Spaces:
Runtime error
Runtime error
File size: 39,502 Bytes
db5855f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Convert and Optimize YOLOv8 with OpenVINO™\n",
"\n",
"The YOLOv8 algorithm developed by Ultralytics is a cutting-edge, state-of-the-art (SOTA) model that is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection, image segmentation, and image classification tasks.\n",
"More details about its realization can be found in the original model [repository](https://github.com/ultralytics/ultralytics).\n",
"\n",
"This tutorial demonstrates step-by-step instructions on how to run apply quantization with accuracy control to PyTorch YOLOv8.\n",
"The advanced quantization flow allows to apply 8-bit quantization to the model with control of accuracy metric. This is achieved by keeping the most impactful operations within the model in the original precision. The flow is based on the [Basic 8-bit quantization](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/quantizing-models-post-training/basic-quantization-flow.html) and has the following differences:\n",
"\n",
"- Besides the calibration dataset, a validation dataset is required to compute the accuracy metric. Both datasets can refer to the same data in the simplest case.\n",
"- Validation function, used to compute accuracy metric is required. It can be a function that is already available in the source framework or a custom function.\n",
"- Since accuracy validation is run several times during the quantization process, quantization with accuracy control can take more time than the Basic 8-bit quantization flow.\n",
"- The resulted model can provide smaller performance improvement than the Basic 8-bit quantization flow because some of the operations are kept in the original precision.\n",
"\n",
"> **NOTE**: Currently, 8-bit quantization with accuracy control in NNCF is available only for models in OpenVINO representation.\n",
"\n",
"The steps for the quantization with accuracy control are described below.\n",
"\n",
"\n",
"#### Table of contents:\n",
"\n",
"- [Prerequisites](#Prerequisites)\n",
"- [Get Pytorch model and OpenVINO IR model](#Get-Pytorch-model-and-OpenVINO-IR-model)\n",
" - [Define validator and data loader](#Define-validator-and-data-loader)\n",
" - [Prepare calibration and validation datasets](#Prepare-calibration-and-validation-datasets)\n",
" - [Prepare validation function](#Prepare-validation-function)\n",
"- [Run quantization with accuracy control](#Run-quantization-with-accuracy-control)\n",
"- [Compare Accuracy and Performance of the Original and Quantized Models](#Compare-Accuracy-and-Performance-of-the-Original-and-Quantized-Models)\n",
"\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Prerequisites\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Install necessary packages."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%pip install -q \"openvino>=2024.0.0\"\n",
"%pip install -q \"nncf>=2.9.0\"\n",
"%pip install -q \"ultralytics==8.1.42\" tqdm --extra-index-url https://download.pytorch.org/whl/cpu"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Get Pytorch model and OpenVINO IR model\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Generally, PyTorch models represent an instance of the [`torch.nn.Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html) class, initialized by a state dictionary with model weights.\n",
"We will use the YOLOv8 nano model (also known as `yolov8n`) pre-trained on a COCO dataset, which is available in this [repo](https://github.com/ultralytics/ultralytics). Similar steps are also applicable to other YOLOv8 models.\n",
"Typical steps to obtain a pre-trained model:\n",
"\n",
"1. Create an instance of a model class.\n",
"2. Load a checkpoint state dict, which contains the pre-trained model weights.\n",
"\n",
"In this case, the creators of the model provide an API that enables converting the YOLOv8 model to ONNX and then to OpenVINO IR. Therefore, we do not need to do these steps manually."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import os\n",
"from pathlib import Path\n",
"\n",
"from ultralytics import YOLO\n",
"from ultralytics.cfg import get_cfg\n",
"from ultralytics.data.utils import check_det_dataset\n",
"from ultralytics.engine.validator import BaseValidator as Validator\n",
"from ultralytics.utils import DEFAULT_CFG\n",
"from ultralytics.utils import ops\n",
"from ultralytics.utils.metrics import ConfusionMatrix\n",
"\n",
"ROOT = os.path.abspath(\"\")\n",
"\n",
"MODEL_NAME = \"yolov8n-seg\"\n",
"\n",
"model = YOLO(f\"{ROOT}/{MODEL_NAME}.pt\")\n",
"args = get_cfg(cfg=DEFAULT_CFG)\n",
"args.data = \"coco128-seg.yaml\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# Fetch the notebook utils script from the openvino_notebooks repo\n",
"import requests\n",
"\n",
"r = requests.get(\n",
" url=\"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py\",\n",
")\n",
"\n",
"open(\"notebook_utils.py\", \"w\").write(r.text)\n",
"\n",
"from notebook_utils import download_file"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"'/home/maleksandr/test_notebooks/ultrali/datasets/coco128-seg.zip' already exists.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "518d4b38f82346efa704d25c1ca5ebd2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"/home/maleksandr/test_notebooks/ultrali/datasets/coco128-seg.yaml: 0%| | 0.00/0.98k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from zipfile import ZipFile\n",
"\n",
"from ultralytics.data.utils import DATASETS_DIR\n",
"\n",
"DATA_URL = \"https://www.ultralytics.com/assets/coco128-seg.zip\"\n",
"CFG_URL = \"https://raw.githubusercontent.com/ultralytics/ultralytics/8ebe94d1e928687feaa1fee6d5668987df5e43be/ultralytics/datasets/coco128-seg.yaml\" # last compatible format with ultralytics 8.0.43\n",
"\n",
"OUT_DIR = DATASETS_DIR\n",
"\n",
"DATA_PATH = OUT_DIR / \"coco128-seg.zip\"\n",
"CFG_PATH = OUT_DIR / \"coco128-seg.yaml\"\n",
"\n",
"download_file(DATA_URL, DATA_PATH.name, DATA_PATH.parent)\n",
"download_file(CFG_URL, CFG_PATH.name, CFG_PATH.parent)\n",
"\n",
"if not (OUT_DIR / \"coco128/labels\").exists():\n",
" with ZipFile(DATA_PATH, \"r\") as zip_ref:\n",
" zip_ref.extractall(OUT_DIR)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Load model."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import openvino as ov\n",
"\n",
"\n",
"model_path = Path(f\"{ROOT}/{MODEL_NAME}_openvino_model/{MODEL_NAME}.xml\")\n",
"if not model_path.exists():\n",
" model.export(format=\"openvino\", dynamic=True, half=False)\n",
"\n",
"ov_model = ov.Core().read_model(model_path)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Define validator and data loader\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"The original model repository uses a `Validator` wrapper, which represents the accuracy validation pipeline. It creates dataloader and evaluation metrics and updates metrics on each data batch produced by the dataloader. Besides that, it is responsible for data preprocessing and results postprocessing. For class initialization, the configuration should be provided. We will use the default setup, but it can be replaced with some parameters overriding to test on custom data. The model has connected the `ValidatorClass` method, which creates a validator class instance."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from ultralytics.data.converter import coco80_to_coco91_class\n",
"\n",
"\n",
"validator = model.task_map[model.task][\"validator\"](args=args)\n",
"validator.data = check_det_dataset(args.data)\n",
"validator.stride = 3\n",
"data_loader = validator.get_dataloader(OUT_DIR / \"coco128-seg\", 1)\n",
"\n",
"validator.is_coco = True\n",
"validator.class_map = coco80_to_coco91_class()\n",
"validator.names = model.model.names\n",
"validator.metrics.names = validator.names\n",
"validator.nc = model.model.model[-1].nc\n",
"validator.nm = 32\n",
"validator.process = ops.process_mask\n",
"validator.plot_masks = []"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Prepare calibration and validation datasets\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"We can use one dataset as calibration and validation datasets. Name it `quantization_dataset`."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:nncf:NNCF initialized successfully. Supported frameworks detected: torch, openvino\n"
]
}
],
"source": [
"from typing import Dict\n",
"\n",
"import nncf\n",
"\n",
"\n",
"def transform_fn(data_item: Dict):\n",
" input_tensor = validator.preprocess(data_item)[\"img\"].numpy()\n",
" return input_tensor\n",
"\n",
"\n",
"quantization_dataset = nncf.Dataset(data_loader, transform_fn)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Prepare validation function\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from functools import partial\n",
"\n",
"import torch\n",
"from nncf.quantization.advanced_parameters import AdvancedAccuracyRestorerParameters\n",
"\n",
"\n",
"def validation_ac(\n",
" compiled_model: ov.CompiledModel,\n",
" validation_loader: torch.utils.data.DataLoader,\n",
" validator: Validator,\n",
" num_samples: int = None,\n",
" log=True,\n",
") -> float:\n",
" validator.seen = 0\n",
" validator.jdict = []\n",
" validator.stats = dict(tp_m=[], tp=[], conf=[], pred_cls=[], target_cls=[])\n",
" validator.batch_i = 1\n",
" validator.confusion_matrix = ConfusionMatrix(nc=validator.nc)\n",
" num_outputs = len(compiled_model.outputs)\n",
"\n",
" counter = 0\n",
" for batch_i, batch in enumerate(validation_loader):\n",
" if num_samples is not None and batch_i == num_samples:\n",
" break\n",
" batch = validator.preprocess(batch)\n",
" results = compiled_model(batch[\"img\"])\n",
" if num_outputs == 1:\n",
" preds = torch.from_numpy(results[compiled_model.output(0)])\n",
" else:\n",
" preds = [\n",
" torch.from_numpy(results[compiled_model.output(0)]),\n",
" torch.from_numpy(results[compiled_model.output(1)]),\n",
" ]\n",
" preds = validator.postprocess(preds)\n",
" validator.update_metrics(preds, batch)\n",
" counter += 1\n",
" stats = validator.get_stats()\n",
" if num_outputs == 1:\n",
" stats_metrics = stats[\"metrics/mAP50-95(B)\"]\n",
" else:\n",
" stats_metrics = stats[\"metrics/mAP50-95(M)\"]\n",
" if log:\n",
" print(f\"Validate: dataset length = {counter}, metric value = {stats_metrics:.3f}\")\n",
"\n",
" return stats_metrics\n",
"\n",
"\n",
"validation_fn = partial(validation_ac, validator=validator, log=False)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Run quantization with accuracy control\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"You should provide the calibration dataset and the validation dataset. It can be the same dataset. \n",
" - parameter `max_drop` defines the accuracy drop threshold. The quantization process stops when the degradation of accuracy metric on the validation dataset is less than the `max_drop`. The default value is 0.01. NNCF will stop the quantization and report an error if the `max_drop` value can’t be reached.\n",
" - `drop_type` defines how the accuracy drop will be calculated: ABSOLUTE (used by default) or RELATIVE.\n",
" - `ranking_subset_size` - size of a subset that is used to rank layers by their contribution to the accuracy drop. Default value is 300, and the more samples it has the better ranking, potentially. Here we use the value 25 to speed up the execution. \n",
"\n",
"> **NOTE**: Execution can take tens of minutes and requires up to 15 GB of free memory"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "dc01eb1666c84309850dd3db8b7fe52c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
"</pre>\n"
],
"text/plain": [
"\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/maleksandr/test_notebooks/ultrali/openvino_notebooks/notebooks/quantizing-model-with-accuracy-control/venv/lib/python3.10/site-packages/nncf/experimental/tensor/tensor.py:84: RuntimeWarning: invalid value encountered in multiply\n",
" return Tensor(self.data * unwrap_tensor_data(other))\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "536888cb110d4ed198f7e20503db6d8b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
"</pre>\n"
],
"text/plain": [
"\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:nncf:Validation of initial model was started\n",
"INFO:nncf:Elapsed Time: 00:00:00\n",
"INFO:nncf:Elapsed Time: 00:00:03\n",
"INFO:nncf:Metric of initial model: 0.3651327608484117\n",
"INFO:nncf:Collecting values for each data item using the initial model\n",
"INFO:nncf:Elapsed Time: 00:00:04\n",
"INFO:nncf:Validation of quantized model was started\n",
"INFO:nncf:Elapsed Time: 00:00:00\n",
"INFO:nncf:Elapsed Time: 00:00:03\n",
"INFO:nncf:Metric of quantized model: 0.34040251506886543\n",
"INFO:nncf:Collecting values for each data item using the quantized model\n",
"INFO:nncf:Elapsed Time: 00:00:04\n",
"INFO:nncf:Accuracy drop: 0.024730245779546245 (absolute)\n",
"INFO:nncf:Accuracy drop: 0.024730245779546245 (absolute)\n",
"INFO:nncf:Total number of quantized operations in the model: 92\n",
"INFO:nncf:Number of parallel workers to rank quantized operations: 1\n",
"INFO:nncf:ORIGINAL metric is used to rank quantizers\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1677e3f54a294407aa297e2facb698ac",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
"</pre>\n"
],
"text/plain": [
"\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:nncf:Elapsed Time: 00:01:38\n",
"INFO:nncf:Changing the scope of quantizer nodes was started\n",
"INFO:nncf:Reverted 1 operations to the floating-point precision: \n",
"\t__module.model.4.m.0.cv2.conv/aten::_convolution/Convolution\n",
"INFO:nncf:Accuracy drop with the new quantization scope is 0.023408466397916217 (absolute)\n",
"INFO:nncf:Reverted 1 operations to the floating-point precision: \n",
"\t__module.model.18.m.0.cv2.conv/aten::_convolution/Convolution\n",
"INFO:nncf:Accuracy drop with the new quantization scope is 0.024749654890442174 (absolute)\n",
"INFO:nncf:Re-calculating ranking scores for remaining groups\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ce78c0bd52074cc6a8cf006fc94dbcc7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
"</pre>\n"
],
"text/plain": [
"\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:nncf:Elapsed Time: 00:01:36\n",
"INFO:nncf:Reverted 1 operations to the floating-point precision: \n",
"\t__module.model.22.proto.cv3.conv/aten::_convolution/Convolution\n",
"INFO:nncf:Accuracy drop with the new quantization scope is 0.023229513575966754 (absolute)\n",
"INFO:nncf:Reverted 2 operations to the floating-point precision: \n",
"\t__module.model.22/aten::add/Add_6\n",
"\t__module.model.22/aten::sub/Subtract\n",
"INFO:nncf:Accuracy drop with the new quantization scope is 0.02425608378963906 (absolute)\n",
"INFO:nncf:Re-calculating ranking scores for remaining groups\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "76073e20a40b4632b6324a6be54a2d92",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
"</pre>\n"
],
"text/plain": [
"\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:nncf:Elapsed Time: 00:01:35\n",
"INFO:nncf:Reverted 1 operations to the floating-point precision: \n",
"\t__module.model.6.m.0.cv2.conv/aten::_convolution/Convolution\n",
"INFO:nncf:Accuracy drop with the new quantization scope is 0.023297881500256024 (absolute)\n",
"INFO:nncf:Reverted 2 operations to the floating-point precision: \n",
"\t__module.model.12.cv2.conv/aten::_convolution/Convolution\n",
"\t__module.model.12.m.0.cv1.conv/aten::_convolution/Convolution\n",
"INFO:nncf:Accuracy drop with the new quantization scope is 0.021779128052922092 (absolute)\n",
"INFO:nncf:Reverted 2 operations to the floating-point precision: \n",
"\t__module.model.7.conv/aten::_convolution/Convolution\n",
"\t__module.model.12.cv1.conv/aten::_convolution/Convolution\n",
"INFO:nncf:Accuracy drop with the new quantization scope is 0.01696486517685941 (absolute)\n",
"INFO:nncf:Reverted 2 operations to the floating-point precision: \n",
"\t__module.model.22/aten::add/Add_7\n",
"\t__module.model.22/aten::sub/Subtract_1\n",
"INFO:nncf:Algorithm completed: achieved required accuracy drop 0.005923437521415831 (absolute)\n",
"INFO:nncf:9 out of 92 were reverted back to the floating-point precision:\n",
"\t__module.model.4.m.0.cv2.conv/aten::_convolution/Convolution\n",
"\t__module.model.22.proto.cv3.conv/aten::_convolution/Convolution\n",
"\t__module.model.6.m.0.cv2.conv/aten::_convolution/Convolution\n",
"\t__module.model.12.cv2.conv/aten::_convolution/Convolution\n",
"\t__module.model.12.m.0.cv1.conv/aten::_convolution/Convolution\n",
"\t__module.model.7.conv/aten::_convolution/Convolution\n",
"\t__module.model.12.cv1.conv/aten::_convolution/Convolution\n",
"\t__module.model.22/aten::add/Add_7\n",
"\t__module.model.22/aten::sub/Subtract_1\n"
]
}
],
"source": [
"quantized_model = nncf.quantize_with_accuracy_control(\n",
" ov_model,\n",
" quantization_dataset,\n",
" quantization_dataset,\n",
" validation_fn=validation_fn,\n",
" max_drop=0.01,\n",
" preset=nncf.QuantizationPreset.MIXED,\n",
" subset_size=128,\n",
" advanced_accuracy_restorer_parameters=AdvancedAccuracyRestorerParameters(ranking_subset_size=25),\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Compare Accuracy and Performance of the Original and Quantized Models\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Now we can compare metrics of the Original non-quantized OpenVINO IR model and Quantized OpenVINO IR model to make sure that the `max_drop` is not exceeded."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8be03e2bba694cf4b69d7f78aeca3cd1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Dropdown(description='Device:', index=4, options=('CPU', 'GPU.0', 'GPU.1', 'GPU.2', 'AUTO'), value='AUTO')"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import ipywidgets as widgets\n",
"\n",
"core = ov.Core()\n",
"\n",
"device = widgets.Dropdown(\n",
" options=core.available_devices + [\"AUTO\"],\n",
" value=\"AUTO\",\n",
" description=\"Device:\",\n",
" disabled=False,\n",
")\n",
"\n",
"device"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Validate: dataset length = 128, metric value = 0.368\n",
"Validate: dataset length = 128, metric value = 0.357\n",
"[Original OpenVINO]: 0.3677\n",
"[Quantized OpenVINO]: 0.3570\n"
]
}
],
"source": [
"core = ov.Core()\n",
"ov_config = {}\n",
"if device.value != \"CPU\":\n",
" quantized_model.reshape({0: [1, 3, 640, 640]})\n",
"if \"GPU\" in device.value or (\"AUTO\" in device.value and \"GPU\" in core.available_devices):\n",
" ov_config = {\"GPU_DISABLE_WINOGRAD_CONVOLUTION\": \"YES\"}\n",
"quantized_compiled_model = core.compile_model(quantized_model, device.value, ov_config)\n",
"compiled_ov_model = core.compile_model(ov_model, device.value, ov_config)\n",
"\n",
"pt_result = validation_ac(compiled_ov_model, data_loader, validator)\n",
"quantized_result = validation_ac(quantized_compiled_model, data_loader, validator)\n",
"\n",
"\n",
"print(f\"[Original OpenVINO]: {pt_result:.4f}\")\n",
"print(f\"[Quantized OpenVINO]: {quantized_result:.4f}\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"And compare performance. "
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from pathlib import Path\n",
"\n",
"# Set model directory\n",
"MODEL_DIR = Path(\"model\")\n",
"MODEL_DIR.mkdir(exist_ok=True)\n",
"\n",
"ir_model_path = MODEL_DIR / \"ir_model.xml\"\n",
"quantized_model_path = MODEL_DIR / \"quantized_model.xml\"\n",
"\n",
"# Save models to use them in the commandline banchmark app\n",
"ov.save_model(ov_model, ir_model_path, compress_to_fp16=False)\n",
"ov.save_model(quantized_model, quantized_model_path, compress_to_fp16=False)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[Step 1/11] Parsing and validating input arguments\n",
"[ INFO ] Parsing input parameters\n",
"[Step 2/11] Loading OpenVINO Runtime\n",
"[ WARNING ] Default duration 120 seconds is used for unknown device AUTO\n",
"[ INFO ] OpenVINO:\n",
"[ INFO ] Build ................................. 2024.0.0-14509-34caeefd078-releases/2024/0\n",
"[ INFO ] \n",
"[ INFO ] Device info:\n",
"[ INFO ] AUTO\n",
"[ INFO ] Build ................................. 2024.0.0-14509-34caeefd078-releases/2024/0\n",
"[ INFO ] \n",
"[ INFO ] \n",
"[Step 3/11] Setting device configuration\n",
"[ WARNING ] Performance hint was not explicitly specified in command line. Device(AUTO) performance hint will be set to PerformanceMode.THROUGHPUT.\n",
"[Step 4/11] Reading model files\n",
"[ INFO ] Loading model files\n",
"[ INFO ] Read model took 13.54 ms\n",
"[ INFO ] Original model I/O parameters:\n",
"[ INFO ] Model inputs:\n",
"[ INFO ] x (node: x) : f32 / [...] / [?,3,?,?]\n",
"[ INFO ] Model outputs:\n",
"[ INFO ] ***NO_NAME*** (node: __module.model.22/aten::cat/Concat_8) : f32 / [...] / [?,116,16..]\n",
"[ INFO ] input.199 (node: __module.model.22.cv4.2.1.act/aten::silu_/Swish_37) : f32 / [...] / [?,32,8..,8..]\n",
"[Step 5/11] Resizing model to match image sizes and given batch\n",
"[ INFO ] Model batch size: 1\n",
"[ INFO ] Reshaping model: 'x': [1,3,640,640]\n",
"[ INFO ] Reshape model took 8.56 ms\n",
"[Step 6/11] Configuring input of the model\n",
"[ INFO ] Model inputs:\n",
"[ INFO ] x (node: x) : u8 / [N,C,H,W] / [1,3,640,640]\n",
"[ INFO ] Model outputs:\n",
"[ INFO ] ***NO_NAME*** (node: __module.model.22/aten::cat/Concat_8) : f32 / [...] / [1,116,8400]\n",
"[ INFO ] input.199 (node: __module.model.22.cv4.2.1.act/aten::silu_/Swish_37) : f32 / [...] / [1,32,160,160]\n",
"[Step 7/11] Loading the model to the device\n",
"[ INFO ] Compile model took 437.16 ms\n",
"[Step 8/11] Querying optimal runtime parameters\n",
"[ INFO ] Model:\n",
"[ INFO ] NETWORK_NAME: Model0\n",
"[ INFO ] EXECUTION_DEVICES: ['CPU']\n",
"[ INFO ] PERFORMANCE_HINT: PerformanceMode.THROUGHPUT\n",
"[ INFO ] OPTIMAL_NUMBER_OF_INFER_REQUESTS: 12\n",
"[ INFO ] MULTI_DEVICE_PRIORITIES: CPU\n",
"[ INFO ] CPU:\n",
"[ INFO ] AFFINITY: Affinity.CORE\n",
"[ INFO ] CPU_DENORMALS_OPTIMIZATION: False\n",
"[ INFO ] CPU_SPARSE_WEIGHTS_DECOMPRESSION_RATE: 1.0\n",
"[ INFO ] DYNAMIC_QUANTIZATION_GROUP_SIZE: 0\n",
"[ INFO ] ENABLE_CPU_PINNING: True\n",
"[ INFO ] ENABLE_HYPER_THREADING: True\n",
"[ INFO ] EXECUTION_DEVICES: ['CPU']\n",
"[ INFO ] EXECUTION_MODE_HINT: ExecutionMode.PERFORMANCE\n",
"[ INFO ] INFERENCE_NUM_THREADS: 36\n",
"[ INFO ] INFERENCE_PRECISION_HINT: <Type: 'float32'>\n",
"[ INFO ] KV_CACHE_PRECISION: <Type: 'float16'>\n",
"[ INFO ] LOG_LEVEL: Level.NO\n",
"[ INFO ] NETWORK_NAME: Model0\n",
"[ INFO ] NUM_STREAMS: 12\n",
"[ INFO ] OPTIMAL_NUMBER_OF_INFER_REQUESTS: 12\n",
"[ INFO ] PERFORMANCE_HINT: THROUGHPUT\n",
"[ INFO ] PERFORMANCE_HINT_NUM_REQUESTS: 0\n",
"[ INFO ] PERF_COUNT: NO\n",
"[ INFO ] SCHEDULING_CORE_TYPE: SchedulingCoreType.ANY_CORE\n",
"[ INFO ] MODEL_PRIORITY: Priority.MEDIUM\n",
"[ INFO ] LOADED_FROM_CACHE: False\n",
"[Step 9/11] Creating infer requests and preparing input tensors\n",
"[ WARNING ] No input files were given for input 'x'!. This input will be filled with random values!\n",
"[ INFO ] Fill input 'x' with random values \n",
"[Step 10/11] Measuring performance (Start inference asynchronously, 12 inference requests, limits: 120000 ms duration)\n",
"[ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop).\n",
"[ INFO ] First inference took 46.51 ms\n",
"[Step 11/11] Dumping statistics report\n",
"[ INFO ] Execution Devices:['CPU']\n",
"[ INFO ] Count: 16872 iterations\n",
"[ INFO ] Duration: 120117.37 ms\n",
"[ INFO ] Latency:\n",
"[ INFO ] Median: 85.10 ms\n",
"[ INFO ] Average: 85.27 ms\n",
"[ INFO ] Min: 53.55 ms\n",
"[ INFO ] Max: 108.50 ms\n",
"[ INFO ] Throughput: 140.46 FPS\n"
]
}
],
"source": [
"# Inference Original model (OpenVINO IR)\n",
"! benchmark_app -m $ir_model_path -shape \"[1,3,640,640]\" -d $device.value -api async"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[Step 1/11] Parsing and validating input arguments\n",
"[ INFO ] Parsing input parameters\n",
"[Step 2/11] Loading OpenVINO Runtime\n",
"[ WARNING ] Default duration 120 seconds is used for unknown device AUTO\n",
"[ INFO ] OpenVINO:\n",
"[ INFO ] Build ................................. 2024.0.0-14509-34caeefd078-releases/2024/0\n",
"[ INFO ] \n",
"[ INFO ] Device info:\n",
"[ INFO ] AUTO\n",
"[ INFO ] Build ................................. 2024.0.0-14509-34caeefd078-releases/2024/0\n",
"[ INFO ] \n",
"[ INFO ] \n",
"[Step 3/11] Setting device configuration\n",
"[ WARNING ] Performance hint was not explicitly specified in command line. Device(AUTO) performance hint will be set to PerformanceMode.THROUGHPUT.\n",
"[Step 4/11] Reading model files\n",
"[ INFO ] Loading model files\n",
"[ INFO ] Read model took 20.52 ms\n",
"[ INFO ] Original model I/O parameters:\n",
"[ INFO ] Model inputs:\n",
"[ INFO ] x (node: x) : f32 / [...] / [?,3,?,?]\n",
"[ INFO ] Model outputs:\n",
"[ INFO ] ***NO_NAME*** (node: __module.model.22/aten::cat/Concat_8) : f32 / [...] / [?,116,16..]\n",
"[ INFO ] input.199 (node: __module.model.22.cv4.2.1.act/aten::silu_/Swish_37) : f32 / [...] / [?,32,8..,8..]\n",
"[Step 5/11] Resizing model to match image sizes and given batch\n",
"[ INFO ] Model batch size: 1\n",
"[ INFO ] Reshaping model: 'x': [1,3,640,640]\n",
"[ INFO ] Reshape model took 11.74 ms\n",
"[Step 6/11] Configuring input of the model\n",
"[ INFO ] Model inputs:\n",
"[ INFO ] x (node: x) : u8 / [N,C,H,W] / [1,3,640,640]\n",
"[ INFO ] Model outputs:\n",
"[ INFO ] ***NO_NAME*** (node: __module.model.22/aten::cat/Concat_8) : f32 / [...] / [1,116,8400]\n",
"[ INFO ] input.199 (node: __module.model.22.cv4.2.1.act/aten::silu_/Swish_37) : f32 / [...] / [1,32,160,160]\n",
"[Step 7/11] Loading the model to the device\n",
"[ INFO ] Compile model took 711.53 ms\n",
"[Step 8/11] Querying optimal runtime parameters\n",
"[ INFO ] Model:\n",
"[ INFO ] NETWORK_NAME: Model0\n",
"[ INFO ] EXECUTION_DEVICES: ['CPU']\n",
"[ INFO ] PERFORMANCE_HINT: PerformanceMode.THROUGHPUT\n",
"[ INFO ] OPTIMAL_NUMBER_OF_INFER_REQUESTS: 12\n",
"[ INFO ] MULTI_DEVICE_PRIORITIES: CPU\n",
"[ INFO ] CPU:\n",
"[ INFO ] AFFINITY: Affinity.CORE\n",
"[ INFO ] CPU_DENORMALS_OPTIMIZATION: False\n",
"[ INFO ] CPU_SPARSE_WEIGHTS_DECOMPRESSION_RATE: 1.0\n",
"[ INFO ] DYNAMIC_QUANTIZATION_GROUP_SIZE: 0\n",
"[ INFO ] ENABLE_CPU_PINNING: True\n",
"[ INFO ] ENABLE_HYPER_THREADING: True\n",
"[ INFO ] EXECUTION_DEVICES: ['CPU']\n",
"[ INFO ] EXECUTION_MODE_HINT: ExecutionMode.PERFORMANCE\n",
"[ INFO ] INFERENCE_NUM_THREADS: 36\n",
"[ INFO ] INFERENCE_PRECISION_HINT: <Type: 'float32'>\n",
"[ INFO ] KV_CACHE_PRECISION: <Type: 'float16'>\n",
"[ INFO ] LOG_LEVEL: Level.NO\n",
"[ INFO ] NETWORK_NAME: Model0\n",
"[ INFO ] NUM_STREAMS: 12\n",
"[ INFO ] OPTIMAL_NUMBER_OF_INFER_REQUESTS: 12\n",
"[ INFO ] PERFORMANCE_HINT: THROUGHPUT\n",
"[ INFO ] PERFORMANCE_HINT_NUM_REQUESTS: 0\n",
"[ INFO ] PERF_COUNT: NO\n",
"[ INFO ] SCHEDULING_CORE_TYPE: SchedulingCoreType.ANY_CORE\n",
"[ INFO ] MODEL_PRIORITY: Priority.MEDIUM\n",
"[ INFO ] LOADED_FROM_CACHE: False\n",
"[Step 9/11] Creating infer requests and preparing input tensors\n",
"[ WARNING ] No input files were given for input 'x'!. This input will be filled with random values!\n",
"[ INFO ] Fill input 'x' with random values \n",
"[Step 10/11] Measuring performance (Start inference asynchronously, 12 inference requests, limits: 120000 ms duration)\n",
"[ INFO ] Benchmarking in inference only mode (inputs filling are not included in measurement loop).\n",
"[ INFO ] First inference took 35.64 ms\n",
"[Step 11/11] Dumping statistics report\n",
"[ INFO ] Execution Devices:['CPU']\n",
"[ INFO ] Count: 33564 iterations\n",
"[ INFO ] Duration: 120059.16 ms\n",
"[ INFO ] Latency:\n",
"[ INFO ] Median: 42.72 ms\n",
"[ INFO ] Average: 42.76 ms\n",
"[ INFO ] Min: 23.29 ms\n",
"[ INFO ] Max: 67.71 ms\n",
"[ INFO ] Throughput: 279.56 FPS\n"
]
}
],
"source": [
"# Inference Quantized model (OpenVINO IR)\n",
"! benchmark_app -m $quantized_model_path -shape \"[1,3,640,640]\" -d $device.value -api async"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
},
"openvino_notebooks": {
"imageUrl": "",
"tags": {
"categories": [
"Convert",
"Optimize"
],
"libraries": [],
"other": ["YOLO"],
"tasks": [
"Image Segmentation"
]
}
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|