_idx >= 0:\n",
" # Add a new limb into pose.\n",
" pose = pose_entries[pose_b_idx]\n",
" if pose[kpt_a_id] < 0:\n",
" pose[-2] += all_keypoints[connection[0], 2]\n",
" pose[kpt_a_id] = connection[0]\n",
" pose[-2] += connection[2]\n",
" pose[-1] += 1\n",
" return pose_entries\n",
"\n",
" @staticmethod\n",
" def connections_nms(a_idx, b_idx, affinity_scores):\n",
" # From all retrieved connections that share starting/ending keypoints leave only the top-scoring ones.\n",
" order = affinity_scores.argsort()[::-1]\n",
" affinity_scores = affinity_scores[order]\n",
" a_idx = a_idx[order]\n",
" b_idx = b_idx[order]\n",
" idx = []\n",
" has_kpt_a = set()\n",
" has_kpt_b = set()\n",
" for t, (i, j) in enumerate(zip(a_idx, b_idx)):\n",
" if i not in has_kpt_a and j not in has_kpt_b:\n",
" idx.append(t)\n",
" has_kpt_a.add(i)\n",
" has_kpt_b.add(j)\n",
" idx = np.asarray(idx, dtype=np.int32)\n",
" return a_idx[idx], b_idx[idx], affinity_scores[idx]\n",
"\n",
" def group_keypoints(self, all_keypoints_by_type, pafs, pose_entry_size=20):\n",
" all_keypoints = np.concatenate(all_keypoints_by_type, axis=0)\n",
" pose_entries = []\n",
" # For every limb.\n",
" for part_id, paf_channel in enumerate(self.paf_indices):\n",
" kpt_a_id, kpt_b_id = self.skeleton[part_id]\n",
" kpts_a = all_keypoints_by_type[kpt_a_id]\n",
" kpts_b = all_keypoints_by_type[kpt_b_id]\n",
" n = len(kpts_a)\n",
" m = len(kpts_b)\n",
" if n == 0 or m == 0:\n",
" continue\n",
"\n",
" # Get vectors between all pairs of keypoints, i.e. candidate limb vectors.\n",
" a = kpts_a[:, :2]\n",
" a = np.broadcast_to(a[None], (m, n, 2))\n",
" b = kpts_b[:, :2]\n",
" vec_raw = (b[:, None, :] - a).reshape(-1, 1, 2)\n",
"\n",
" # Sample points along every candidate limb vector.\n",
" steps = 1 / (self.points_per_limb - 1) * vec_raw\n",
" points = steps * self.grid + a.reshape(-1, 1, 2)\n",
" points = points.round().astype(dtype=np.int32)\n",
" x = points[..., 0].ravel()\n",
" y = points[..., 1].ravel()\n",
"\n",
" # Compute affinity score between candidate limb vectors and part affinity field.\n",
" part_pafs = pafs[0, :, :, paf_channel : paf_channel + 2]\n",
" field = part_pafs[y, x].reshape(-1, self.points_per_limb, 2)\n",
" vec_norm = np.linalg.norm(vec_raw, ord=2, axis=-1, keepdims=True)\n",
" vec = vec_raw / (vec_norm + 1e-6)\n",
" affinity_scores = (field * vec).sum(-1).reshape(-1, self.points_per_limb)\n",
" valid_affinity_scores = affinity_scores > self.min_paf_alignment_score\n",
" valid_num = valid_affinity_scores.sum(1)\n",
" affinity_scores = (affinity_scores * valid_affinity_scores).sum(1) / (valid_num + 1e-6)\n",
" success_ratio = valid_num / self.points_per_limb\n",
"\n",
" # Get a list of limbs according to the obtained affinity score.\n",
" valid_limbs = np.where(np.logical_and(affinity_scores > 0, success_ratio > 0.8))[0]\n",
" if len(valid_limbs) == 0:\n",
" continue\n",
" b_idx, a_idx = np.divmod(valid_limbs, n)\n",
" affinity_scores = affinity_scores[valid_limbs]\n",
"\n",
" # Suppress incompatible connections.\n",
" a_idx, b_idx, affinity_scores = self.connections_nms(a_idx, b_idx, affinity_scores)\n",
" connections = list(\n",
" zip(\n",
" kpts_a[a_idx, 3].astype(np.int32),\n",
" kpts_b[b_idx, 3].astype(np.int32),\n",
" affinity_scores,\n",
" )\n",
" )\n",
" if len(connections) == 0:\n",
" continue\n",
"\n",
" # Update poses with new connections.\n",
" pose_entries = self.update_poses(\n",
" kpt_a_id,\n",
" kpt_b_id,\n",
" all_keypoints,\n",
" connections,\n",
" pose_entries,\n",
" pose_entry_size,\n",
" )\n",
"\n",
" # Remove poses with not enough points.\n",
" pose_entries = np.asarray(pose_entries, dtype=np.float32).reshape(-1, pose_entry_size)\n",
" pose_entries = pose_entries[pose_entries[:, -1] >= 3]\n",
" return pose_entries, all_keypoints\n",
"\n",
" @staticmethod\n",
" def convert_to_coco_format(pose_entries, all_keypoints):\n",
" num_joints = 17\n",
" coco_keypoints = []\n",
" scores = []\n",
" for pose in pose_entries:\n",
" if len(pose) == 0:\n",
" continue\n",
" keypoints = np.zeros(num_joints * 3)\n",
" reorder_map = [0, -1, 6, 8, 10, 5, 7, 9, 12, 14, 16, 11, 13, 15, 2, 1, 4, 3]\n",
" person_score = pose[-2]\n",
" for keypoint_id, target_id in zip(pose[:-2], reorder_map):\n",
" if target_id < 0:\n",
" continue\n",
" cx, cy, score = 0, 0, 0 # keypoint not found\n",
" if keypoint_id != -1:\n",
" cx, cy, score = all_keypoints[int(keypoint_id), 0:3]\n",
" keypoints[target_id * 3 + 0] = cx\n",
" keypoints[target_id * 3 + 1] = cy\n",
" keypoints[target_id * 3 + 2] = score\n",
" coco_keypoints.append(keypoints)\n",
" scores.append(person_score * max(0, (pose[-1] - 1))) # -1 for 'neck'\n",
" return np.asarray(coco_keypoints), np.asarray(scores)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Processing\n",
"[back to top ⬆️](#Table-of-contents:)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"decoder = OpenPoseDecoder()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Process Results\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"A bunch of useful functions to transform results into poses.\n",
"\n",
"First, pool the heatmap. Since pooling is not available in numpy, use a simple method to do it directly with numpy. Then, use non-maximum suppression to get the keypoints from the heatmap. After that, decode poses by using the decoder. Since the input image is bigger than the network outputs, you need to multiply all pose coordinates by a scaling factor."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 2D pooling in numpy (from: https://stackoverflow.com/a/54966908/1624463)\n",
"def pool2d(A, kernel_size, stride, padding, pool_mode=\"max\"):\n",
" \"\"\"\n",
" 2D Pooling\n",
"\n",
" Parameters:\n",
" A: input 2D array\n",
" kernel_size: int, the size of the window\n",
" stride: int, the stride of the window\n",
" padding: int, implicit zero paddings on both sides of the input\n",
" pool_mode: string, 'max' or 'avg'\n",
" \"\"\"\n",
" # Padding\n",
" A = np.pad(A, padding, mode=\"constant\")\n",
"\n",
" # Window view of A\n",
" output_shape = (\n",
" (A.shape[0] - kernel_size) // stride + 1,\n",
" (A.shape[1] - kernel_size) // stride + 1,\n",
" )\n",
" kernel_size = (kernel_size, kernel_size)\n",
" A_w = as_strided(\n",
" A,\n",
" shape=output_shape + kernel_size,\n",
" strides=(stride * A.strides[0], stride * A.strides[1]) + A.strides,\n",
" )\n",
" A_w = A_w.reshape(-1, *kernel_size)\n",
"\n",
" # Return the result of pooling.\n",
" if pool_mode == \"max\":\n",
" return A_w.max(axis=(1, 2)).reshape(output_shape)\n",
" elif pool_mode == \"avg\":\n",
" return A_w.mean(axis=(1, 2)).reshape(output_shape)\n",
"\n",
"\n",
"# non maximum suppression\n",
"def heatmap_nms(heatmaps, pooled_heatmaps):\n",
" return heatmaps * (heatmaps == pooled_heatmaps)\n",
"\n",
"\n",
"# Get poses from results.\n",
"def process_results(img, pafs, heatmaps):\n",
" # This processing comes from\n",
" # https://github.com/openvinotoolkit/open_model_zoo/blob/master/demos/common/python/models/open_pose.py\n",
" pooled_heatmaps = np.array([[pool2d(h, kernel_size=3, stride=1, padding=1, pool_mode=\"max\") for h in heatmaps[0]]])\n",
" nms_heatmaps = heatmap_nms(heatmaps, pooled_heatmaps)\n",
"\n",
" # Decode poses.\n",
" poses, scores = decoder(heatmaps, nms_heatmaps, pafs)\n",
" output_shape = list(compiled_model.output(index=0).partial_shape)\n",
" output_scale = (\n",
" img.shape[1] / output_shape[3].get_length(),\n",
" img.shape[0] / output_shape[2].get_length(),\n",
" )\n",
" # Multiply coordinates by a scaling factor.\n",
" poses[:, :, :2] *= output_scale\n",
" return poses, scores"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Draw Pose Overlays\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Draw pose overlays on the image to visualize estimated poses. Joints are drawn as circles and limbs are drawn as lines. The code is based on the [Human Pose Estimation Demo](https://github.com/openvinotoolkit/open_model_zoo/tree/master/demos/human_pose_estimation_demo/python) from Open Model Zoo."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"colors = (\n",
" (255, 0, 0),\n",
" (255, 0, 255),\n",
" (170, 0, 255),\n",
" (255, 0, 85),\n",
" (255, 0, 170),\n",
" (85, 255, 0),\n",
" (255, 170, 0),\n",
" (0, 255, 0),\n",
" (255, 255, 0),\n",
" (0, 255, 85),\n",
" (170, 255, 0),\n",
" (0, 85, 255),\n",
" (0, 255, 170),\n",
" (0, 0, 255),\n",
" (0, 255, 255),\n",
" (85, 0, 255),\n",
" (0, 170, 255),\n",
")\n",
"\n",
"default_skeleton = (\n",
" (15, 13),\n",
" (13, 11),\n",
" (16, 14),\n",
" (14, 12),\n",
" (11, 12),\n",
" (5, 11),\n",
" (6, 12),\n",
" (5, 6),\n",
" (5, 7),\n",
" (6, 8),\n",
" (7, 9),\n",
" (8, 10),\n",
" (1, 2),\n",
" (0, 1),\n",
" (0, 2),\n",
" (1, 3),\n",
" (2, 4),\n",
" (3, 5),\n",
" (4, 6),\n",
")\n",
"\n",
"\n",
"def draw_poses(img, poses, point_score_threshold, skeleton=default_skeleton):\n",
" if poses.size == 0:\n",
" return img\n",
"\n",
" img_limbs = np.copy(img)\n",
" for pose in poses:\n",
" points = pose[:, :2].astype(np.int32)\n",
" points_scores = pose[:, 2]\n",
" # Draw joints.\n",
" for i, (p, v) in enumerate(zip(points, points_scores)):\n",
" if v > point_score_threshold:\n",
" cv2.circle(img, tuple(p), 1, colors[i], 2)\n",
" # Draw limbs.\n",
" for i, j in skeleton:\n",
" if points_scores[i] > point_score_threshold and points_scores[j] > point_score_threshold:\n",
" cv2.line(\n",
" img_limbs,\n",
" tuple(points[i]),\n",
" tuple(points[j]),\n",
" color=colors[j],\n",
" thickness=4,\n",
" )\n",
" cv2.addWeighted(img, 0.4, img_limbs, 0.6, 0, dst=img)\n",
" return img"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Main Processing Function\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Run pose estimation on the specified source. Either a webcam or a video file."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Main processing function to run pose estimation.\n",
"def run_pose_estimation(source=0, flip=False, use_popup=False, skip_first_frames=0):\n",
" pafs_output_key = compiled_model.output(\"Mconv7_stage2_L1\")\n",
" heatmaps_output_key = compiled_model.output(\"Mconv7_stage2_L2\")\n",
" player = None\n",
" try:\n",
" # Create a video player to play with target fps.\n",
" player = utils.VideoPlayer(source, flip=flip, fps=30, skip_first_frames=skip_first_frames)\n",
" # Start capturing.\n",
" player.start()\n",
" if use_popup:\n",
" title = \"Press ESC to Exit\"\n",
" cv2.namedWindow(title, cv2.WINDOW_GUI_NORMAL | cv2.WINDOW_AUTOSIZE)\n",
"\n",
" processing_times = collections.deque()\n",
"\n",
" while True:\n",
" # Grab the frame.\n",
" frame = player.next()\n",
" if frame is None:\n",
" print(\"Source ended\")\n",
" break\n",
" # If the frame is larger than full HD, reduce size to improve the performance.\n",
" scale = 1280 / max(frame.shape)\n",
" if scale < 1:\n",
" frame = cv2.resize(frame, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)\n",
"\n",
" # Resize the image and change dims to fit neural network input.\n",
" # (see https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/intel/human-pose-estimation-0001)\n",
" input_img = cv2.resize(frame, (width, height), interpolation=cv2.INTER_AREA)\n",
" # Create a batch of images (size = 1).\n",
" input_img = input_img.transpose((2, 0, 1))[np.newaxis, ...]\n",
"\n",
" # Measure processing time.\n",
" start_time = time.time()\n",
" # Get results.\n",
" results = compiled_model([input_img])\n",
" stop_time = time.time()\n",
"\n",
" pafs = results[pafs_output_key]\n",
" heatmaps = results[heatmaps_output_key]\n",
" # Get poses from network results.\n",
" poses, scores = process_results(frame, pafs, heatmaps)\n",
"\n",
" # Draw poses on a frame.\n",
" frame = draw_poses(frame, poses, 0.1)\n",
"\n",
" processing_times.append(stop_time - start_time)\n",
" # Use processing times from last 200 frames.\n",
" if len(processing_times) > 200:\n",
" processing_times.popleft()\n",
"\n",
" _, f_width = frame.shape[:2]\n",
" # mean processing time [ms]\n",
" processing_time = np.mean(processing_times) * 1000\n",
" fps = 1000 / processing_time\n",
" cv2.putText(\n",
" frame,\n",
" f\"Inference time: {processing_time:.1f}ms ({fps:.1f} FPS)\",\n",
" (20, 40),\n",
" cv2.FONT_HERSHEY_COMPLEX,\n",
" f_width / 1000,\n",
" (0, 0, 255),\n",
" 1,\n",
" cv2.LINE_AA,\n",
" )\n",
"\n",
" # Use this workaround if there is flickering.\n",
" if use_popup:\n",
" cv2.imshow(title, frame)\n",
" key = cv2.waitKey(1)\n",
" # escape = 27\n",
" if key == 27:\n",
" break\n",
" else:\n",
" # Encode numpy array to jpg.\n",
" _, encoded_img = cv2.imencode(\".jpg\", frame, params=[cv2.IMWRITE_JPEG_QUALITY, 90])\n",
" # Create an IPython image.\n",
" i = display.Image(data=encoded_img)\n",
" # Display the image in this notebook.\n",
" display.clear_output(wait=True)\n",
" display.display(i)\n",
" # ctrl-c\n",
" except KeyboardInterrupt:\n",
" print(\"Interrupted\")\n",
" # any different error\n",
" except RuntimeError as e:\n",
" print(e)\n",
" finally:\n",
" if player is not None:\n",
" # Stop capturing.\n",
" player.stop()\n",
" if use_popup:\n",
" cv2.destroyAllWindows()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Run\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"### Run Live Pose Estimation\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Use a webcam as the video input. By default, the primary webcam is set with `source=0`. If you have multiple webcams, each one will be assigned a consecutive number starting at 0. Set `flip=True` when using a front-facing camera. Some web browsers, especially Mozilla Firefox, may cause flickering. If you experience flickering, set `use_popup=True`.\n",
"\n",
"> **NOTE**: To use this notebook with a webcam, you need to run the notebook on a computer with a webcam. If you run the notebook on a server (for example, Binder), the webcam will not work. Popup mode may not work if you run this notebook on a remote computer (for example, Binder).\n",
"\n",
"If you do not have a webcam, you can still run this demo with a video file. Any [format supported by OpenCV](https://docs.opencv.org/4.5.1/dd/d43/tutorial_py_video_display.html) will work. You can skip first `N` frames to fast forward video.\n",
"\n",
"Run the pose estimation:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"USE_WEBCAM = False\n",
"cam_id = 0\n",
"video_file = \"https://github.com/intel-iot-devkit/sample-videos/blob/master/store-aisle-detection.mp4?raw=true\"\n",
"source = cam_id if USE_WEBCAM else video_file\n",
"\n",
"additional_options = {\"skip_first_frames\": 500} if not USE_WEBCAM else {}\n",
"run_pose_estimation(source=source, flip=isinstance(source, int), use_popup=False, **additional_options)"
]
}
],
"metadata": {
"celltoolbar": "Edit Metadata",
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.8"
},
"openvino_notebooks": {
"imageUrl": "https://user-images.githubusercontent.com/4547501/138267961-41d754e7-59db-49f6-b700-63c3a636fad7.gif",
"tags": {
"categories": [
"Live Demos"
],
"libraries": [],
"other": [],
"tasks": [
"Pose Estimation"
]
}
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|