Spaces:
Runtime error
Runtime error
File size: 27,796 Bytes
db5855f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "07baa7d5-89a4-4b22-9dc2-7e43ec2ff9a9",
"metadata": {},
"source": [
"# Text-to-Video retrieval with S3D MIL-NCE and OpenVINO\n",
"\n",
"This tutorial based on [the TensorFlow tutorial](https://www.tensorflow.org/hub/tutorials/text_to_video_retrieval_with_s3d_milnce) that demonstrates how to use the [S3D MIL-NCE](https://tfhub.dev/deepmind/mil-nce/s3d/1) model from TensorFlow Hub to do text-to-video retrieval to find the most similar videos for a given text query.\n",
"\n",
"MIL-NCE inherits from Multiple Instance Learning (MIL) and Noise Contrastive Estimation (NCE). The method is capable of addressing visually misaligned narrations from uncurated instructional videos. Two model variations are available with different 3D CNN backbones: I3D and S3D. In this tutorial we use S3D variation. More details about the training and the model can be found in [End-to-End Learning of Visual Representations from Uncurated Instructional Videos](https://arxiv.org/abs/1912.06430) paper.\n",
"\n",
"This tutorial demonstrates step-by-step instructions on how to run and optimize S3D MIL-NCE model with OpenVINO. An additional part demonstrates how to run quantization with [NNCF](https://github.com/openvinotoolkit/nncf/) to speed up the inference.\n",
"\n",
"The tutorial consists of the following steps:\n",
"\n",
"#### Table of contents:\n",
"- [Prerequisites](#Prerequisites)\n",
"- [The original inference](#The-original-inference)\n",
"- [Convert the model to OpenVINO IR](#Convert-the-model-to-OpenVINO-IR)\n",
"- [Compiling models](#Compiling-models)\n",
"- [Inference](#Inference)\n",
"- [Optimize model using NNCF Post-training Quantization API](#Optimize-model-using-NNCF-Post-training-Quantization-API)\n",
" - [Prepare dataset](#Prepare-dataset)\n",
" - [Perform model quantization](#Perform-model-quantization)\n",
"- [Run quantized model inference](#Run-quantized-model-inference)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "3ac784f8-5511-4631-ad4c-d3dd816f9d07",
"metadata": {},
"source": [
"## Prerequisites\n",
"[back to top ⬆️](#Table-of-contents:)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e0ec6500-5ce4-4630-a2a4-813059126a29",
"metadata": {},
"outputs": [],
"source": [
"import platform\n",
"\n",
"%pip install -Uq pip\n",
"%pip install --upgrade --pre openvino-tokenizers openvino --extra-index-url \"https://storage.openvinotoolkit.org/simple/wheels/nightly\"\n",
"%pip install -q \"tensorflow-macos>=2.5; sys_platform == 'darwin' and platform_machine == 'arm64' and python_version > '3.8'\" # macOS M1 and M2\n",
"%pip install -q \"tensorflow-macos>=2.5,<=2.12.0; sys_platform == 'darwin' and platform_machine == 'arm64' and python_version <= '3.8'\" # macOS M1 and M2\n",
"%pip install -q \"tensorflow>=2.5; sys_platform == 'darwin' and platform_machine != 'arm64' and python_version > '3.8'\" # macOS x86\n",
"%pip install -q \"tensorflow>=2.5,<=2.12.0; sys_platform == 'darwin' and platform_machine != 'arm64' and python_version <= '3.8'\" # macOS x86\n",
"%pip install -q \"tensorflow>=2.5; sys_platform != 'darwin' and python_version > '3.8'\"\n",
"%pip install -q \"tensorflow>=2.5,<=2.12.0; sys_platform != 'darwin' and python_version <= '3.8'\"\n",
"\n",
"%pip install -q tensorflow_hub tf_keras numpy \"opencv-python\" \"nncf>=2.10.0\"\n",
"if platform.system() != \"Windows\":\n",
" %pip install -q \"matplotlib>=3.4\"\n",
"else:\n",
" %pip install -q \"matplotlib>=3.4,<3.7\""
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "0153bf4b-94e1-44a8-99e6-4a2433b29c23",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from pathlib import Path\n",
"\n",
"import tensorflow as tf\n",
"import tensorflow_hub as hub\n",
"\n",
"import numpy as np\n",
"import cv2\n",
"from IPython import display\n",
"import math\n",
"\n",
"os.environ[\"TFHUB_CACHE_DIR\"] = str(Path(\"./tfhub_modules\").resolve())"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "b6b3c5db-ae42-45a0-ada0-7f1319221621",
"metadata": {},
"source": [
"Download the model"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "4dea4952-780b-42e1-a973-c45fd4b8508e",
"metadata": {},
"outputs": [],
"source": [
"hub_handle = \"https://www.kaggle.com/models/deepmind/mil-nce/TensorFlow1/s3d/1\"\n",
"hub_model = hub.load(hub_handle)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "8a962845-20cf-454a-b796-59dc7891ebcf",
"metadata": {},
"source": [
"The model has 2 signatures, one for generating video embeddings and one for generating text embeddings. We will use these embedding to find the nearest neighbors in the embedding space as in the original tutorial. Below we will define auxiliary functions"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "74e1ea65-7bae-4a49-a520-8e5898adbbce",
"metadata": {},
"outputs": [],
"source": [
"def generate_embeddings(model, input_frames, input_words):\n",
" \"\"\"Generate embeddings from the model from video frames and input words.\"\"\"\n",
" # Input_frames must be normalized in [0, 1] and of the shape Batch x T x H x W x 3\n",
" vision_output = model.signatures[\"video\"](tf.constant(tf.cast(input_frames, dtype=tf.float32)))\n",
" text_output = model.signatures[\"text\"](tf.constant(input_words))\n",
"\n",
" return vision_output[\"video_embedding\"], text_output[\"text_embedding\"]"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "d762ea2b-77a4-4d1b-9121-e3b4861534cb",
"metadata": {},
"outputs": [],
"source": [
"# @title Define video loading and visualization functions { display-mode: \"form\" }\n",
"\n",
"\n",
"# Utilities to open video files using CV2\n",
"def crop_center_square(frame):\n",
" y, x = frame.shape[0:2]\n",
" min_dim = min(y, x)\n",
" start_x = (x // 2) - (min_dim // 2)\n",
" start_y = (y // 2) - (min_dim // 2)\n",
" return frame[start_y : start_y + min_dim, start_x : start_x + min_dim]\n",
"\n",
"\n",
"def load_video(video_url, max_frames=32, resize=(224, 224)):\n",
" path = tf.keras.utils.get_file(os.path.basename(video_url)[-128:], video_url)\n",
" cap = cv2.VideoCapture(path)\n",
" frames = []\n",
" try:\n",
" while True:\n",
" ret, frame = cap.read()\n",
" if not ret:\n",
" break\n",
" frame = crop_center_square(frame)\n",
" frame = cv2.resize(frame, resize)\n",
" frame = frame[:, :, [2, 1, 0]]\n",
" frames.append(frame)\n",
"\n",
" if len(frames) == max_frames:\n",
" break\n",
" finally:\n",
" cap.release()\n",
" frames = np.array(frames)\n",
" if len(frames) < max_frames:\n",
" n_repeat = int(math.ceil(max_frames / float(len(frames))))\n",
" frames = frames.repeat(n_repeat, axis=0)\n",
" frames = frames[:max_frames]\n",
" return frames / 255.0\n",
"\n",
"\n",
"def display_video(urls):\n",
" html = \"<table>\"\n",
" html += \"<tr><th>Video 1</th><th>Video 2</th><th>Video 3</th></tr><tr>\"\n",
" for url in urls:\n",
" html += \"<td>\"\n",
" html += '<img src=\"{}\" height=\"224\">'.format(url)\n",
" html += \"</td>\"\n",
" html += \"</tr></table>\"\n",
" return display.HTML(html)\n",
"\n",
"\n",
"def display_query_and_results_video(query, urls, scores):\n",
" \"\"\"Display a text query and the top result videos and scores.\"\"\"\n",
" sorted_ix = np.argsort(-scores)\n",
" html = \"\"\n",
" html += \"<h2>Input query: <i>{}</i> </h2><div>\".format(query)\n",
" html += \"Results: <div>\"\n",
" html += \"<table>\"\n",
" html += \"<tr><th>Rank #1, Score:{:.2f}</th>\".format(scores[sorted_ix[0]])\n",
" html += \"<th>Rank #2, Score:{:.2f}</th>\".format(scores[sorted_ix[1]])\n",
" html += \"<th>Rank #3, Score:{:.2f}</th></tr><tr>\".format(scores[sorted_ix[2]])\n",
" for i, idx in enumerate(sorted_ix):\n",
" url = urls[sorted_ix[i]]\n",
" html += \"<td>\"\n",
" html += '<img src=\"{}\" height=\"224\">'.format(url)\n",
" html += \"</td>\"\n",
" html += \"</tr></table>\"\n",
"\n",
" return html"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "09e0047d-6fb8-4b18-a66d-e8e8a37154ba",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<table><tr><th>Video 1</th><th>Video 2</th><th>Video 3</th></tr><tr><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/b/b0/YosriAirTerjun.gif\" height=\"224\"></td><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/e/e6/Guitar_solo_gif.gif\" height=\"224\"></td><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/3/30/2009-08-16-autodrift-by-RalfR-gif-by-wau.gif\" height=\"224\"></td></tr></table>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# @title Load example videos and define text queries { display-mode: \"form\" }\n",
"\n",
"video_1_url = \"https://upload.wikimedia.org/wikipedia/commons/b/b0/YosriAirTerjun.gif\" # @param {type:\"string\"}\n",
"video_2_url = \"https://upload.wikimedia.org/wikipedia/commons/e/e6/Guitar_solo_gif.gif\" # @param {type:\"string\"}\n",
"video_3_url = \"https://upload.wikimedia.org/wikipedia/commons/3/30/2009-08-16-autodrift-by-RalfR-gif-by-wau.gif\" # @param {type:\"string\"}\n",
"\n",
"video_1 = load_video(video_1_url)\n",
"video_2 = load_video(video_2_url)\n",
"video_3 = load_video(video_3_url)\n",
"all_videos = [video_1, video_2, video_3]\n",
"\n",
"query_1_video = \"waterfall\" # @param {type:\"string\"}\n",
"query_2_video = \"playing guitar\" # @param {type:\"string\"}\n",
"query_3_video = \"car drifting\" # @param {type:\"string\"}\n",
"all_queries_video = [query_1_video, query_2_video, query_3_video]\n",
"all_videos_urls = [video_1_url, video_2_url, video_3_url]\n",
"display_video(all_videos_urls)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "5b91a14a-d565-4526-bd81-7a6c3e15c235",
"metadata": {},
"source": [
"## The original inference\n",
"[back to top ⬆️](#Table-of-contents:)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "0563060f-0ff4-428f-8ac6-9f7b240e570f",
"metadata": {},
"outputs": [],
"source": [
"# Prepare video inputs.\n",
"videos_np = np.stack(all_videos, axis=0)\n",
"\n",
"# Prepare text input.\n",
"words_np = np.array(all_queries_video)\n",
"\n",
"# Generate the video and text embeddings.\n",
"video_embd, text_embd = generate_embeddings(hub_model, videos_np, words_np)\n",
"\n",
"# Scores between video and text is computed by dot products.\n",
"all_scores = np.dot(text_embd, tf.transpose(video_embd))"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "5fac7925-676e-46b5-b48b-d2b3397d51de",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<h2>Input query: <i>waterfall</i> </h2><div>Results: <div><table><tr><th>Rank #1, Score:4.71</th><th>Rank #2, Score:-1.63</th><th>Rank #3, Score:-4.17</th></tr><tr><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/b/b0/YosriAirTerjun.gif\" height=\"224\"></td><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/3/30/2009-08-16-autodrift-by-RalfR-gif-by-wau.gif\" height=\"224\"></td><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/e/e6/Guitar_solo_gif.gif\" height=\"224\"></td></tr></table><br><h2>Input query: <i>playing guitar</i> </h2><div>Results: <div><table><tr><th>Rank #1, Score:6.50</th><th>Rank #2, Score:-1.79</th><th>Rank #3, Score:-2.67</th></tr><tr><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/e/e6/Guitar_solo_gif.gif\" height=\"224\"></td><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/b/b0/YosriAirTerjun.gif\" height=\"224\"></td><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/3/30/2009-08-16-autodrift-by-RalfR-gif-by-wau.gif\" height=\"224\"></td></tr></table><br><h2>Input query: <i>car drifting</i> </h2><div>Results: <div><table><tr><th>Rank #1, Score:8.78</th><th>Rank #2, Score:-1.07</th><th>Rank #3, Score:-2.17</th></tr><tr><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/3/30/2009-08-16-autodrift-by-RalfR-gif-by-wau.gif\" height=\"224\"></td><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/b/b0/YosriAirTerjun.gif\" height=\"224\"></td><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/e/e6/Guitar_solo_gif.gif\" height=\"224\"></td></tr></table><br>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Display results.\n",
"html = \"\"\n",
"for i, words in enumerate(words_np):\n",
" html += display_query_and_results_video(words, all_videos_urls, all_scores[i, :])\n",
" html += \"<br>\"\n",
"display.HTML(html)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "67a0373a-ee9e-4728-97b2-355d1ed501a3",
"metadata": {},
"source": [
"## Convert the model to OpenVINO IR\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"OpenVINO supports TensorFlow models via conversion into Intermediate Representation (IR) format. We need to provide a model object, input data for model tracing to `ov.convert_model` function to obtain OpenVINO `ov.Model` object instance. Model can be saved on disk for next deployment using `ov.save_model` function."
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "e1f51b7b-a215-44af-90be-83eb9d2cfd43",
"metadata": {},
"outputs": [],
"source": [
"import openvino_tokenizers # NOQA Need to import conversion and operation extensions\n",
"import openvino as ov\n",
"\n",
"model_path = hub.resolve(hub_handle)\n",
"# infer on random data\n",
"images_data = np.random.rand(3, 32, 224, 224, 3).astype(np.float32)\n",
"words_data = np.array([\"First sentence\", \"Second one\", \"Abracadabra\"], dtype=str)\n",
"\n",
"ov_model = ov.convert_model(model_path, input=[(\"words\", [3]), (\"images\", [3, 32, 224, 224, 3])])"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "62128306-2021-41eb-a965-2494fa8abbf2",
"metadata": {},
"source": [
"## Compiling models\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Select device from dropdown list for running inference using OpenVINO."
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "d3f0dd83-4803-41f8-8af2-1117b25db19f",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "217b87d883b5458d924f457f26fbbf92",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Dropdown(description='Device:', index=4, options=('CPU', 'GPU.0', 'GPU.1', 'GPU.2', 'AUTO'), value='AUTO')"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import ipywidgets as widgets\n",
"\n",
"core = ov.Core()\n",
"device = widgets.Dropdown(\n",
" options=core.available_devices + [\"AUTO\"],\n",
" value=\"AUTO\",\n",
" description=\"Device:\",\n",
" disabled=False,\n",
")\n",
"\n",
"device"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "c3306fcc-bcfc-41f9-adbb-79afe259e4cb",
"metadata": {},
"outputs": [],
"source": [
"compiled_model = core.compile_model(ov_model, device.value)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "632d8390-36b8-4e46-9226-2546d3be678b",
"metadata": {},
"source": [
"## Inference\n",
"[back to top ⬆️](#Table-of-contents:)"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "0e653b36-2c45-4609-b24f-64401ed0ca13",
"metadata": {},
"outputs": [],
"source": [
"# Redefine `generate_embeddings` function to make it possible to use the compile IR model.\n",
"def generate_embeddings(model, input_frames, input_words):\n",
" \"\"\"Generate embeddings from the model from video frames and input words.\"\"\"\n",
" # Input_frames must be normalized in [0, 1] and of the shape Batch x T x H x W x 3\n",
" output = compiled_model({\"words\": input_words, \"images\": tf.cast(input_frames, dtype=tf.float32)})\n",
"\n",
" return output[\"video_embedding\"], output[\"text_embedding\"]"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "a28a44c9-9c1a-427f-b7a8-eab007d0f4e4",
"metadata": {},
"outputs": [],
"source": [
"# Generate the video and text embeddings.\n",
"video_embd, text_embd = generate_embeddings(compiled_model, videos_np, words_np)\n",
"\n",
"# Scores between video and text is computed by dot products.\n",
"all_scores = np.dot(text_embd, tf.transpose(video_embd))"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "545a657b-849f-454a-a8c9-17f1a653f3ae",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<h2>Input query: <i>waterfall</i> </h2><div>Results: <div><table><tr><th>Rank #1, Score:4.71</th><th>Rank #2, Score:-1.63</th><th>Rank #3, Score:-4.17</th></tr><tr><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/b/b0/YosriAirTerjun.gif\" height=\"224\"></td><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/3/30/2009-08-16-autodrift-by-RalfR-gif-by-wau.gif\" height=\"224\"></td><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/e/e6/Guitar_solo_gif.gif\" height=\"224\"></td></tr></table><br><h2>Input query: <i>playing guitar</i> </h2><div>Results: <div><table><tr><th>Rank #1, Score:6.50</th><th>Rank #2, Score:-1.79</th><th>Rank #3, Score:-2.67</th></tr><tr><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/e/e6/Guitar_solo_gif.gif\" height=\"224\"></td><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/b/b0/YosriAirTerjun.gif\" height=\"224\"></td><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/3/30/2009-08-16-autodrift-by-RalfR-gif-by-wau.gif\" height=\"224\"></td></tr></table><br><h2>Input query: <i>car drifting</i> </h2><div>Results: <div><table><tr><th>Rank #1, Score:8.78</th><th>Rank #2, Score:-1.07</th><th>Rank #3, Score:-2.17</th></tr><tr><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/3/30/2009-08-16-autodrift-by-RalfR-gif-by-wau.gif\" height=\"224\"></td><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/b/b0/YosriAirTerjun.gif\" height=\"224\"></td><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/e/e6/Guitar_solo_gif.gif\" height=\"224\"></td></tr></table><br>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Display results.\n",
"html = \"\"\n",
"for i, words in enumerate(words_np):\n",
" html += display_query_and_results_video(words, all_videos_urls, all_scores[i, :])\n",
" html += \"<br>\"\n",
"display.HTML(html)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "947cdd77-4e5c-4dbe-ac46-3581bde15b47",
"metadata": {},
"source": [
"## Optimize model using NNCF Post-training Quantization API\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"[NNCF](https://github.com/openvinotoolkit/nncf) provides a suite of advanced algorithms for Neural Networks inference optimization in OpenVINO with minimal accuracy drop.\n",
"We will use 8-bit quantization in post-training mode (without the fine-tuning pipeline).\n",
"The optimization process contains the following steps:\n",
"\n",
"1. Create a Dataset for quantization.\n",
"2. Run `nncf.quantize` for getting an optimized model.\n",
"3. Serialize an OpenVINO IR model, using the `ov.save_model` function."
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "378312a9-3d90-40e4-b5fa-8de2990556dc",
"metadata": {},
"source": [
"### Prepare dataset\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"This model doesn't require a big dataset for calibration. We will use only example videos for this purpose.\n",
"NNCF provides `nncf.Dataset` wrapper for using native framework dataloaders in quantization pipeline. Additionally, we specify transform function that will be responsible for preparing input data in model expected format."
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "ec4eae46-f5b0-41b8-83f6-709fc56aaaa4",
"metadata": {},
"outputs": [],
"source": [
"import nncf\n",
"\n",
"dataset = nncf.Dataset(((words_np, tf.cast(videos_np, dtype=tf.float32)),))"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "a76fa7a5-bc18-456c-b2aa-326d9eae7af3",
"metadata": {},
"source": [
"### Perform model quantization\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"The `nncf.quantize` function provides an interface for model quantization. It requires an instance of the OpenVINO Model and quantization dataset. \n",
"Optionally, some additional parameters for the configuration quantization process (number of samples for quantization, preset, ignored scope etc.) can be provided."
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "6e594e8d-0ec5-4c46-a971-93b4aee3ba05",
"metadata": {},
"outputs": [],
"source": [
"MODEL_DIR = Path(\"model/\")\n",
"MODEL_DIR.mkdir(exist_ok=True)\n",
"\n",
"quantized_model_path = MODEL_DIR / \"quantized_model.xml\"\n",
"\n",
"\n",
"if not quantized_model_path.exists():\n",
" quantized_model = nncf.quantize(model=ov_model, calibration_dataset=dataset, model_type=nncf.ModelType.TRANSFORMER)\n",
" ov.save_model(quantized_model, quantized_model_path)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "e850db35-9094-4294-aa4e-b5017a80e1f5",
"metadata": {},
"source": [
"## Run quantized model inference\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"There are no changes in model usage after applying quantization. Let's check the model work on the previously used example. "
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "aa59c47e-7d11-405e-a7e3-10d2054401ea",
"metadata": {},
"outputs": [],
"source": [
"int8_model = core.compile_model(quantized_model_path, device.value)"
]
},
{
"cell_type": "code",
"execution_count": 37,
"id": "3d697fcd-d283-40af-bdd3-ffbf6f0a15e4",
"metadata": {},
"outputs": [],
"source": [
"# Generate the video and text embeddings.\n",
"video_embd, text_embd = generate_embeddings(int8_model, videos_np, words_np)\n",
"\n",
"# Scores between video and text is computed by dot products.\n",
"all_scores = np.dot(text_embd, tf.transpose(video_embd))"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "0e944f55-a6be-4ab6-98e3-369e8f2ce10e",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<h2>Input query: <i>waterfall</i> </h2><div>Results: <div><table><tr><th>Rank #1, Score:4.71</th><th>Rank #2, Score:-1.63</th><th>Rank #3, Score:-4.17</th></tr><tr><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/b/b0/YosriAirTerjun.gif\" height=\"224\"></td><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/3/30/2009-08-16-autodrift-by-RalfR-gif-by-wau.gif\" height=\"224\"></td><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/e/e6/Guitar_solo_gif.gif\" height=\"224\"></td></tr></table><br><h2>Input query: <i>playing guitar</i> </h2><div>Results: <div><table><tr><th>Rank #1, Score:6.50</th><th>Rank #2, Score:-1.79</th><th>Rank #3, Score:-2.67</th></tr><tr><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/e/e6/Guitar_solo_gif.gif\" height=\"224\"></td><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/b/b0/YosriAirTerjun.gif\" height=\"224\"></td><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/3/30/2009-08-16-autodrift-by-RalfR-gif-by-wau.gif\" height=\"224\"></td></tr></table><br><h2>Input query: <i>car drifting</i> </h2><div>Results: <div><table><tr><th>Rank #1, Score:8.78</th><th>Rank #2, Score:-1.07</th><th>Rank #3, Score:-2.17</th></tr><tr><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/3/30/2009-08-16-autodrift-by-RalfR-gif-by-wau.gif\" height=\"224\"></td><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/b/b0/YosriAirTerjun.gif\" height=\"224\"></td><td><img src=\"https://upload.wikimedia.org/wikipedia/commons/e/e6/Guitar_solo_gif.gif\" height=\"224\"></td></tr></table><br>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Display results.\n",
"html = \"\"\n",
"for i, words in enumerate(words_np):\n",
" html += display_query_and_results_video(words, all_videos_urls, all_scores[i, :])\n",
" html += \"<br>\"\n",
"display.HTML(html)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
},
"openvino_notebooks": {
"imageUrl": "https://github.com/openvinotoolkit/openvino_notebooks/assets/76171391/ba516a81-f6f7-4258-9e3b-931d6db7728c",
"tags": {
"categories": [
"Model Demos"
],
"libraries": [],
"other": [],
"tasks": [
"Text-to-Video Retrieval"
]
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|