File size: 37,813 Bytes
db5855f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
{
 "cells": [
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Post-Training Quantization of PyTorch models with NNCF\n",
    "\n",
    "The goal of this tutorial is to demonstrate how to use the NNCF (Neural Network Compression Framework) 8-bit quantization in post-training mode (without the fine-tuning pipeline) to optimize a PyTorch model for the high-speed inference via OpenVINOβ„’ Toolkit. The optimization process contains the following steps:\n",
    "\n",
    "1. Evaluate the original model.\n",
    "2. Transform the original model to a quantized one.\n",
    "3. Export optimized and original models to OpenVINO IR.\n",
    "4. Compare performance of the obtained `FP32` and `INT8` models.\n",
    "\n",
    "This tutorial uses a ResNet-50 model, pre-trained on Tiny ImageNet, which contains 100000 images of 200 classes (500 for each class) downsized to 64Γ—64 colored images. The tutorial will demonstrate that only a tiny part of the dataset is needed for the post-training quantization, not demanding the fine-tuning of the model.\n",
    "\n",
    "\n",
    "> **NOTE**: This notebook requires that a C++ compiler is accessible on the default binary search path of the OS you are running the notebook.\n",
    "\n",
    "\n",
    "#### Table of contents:\n",
    "\n",
    "- [Preparations](#Preparations)\n",
    "    - [Imports](#Imports)\n",
    "    - [Settings](#Settings)\n",
    "    - [Download and Prepare Tiny ImageNet dataset](#Download-and-Prepare-Tiny-ImageNet-dataset)\n",
    "    - [Helpers classes and functions](#Helpers-classes-and-functions)\n",
    "    - [Validation function](#Validation-function)\n",
    "    - [Create and load original uncompressed model](#Create-and-load-original-uncompressed-model)\n",
    "    - [Create train and validation DataLoaders](#Create-train-and-validation-DataLoaders)\n",
    "- [Model quantization and benchmarking](#Model-quantization-and-benchmarking)\n",
    "    - [I. Evaluate the loaded model](#I.-Evaluate-the-loaded-model)\n",
    "    - [II. Create and initialize quantization](#II.-Create-and-initialize-quantization)\n",
    "    - [III. Convert the models to OpenVINO Intermediate Representation (OpenVINO IR)](#III.-Convert-the-models-to-OpenVINO-Intermediate-Representation-(OpenVINO-IR))\n",
    "    - [IV. Compare performance of INT8 model and FP32 model in OpenVINO](#IV.-Compare-performance-of-INT8-model-and-FP32-model-in-OpenVINO)\n",
    "\n"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Preparations\n",
    "[back to top ⬆️](#Table-of-contents:)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Install openvino package\n",
    "%pip install -q \"openvino>=2024.0.0\" torch torchvision tqdm --extra-index-url https://download.pytorch.org/whl/cpu\n",
    "%pip install -q \"nncf>=2.9.0\""
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Imports\n",
    "[back to top ⬆️](#Table-of-contents:)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "INFO:nncf:NNCF initialized successfully. Supported frameworks detected: torch, tensorflow, onnx, openvino\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "import time\n",
    "import zipfile\n",
    "from pathlib import Path\n",
    "from typing import List, Tuple\n",
    "\n",
    "import nncf\n",
    "import openvino as ov\n",
    "\n",
    "import torch\n",
    "from torchvision.datasets import ImageFolder\n",
    "from torchvision.models import resnet50\n",
    "import torchvision.transforms as transforms\n",
    "\n",
    "# Fetch `notebook_utils` module\n",
    "import requests\n",
    "\n",
    "r = requests.get(\n",
    "    url=\"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py\",\n",
    ")\n",
    "\n",
    "open(\"notebook_utils.py\", \"w\").write(r.text)\n",
    "from notebook_utils import download_file"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Settings\n",
    "[back to top ⬆️](#Table-of-contents:)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false,
    "jupyter": {
     "outputs_hidden": false
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Using cpu device\n",
      "'model/resnet50_fp32.pth' already exists.\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "PosixPath('/home/ea/work/openvino_notebooks/notebooks/pytorch-post-training-quantization-nncf/model/resnet50_fp32.pth')"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "torch_device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
    "print(f\"Using {torch_device} device\")\n",
    "\n",
    "MODEL_DIR = Path(\"model\")\n",
    "OUTPUT_DIR = Path(\"output\")\n",
    "BASE_MODEL_NAME = \"resnet50\"\n",
    "IMAGE_SIZE = [64, 64]\n",
    "\n",
    "OUTPUT_DIR.mkdir(exist_ok=True)\n",
    "MODEL_DIR.mkdir(exist_ok=True)\n",
    "\n",
    "# Paths where PyTorch and OpenVINO IR models will be stored.\n",
    "fp32_checkpoint_filename = Path(BASE_MODEL_NAME + \"_fp32\").with_suffix(\".pth\")\n",
    "fp32_ir_path = OUTPUT_DIR / Path(BASE_MODEL_NAME + \"_fp32\").with_suffix(\".xml\")\n",
    "int8_ir_path = OUTPUT_DIR / Path(BASE_MODEL_NAME + \"_int8\").with_suffix(\".xml\")\n",
    "\n",
    "\n",
    "fp32_pth_url = \"https://storage.openvinotoolkit.org/repositories/nncf/openvino_notebook_ckpts/304_resnet50_fp32.pth\"\n",
    "download_file(fp32_pth_url, directory=MODEL_DIR, filename=fp32_checkpoint_filename)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Download and Prepare Tiny ImageNet dataset\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "* 100k images of shape 3x64x64,\n",
    "* 200 different classes: snake, spider, cat, truck, grasshopper, gull, etc."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "def download_tiny_imagenet_200(\n",
    "    output_dir: Path,\n",
    "    url: str = \"http://cs231n.stanford.edu/tiny-imagenet-200.zip\",\n",
    "    tarname: str = \"tiny-imagenet-200.zip\",\n",
    "):\n",
    "    archive_path = output_dir / tarname\n",
    "    download_file(url, directory=output_dir, filename=tarname)\n",
    "    zip_ref = zipfile.ZipFile(archive_path, \"r\")\n",
    "    zip_ref.extractall(path=output_dir)\n",
    "    zip_ref.close()\n",
    "    print(f\"Successfully downloaded and extracted dataset to: {output_dir}\")\n",
    "\n",
    "\n",
    "def create_validation_dir(dataset_dir: Path):\n",
    "    VALID_DIR = dataset_dir / \"val\"\n",
    "    val_img_dir = VALID_DIR / \"images\"\n",
    "\n",
    "    fp = open(VALID_DIR / \"val_annotations.txt\", \"r\")\n",
    "    data = fp.readlines()\n",
    "\n",
    "    val_img_dict = {}\n",
    "    for line in data:\n",
    "        words = line.split(\"\\t\")\n",
    "        val_img_dict[words[0]] = words[1]\n",
    "    fp.close()\n",
    "\n",
    "    for img, folder in val_img_dict.items():\n",
    "        newpath = val_img_dir / folder\n",
    "        if not newpath.exists():\n",
    "            os.makedirs(newpath)\n",
    "        if (val_img_dir / img).exists():\n",
    "            os.rename(val_img_dir / img, newpath / img)\n",
    "\n",
    "\n",
    "DATASET_DIR = OUTPUT_DIR / \"tiny-imagenet-200\"\n",
    "if not DATASET_DIR.exists():\n",
    "    download_tiny_imagenet_200(OUTPUT_DIR)\n",
    "    create_validation_dir(DATASET_DIR)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Helpers classes and functions\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "The code below will help to count accuracy and visualize validation process."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "class AverageMeter(object):\n",
    "    \"\"\"Computes and stores the average and current value\"\"\"\n",
    "\n",
    "    def __init__(self, name: str, fmt: str = \":f\"):\n",
    "        self.name = name\n",
    "        self.fmt = fmt\n",
    "        self.val = 0\n",
    "        self.avg = 0\n",
    "        self.sum = 0\n",
    "        self.count = 0\n",
    "\n",
    "    def update(self, val: float, n: int = 1):\n",
    "        self.val = val\n",
    "        self.sum += val * n\n",
    "        self.count += n\n",
    "        self.avg = self.sum / self.count\n",
    "\n",
    "    def __str__(self):\n",
    "        fmtstr = \"{name} {val\" + self.fmt + \"} ({avg\" + self.fmt + \"})\"\n",
    "        return fmtstr.format(**self.__dict__)\n",
    "\n",
    "\n",
    "class ProgressMeter(object):\n",
    "    \"\"\"Displays the progress of validation process\"\"\"\n",
    "\n",
    "    def __init__(self, num_batches: int, meters: List[AverageMeter], prefix: str = \"\"):\n",
    "        self.batch_fmtstr = self._get_batch_fmtstr(num_batches)\n",
    "        self.meters = meters\n",
    "        self.prefix = prefix\n",
    "\n",
    "    def display(self, batch: int):\n",
    "        entries = [self.prefix + self.batch_fmtstr.format(batch)]\n",
    "        entries += [str(meter) for meter in self.meters]\n",
    "        print(\"\\t\".join(entries))\n",
    "\n",
    "    def _get_batch_fmtstr(self, num_batches: int):\n",
    "        num_digits = len(str(num_batches // 1))\n",
    "        fmt = \"{:\" + str(num_digits) + \"d}\"\n",
    "        return \"[\" + fmt + \"/\" + fmt.format(num_batches) + \"]\"\n",
    "\n",
    "\n",
    "def accuracy(output: torch.Tensor, target: torch.Tensor, topk: Tuple[int] = (1,)):\n",
    "    \"\"\"Computes the accuracy over the k top predictions for the specified values of k\"\"\"\n",
    "    with torch.no_grad():\n",
    "        maxk = max(topk)\n",
    "        batch_size = target.size(0)\n",
    "\n",
    "        _, pred = output.topk(maxk, 1, True, True)\n",
    "        pred = pred.t()\n",
    "        correct = pred.eq(target.view(1, -1).expand_as(pred))\n",
    "\n",
    "        res = []\n",
    "        for k in topk:\n",
    "            correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)\n",
    "            res.append(correct_k.mul_(100.0 / batch_size))\n",
    "\n",
    "        return res"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Validation function\n",
    "[back to top ⬆️](#Table-of-contents:)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "from typing import Union\n",
    "from openvino.runtime.ie_api import CompiledModel\n",
    "\n",
    "\n",
    "def validate(\n",
    "    val_loader: torch.utils.data.DataLoader,\n",
    "    model: Union[torch.nn.Module, CompiledModel],\n",
    "):\n",
    "    \"\"\"Compute the metrics using data from val_loader for the model\"\"\"\n",
    "    batch_time = AverageMeter(\"Time\", \":3.3f\")\n",
    "    top1 = AverageMeter(\"Acc@1\", \":2.2f\")\n",
    "    top5 = AverageMeter(\"Acc@5\", \":2.2f\")\n",
    "    progress = ProgressMeter(len(val_loader), [batch_time, top1, top5], prefix=\"Test: \")\n",
    "    start_time = time.time()\n",
    "    # Switch to evaluate mode.\n",
    "    if not isinstance(model, CompiledModel):\n",
    "        model.eval()\n",
    "        model.to(torch_device)\n",
    "\n",
    "    with torch.no_grad():\n",
    "        end = time.time()\n",
    "        for i, (images, target) in enumerate(val_loader):\n",
    "            images = images.to(torch_device)\n",
    "            target = target.to(torch_device)\n",
    "\n",
    "            # Compute the output.\n",
    "            if isinstance(model, CompiledModel):\n",
    "                output_layer = model.output(0)\n",
    "                output = model(images)[output_layer]\n",
    "                output = torch.from_numpy(output)\n",
    "            else:\n",
    "                output = model(images)\n",
    "\n",
    "            # Measure accuracy and record loss.\n",
    "            acc1, acc5 = accuracy(output, target, topk=(1, 5))\n",
    "            top1.update(acc1[0], images.size(0))\n",
    "            top5.update(acc5[0], images.size(0))\n",
    "\n",
    "            # Measure elapsed time.\n",
    "            batch_time.update(time.time() - end)\n",
    "            end = time.time()\n",
    "\n",
    "            print_frequency = 10\n",
    "            if i % print_frequency == 0:\n",
    "                progress.display(i)\n",
    "\n",
    "        print(\" * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f} Total time: {total_time:.3f}\".format(top1=top1, top5=top5, total_time=end - start_time))\n",
    "    return top1.avg"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Create and load original uncompressed model\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "ResNet-50 from the [`torchivision` repository](https://github.com/pytorch/vision) is pre-trained on ImageNet with more prediction classes than Tiny ImageNet, so the model is adjusted by swapping the last FC layer to one with fewer output values."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "def create_model(model_path: Path):\n",
    "    \"\"\"Creates the ResNet-50 model and loads the pretrained weights\"\"\"\n",
    "    model = resnet50()\n",
    "    # Update the last FC layer for Tiny ImageNet number of classes.\n",
    "    NUM_CLASSES = 200\n",
    "    model.fc = torch.nn.Linear(in_features=2048, out_features=NUM_CLASSES, bias=True)\n",
    "    model.to(torch_device)\n",
    "    if model_path.exists():\n",
    "        checkpoint = torch.load(str(model_path), map_location=\"cpu\")\n",
    "        model.load_state_dict(checkpoint[\"state_dict\"], strict=True)\n",
    "    else:\n",
    "        raise RuntimeError(\"There is no checkpoint to load\")\n",
    "    return model\n",
    "\n",
    "\n",
    "model = create_model(MODEL_DIR / fp32_checkpoint_filename)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Create train and validation DataLoaders\n",
    "[back to top ⬆️](#Table-of-contents:)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "tags": [],
    "test_replace": {
     "val_dataset,": "torch.utils.data.Subset(val_dataset, range(50)),"
    }
   },
   "outputs": [],
   "source": [
    "def create_dataloaders(batch_size: int = 128):\n",
    "    \"\"\"Creates train dataloader that is used for quantization initialization and validation dataloader for computing the model accruacy\"\"\"\n",
    "    train_dir = DATASET_DIR / \"train\"\n",
    "    val_dir = DATASET_DIR / \"val\" / \"images\"\n",
    "    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n",
    "    train_dataset = ImageFolder(\n",
    "        train_dir,\n",
    "        transforms.Compose(\n",
    "            [\n",
    "                transforms.Resize(IMAGE_SIZE),\n",
    "                transforms.ToTensor(),\n",
    "                normalize,\n",
    "            ]\n",
    "        ),\n",
    "    )\n",
    "    val_dataset = ImageFolder(\n",
    "        val_dir,\n",
    "        transforms.Compose([transforms.Resize(IMAGE_SIZE), transforms.ToTensor(), normalize]),\n",
    "    )\n",
    "\n",
    "    train_loader = torch.utils.data.DataLoader(\n",
    "        train_dataset,\n",
    "        batch_size=batch_size,\n",
    "        shuffle=True,\n",
    "        num_workers=0,\n",
    "        pin_memory=True,\n",
    "        sampler=None,\n",
    "    )\n",
    "\n",
    "    val_loader = torch.utils.data.DataLoader(\n",
    "        val_dataset,\n",
    "        batch_size=batch_size,\n",
    "        shuffle=False,\n",
    "        num_workers=0,\n",
    "        pin_memory=True,\n",
    "    )\n",
    "    return train_loader, val_loader\n",
    "\n",
    "\n",
    "train_loader, val_loader = create_dataloaders()"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Model quantization and benchmarking\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "With the validation pipeline, model files, and data-loading procedures for model calibration now prepared, it's time to proceed with the actual post-training quantization using NNCF."
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### I. Evaluate the loaded model\n",
    "[back to top ⬆️](#Table-of-contents:)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "scrolled": true,
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Test: [ 0/79]\tTime 0.317 (0.317)\tAcc@1 81.25 (81.25)\tAcc@5 92.19 (92.19)\n",
      "Test: [10/79]\tTime 0.391 (0.324)\tAcc@1 56.25 (66.97)\tAcc@5 86.72 (87.50)\n",
      "Test: [20/79]\tTime 0.284 (0.315)\tAcc@1 67.97 (64.29)\tAcc@5 85.16 (87.35)\n",
      "Test: [30/79]\tTime 0.291 (0.310)\tAcc@1 53.12 (62.37)\tAcc@5 77.34 (85.33)\n",
      "Test: [40/79]\tTime 0.278 (0.306)\tAcc@1 67.19 (60.86)\tAcc@5 90.62 (84.51)\n",
      "Test: [50/79]\tTime 0.269 (0.298)\tAcc@1 60.16 (60.80)\tAcc@5 88.28 (84.42)\n",
      "Test: [60/79]\tTime 0.242 (0.290)\tAcc@1 66.41 (60.46)\tAcc@5 86.72 (83.79)\n",
      "Test: [70/79]\tTime 0.264 (0.285)\tAcc@1 52.34 (60.21)\tAcc@5 80.47 (83.33)\n",
      " * Acc@1 60.740 Acc@5 83.960 Total time: 22.199\n",
      "Test accuracy of FP32 model: 60.740\n"
     ]
    }
   ],
   "source": [
    "acc1 = validate(val_loader, model)\n",
    "print(f\"Test accuracy of FP32 model: {acc1:.3f}\")"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### II. Create and initialize quantization\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "NNCF enables post-training quantization by adding the quantization layers into the model graph and then using a subset of the training dataset to initialize the parameters of these additional quantization layers. The framework is designed so that modifications to your original training code are minor. Quantization is the simplest scenario and requires a few modifications.\n",
    "For more information about NNCF Post Training Quantization (PTQ) API, refer to the [Basic Quantization Flow Guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/quantizing-models-post-training/basic-quantization-flow.html)."
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "1. Create a transformation function that accepts a sample from the dataset and returns data suitable for model inference. This enables the creation of an instance of the nncf.Dataset class, which represents the calibration dataset (based on the training dataset) necessary for post-training quantization."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "tags": [],
    "test_replace": {
     "train_loader": "val_loader"
    }
   },
   "outputs": [],
   "source": [
    "def transform_fn(data_item):\n",
    "    images, _ = data_item\n",
    "    return images\n",
    "\n",
    "\n",
    "calibration_dataset = nncf.Dataset(train_loader, transform_fn)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "2. Create a quantized model from the pre-trained `FP32` model and the calibration dataset."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "2023-09-12 22:52:13.498264: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
      "2023-09-12 22:52:13.533056: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
      "To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
      "2023-09-12 22:52:14.234552: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n",
      "No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda'\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "INFO:nncf:Collecting tensor statistics |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ           | 1 / 3\n",
      "INFO:nncf:Collecting tensor statistics |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ      | 2 / 3\n",
      "INFO:nncf:Collecting tensor statistics |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3 / 3\n",
      "INFO:nncf:Compiling and loading torch extension: quantized_functions_cpu...\n",
      "INFO:nncf:Finished loading torch extension: quantized_functions_cpu\n",
      "INFO:nncf:BatchNorm statistics adaptation |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ           | 1 / 3\n",
      "INFO:nncf:BatchNorm statistics adaptation |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ      | 2 / 3\n",
      "INFO:nncf:BatchNorm statistics adaptation |β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3 / 3\n"
     ]
    }
   ],
   "source": [
    "quantized_model = nncf.quantize(model, calibration_dataset)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "3. Evaluate the new model on the validation set after initialization of quantization. The accuracy should be close to the accuracy of the floating-point `FP32` model for a simple case like the one being demonstrated now."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Test: [ 0/79]\tTime 0.469 (0.469)\tAcc@1 82.03 (82.03)\tAcc@5 92.97 (92.97)\n",
      "Test: [10/79]\tTime 0.463 (0.489)\tAcc@1 60.16 (67.26)\tAcc@5 86.72 (87.78)\n",
      "Test: [20/79]\tTime 0.487 (0.488)\tAcc@1 67.19 (64.47)\tAcc@5 85.94 (87.69)\n",
      "Test: [30/79]\tTime 0.456 (0.497)\tAcc@1 53.12 (62.63)\tAcc@5 76.56 (85.48)\n",
      "Test: [40/79]\tTime 0.416 (0.495)\tAcc@1 67.97 (61.11)\tAcc@5 89.84 (84.58)\n",
      "Test: [50/79]\tTime 0.515 (0.491)\tAcc@1 62.50 (60.94)\tAcc@5 85.94 (84.50)\n",
      "Test: [60/79]\tTime 0.534 (0.493)\tAcc@1 65.62 (60.50)\tAcc@5 86.72 (83.86)\n",
      "Test: [70/79]\tTime 0.517 (0.495)\tAcc@1 53.91 (60.28)\tAcc@5 79.69 (83.41)\n",
      " * Acc@1 60.880 Acc@5 84.050 Total time: 38.752\n",
      "Accuracy of initialized INT8 model: 60.880\n"
     ]
    }
   ],
   "source": [
    "acc1 = validate(val_loader, quantized_model)\n",
    "print(f\"Accuracy of initialized INT8 model: {acc1:.3f}\")"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "It should be noted that the inference time for the quantized PyTorch model is longer than that of the original model, as fake quantizers are added to the model by NNCF. However, the model's performance will significantly improve when it is in the OpenVINO Intermediate Representation (IR) format."
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### III. Convert the models to OpenVINO Intermediate Representation (OpenVINO IR)\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "To convert the Pytorch models to OpenVINO IR, use Model Conversion Python API. The models will be saved to the 'OUTPUT' directory for later benchmarking.\n",
    "\n",
    "For more information about model conversion, refer to this [page](https://docs.openvino.ai/2024/openvino-workflow/model-preparation.html).\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "WARNING:tensorflow:Please fix your imports. Module tensorflow.python.training.tracking.base has been moved to tensorflow.python.trackable.base. The old module will be deleted in version 2.11.\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[ WARNING ]  Please fix your imports. Module %s has been moved to %s. The old module will be deleted in version %s.\n"
     ]
    }
   ],
   "source": [
    "dummy_input = torch.randn(128, 3, *IMAGE_SIZE)\n",
    "\n",
    "model_ir = ov.convert_model(model, example_input=dummy_input, input=[-1, 3, *IMAGE_SIZE])\n",
    "\n",
    "ov.save_model(model_ir, fp32_ir_path)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {
    "collapsed": false,
    "jupyter": {
     "outputs_hidden": false
    }
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/ea/work/ov_venv/lib/python3.8/site-packages/nncf/torch/quantization/layers.py:336: TracerWarning: Converting a tensor to a Python number might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
      "  return self._level_low.item()\n",
      "/home/ea/work/ov_venv/lib/python3.8/site-packages/nncf/torch/quantization/layers.py:344: TracerWarning: Converting a tensor to a Python number might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
      "  return self._level_high.item()\n",
      "/home/ea/work/ov_venv/lib/python3.8/site-packages/torch/jit/_trace.py:1084: TracerWarning: Output nr 1. of the traced function does not match the corresponding output of the Python function. Detailed error:\n",
      "Tensor-likes are not close!\n",
      "\n",
      "Mismatched elements: 23985 / 25600 (93.7%)\n",
      "Greatest absolute difference: 0.36202991008758545 at index (90, 14) (up to 1e-05 allowed)\n",
      "Greatest relative difference: 1153.8073089700997 at index (116, 158) (up to 1e-05 allowed)\n",
      "  _check_trace(\n"
     ]
    }
   ],
   "source": [
    "quantized_model_ir = ov.convert_model(quantized_model, example_input=dummy_input, input=[-1, 3, *IMAGE_SIZE])\n",
    "\n",
    "ov.save_model(quantized_model_ir, int8_ir_path)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Select inference device for OpenVINO"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "tags": [
     "hide-input"
    ]
   },
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "e4be0e28604d4474ba58bb32a06e4514",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Dropdown(description='Device:', index=2, options=('CPU', 'GPU', 'AUTO'), value='AUTO')"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import ipywidgets as widgets\n",
    "\n",
    "core = ov.Core()\n",
    "device = widgets.Dropdown(\n",
    "    options=core.available_devices + [\"AUTO\"],\n",
    "    value=\"AUTO\",\n",
    "    description=\"Device:\",\n",
    "    disabled=False,\n",
    ")\n",
    "\n",
    "device"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Evaluate the FP32 and INT8 models."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {
    "collapsed": false,
    "jupyter": {
     "outputs_hidden": false
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Test: [ 0/79]\tTime 0.166 (0.166)\tAcc@1 81.25 (81.25)\tAcc@5 92.19 (92.19)\n",
      "Test: [10/79]\tTime 0.123 (0.128)\tAcc@1 56.25 (66.97)\tAcc@5 86.72 (87.50)\n",
      "Test: [20/79]\tTime 0.121 (0.126)\tAcc@1 67.97 (64.29)\tAcc@5 85.16 (87.35)\n",
      "Test: [30/79]\tTime 0.121 (0.125)\tAcc@1 53.12 (62.37)\tAcc@5 77.34 (85.33)\n",
      "Test: [40/79]\tTime 0.123 (0.125)\tAcc@1 67.19 (60.86)\tAcc@5 90.62 (84.51)\n",
      "Test: [50/79]\tTime 0.122 (0.125)\tAcc@1 60.16 (60.80)\tAcc@5 88.28 (84.42)\n",
      "Test: [60/79]\tTime 0.124 (0.125)\tAcc@1 66.41 (60.46)\tAcc@5 86.72 (83.79)\n",
      "Test: [70/79]\tTime 0.129 (0.125)\tAcc@1 52.34 (60.21)\tAcc@5 80.47 (83.33)\n",
      " * Acc@1 60.740 Acc@5 83.960 Total time: 9.788\n",
      "Accuracy of FP32 IR model: 60.740\n"
     ]
    }
   ],
   "source": [
    "core = ov.Core()\n",
    "fp32_compiled_model = core.compile_model(model_ir, device.value)\n",
    "acc1 = validate(val_loader, fp32_compiled_model)\n",
    "print(f\"Accuracy of FP32 IR model: {acc1:.3f}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {
    "collapsed": false,
    "jupyter": {
     "outputs_hidden": false
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Test: [ 0/79]\tTime 0.115 (0.115)\tAcc@1 82.81 (82.81)\tAcc@5 92.97 (92.97)\n",
      "Test: [10/79]\tTime 0.072 (0.077)\tAcc@1 60.16 (67.83)\tAcc@5 86.72 (87.93)\n",
      "Test: [20/79]\tTime 0.073 (0.075)\tAcc@1 69.53 (64.43)\tAcc@5 83.59 (87.43)\n",
      "Test: [30/79]\tTime 0.067 (0.074)\tAcc@1 53.12 (62.63)\tAcc@5 75.00 (85.26)\n",
      "Test: [40/79]\tTime 0.072 (0.074)\tAcc@1 66.41 (61.13)\tAcc@5 89.06 (84.41)\n",
      "Test: [50/79]\tTime 0.075 (0.074)\tAcc@1 60.16 (60.92)\tAcc@5 88.28 (84.33)\n",
      "Test: [60/79]\tTime 0.073 (0.074)\tAcc@1 66.41 (60.57)\tAcc@5 87.50 (83.67)\n",
      "Test: [70/79]\tTime 0.072 (0.074)\tAcc@1 53.91 (60.29)\tAcc@5 80.47 (83.30)\n",
      " * Acc@1 60.920 Acc@5 83.970 Total time: 5.761\n",
      "Accuracy of INT8 IR model: 60.920\n"
     ]
    }
   ],
   "source": [
    "int8_compiled_model = core.compile_model(quantized_model_ir, device.value)\n",
    "acc1 = validate(val_loader, int8_compiled_model)\n",
    "print(f\"Accuracy of INT8 IR model: {acc1:.3f}\")"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### IV. Compare performance of INT8 model and FP32 model in OpenVINO\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "Finally, measure the inference performance of the `FP32` and `INT8` models, using [Benchmark Tool](https://docs.openvino.ai/2024/learn-openvino/openvino-samples/benchmark-tool.html) - an inference performance measurement tool in OpenVINO. By default, Benchmark Tool runs inference for 60 seconds in asynchronous mode on CPU. It returns inference speed as latency (milliseconds per image) and throughput (frames per second) values.\n",
    "\n",
    "> **NOTE**: This notebook runs benchmark_app for 15 seconds to give a quick indication of performance. For more accurate performance, it is recommended to run benchmark_app in a terminal/command prompt after closing other applications. Run `benchmark_app -m model.xml -d CPU` to benchmark async inference on CPU for one minute. Change CPU to GPU to benchmark on GPU. Run `benchmark_app --help` to see an overview of all command-line options."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {
    "tags": [
     "hide-input"
    ]
   },
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "e4be0e28604d4474ba58bb32a06e4514",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Dropdown(description='Device:', index=2, options=('CPU', 'GPU', 'AUTO'), value='AUTO')"
      ]
     },
     "execution_count": 19,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "device"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {
    "collapsed": false,
    "jupyter": {
     "outputs_hidden": false
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Benchmark FP32 model (OpenVINO IR)\n",
      "[ INFO ] Throughput:   51.11 FPS\n",
      "Benchmark INT8 model (OpenVINO IR)\n",
      "[ INFO ] Throughput:   196.85 FPS\n",
      "Benchmark FP32 model (OpenVINO IR) synchronously\n",
      "[ INFO ] Throughput:   36.68 FPS\n",
      "Benchmark INT8 model (OpenVINO IR) synchronously\n",
      "[ INFO ] Throughput:   128.84 FPS\n"
     ]
    }
   ],
   "source": [
    "def parse_benchmark_output(benchmark_output: str):\n",
    "    \"\"\"Prints the output from benchmark_app in human-readable format\"\"\"\n",
    "    parsed_output = [line for line in benchmark_output if \"FPS\" in line]\n",
    "    print(*parsed_output, sep=\"\\n\")\n",
    "\n",
    "\n",
    "print(\"Benchmark FP32 model (OpenVINO IR)\")\n",
    "benchmark_output = ! benchmark_app -m \"$fp32_ir_path\" -d $device.value -api async -t 15 -shape \"[1, 3, 512, 512]\"\n",
    "parse_benchmark_output(benchmark_output)\n",
    "\n",
    "print(\"Benchmark INT8 model (OpenVINO IR)\")\n",
    "benchmark_output = ! benchmark_app -m \"$int8_ir_path\" -d $device.value -api async -t 15 -shape \"[1, 3, 512, 512]\"\n",
    "parse_benchmark_output(benchmark_output)\n",
    "\n",
    "print(\"Benchmark FP32 model (OpenVINO IR) synchronously\")\n",
    "benchmark_output = ! benchmark_app -m \"$fp32_ir_path\" -d $device.value -api sync -t 15 -shape \"[1, 3, 512, 512]\"\n",
    "parse_benchmark_output(benchmark_output)\n",
    "\n",
    "print(\"Benchmark INT8 model (OpenVINO IR) synchronously\")\n",
    "benchmark_output = ! benchmark_app -m \"$int8_ir_path\" -d $device.value -api sync -t 15 -shape \"[1, 3, 512, 512]\"\n",
    "parse_benchmark_output(benchmark_output)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Show device Information for reference:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "CPU: Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz\n",
      "GPU: NVIDIA GeForce GTX 1080 Ti (dGPU)\n"
     ]
    }
   ],
   "source": [
    "core = ov.Core()\n",
    "devices = core.available_devices\n",
    "\n",
    "for device_name in devices:\n",
    "    device_full_name = core.get_property(device_name, \"FULL_DEVICE_NAME\")\n",
    "    print(f\"{device_name}: {device_full_name}\")"
   ]
  }
 ],
 "metadata": {
  "accelerator": "GPU",
  "colab": {
   "collapsed_sections": [
    "K5HPrY_d-7cV",
    "E01dMaR2_AFL",
    "qMnYsGo9_MA8",
    "L0tH9KdwtHhV"
   ],
   "name": "NNCF Quantization PyTorch Demo (tiny-imagenet/resnet-50)",
   "provenance": []
  },
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  },
  "openvino_notebooks": {
   "imageUrl": "",
   "tags": {
    "categories": [
     "Optimize",
     "API Overview"
    ],
    "libraries": [],
    "other": [],
    "tasks": [
     "Image Classification"
    ]
   }
  },
  "vscode": {
   "interpreter": {
    "hash": "916dbcbb3f70747c44a77c7bcd40155683ae19c65e1c03b4aa3499c5328201f1"
   }
  },
  "widgets": {
   "application/vnd.jupyter.widget-state+json": {
    "state": {},
    "version_major": 2,
    "version_minor": 0
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}