Spaces:
Runtime error
Runtime error
File size: 3,055 Bytes
db5855f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
# PyTorch to OpenVINO™ IR Tutorial
This tutorial demonstrates how to convert PyTorch models to OpenVINO Intermediate Representation (IR) format.
## Notebook Contents
* [pytorch-to-openvino](./pytorch-to-openvino.ipynb) shows how to convert the Pytorch model in formats `torch.nn.Module` and `torch.jit.ScriptModule` into OpenVINO Intermediate Representation. The tutorial uses [RegNetY_800MF](https://arxiv.org/abs/2003.13678) model from [torchvision](https://pytorch.org/vision/stable/index.html) pre-trained on [ImageNet](https://www.image-net.org/) dataset to demonstrate how to convert PyTorch models to OpenVINO Intermediate Representation using Model Converter. It also shows how to do classification inference on an image, using [OpenVINO Runtime](https://docs.openvino.ai/2024/openvino-workflow/running-inference.html) and compares the results of the PyTorch model with the OpenVINO IR model.
[](https://colab.research.google.com/github/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/pytorch-to-openvino/pytorch-to-openvino.ipynb)

* [pytorch-onnx-to-openvino](./pytorch-onnx-to-openvino.ipynb) shows how to convert the PyTorch model to OpenVINO IR with the intermediate step of exporting PyTorch model to ONNX format.
[](https://mybinder.org/v2/gh/eaidova/openvino_notebooks_binder.git/main?urlpath=git-pull%3Frepo%3Dhttps%253A%252F%252Fgithub.com%252Fopenvinotoolkit%252Fopenvino_notebooks%26urlpath%3Dtree%252Fopenvino_notebooks%252Fnotebooks%2Fpytorch-to-openvino%2Fpytorch-onnx-to-openvino.ipynb)
[](https://colab.research.google.com/github/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/pytorch-to-openvino/pytorch-onnx-to-openvino.ipynb)

The notebook uses OpenVINO Model Converter (OVC) to convert the open-source Lite-RASPP semantic segmentation model with a MobileNet V3 Large backbone from [torchvision](https://pytorch.org/vision/main/models/lraspp.html), trained on [COCO](https://cocodataset.org) dataset images using 20 categories that are present in the [Pascal VOC](https://paperswithcode.com/dataset/pascal-voc) dataset, to OpenVINO IR. It also shows how to do segmentation inference on an image, using [OpenVINO Runtime](https://docs.openvino.ai/2024/openvino-workflow/running-inference.html) and compares the results of the PyTorch model with the OpenVINO IR model.
## Installation Instructions
This is a self-contained example that relies solely on its own code.</br>
We recommend running the notebook in a virtual environment. You only need a Jupyter server to start.
For details, please refer to [Installation Guide](../../README.md).
|