Spaces:
Runtime error
Runtime error
File size: 17,111 Bytes
db5855f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "c6eed66854c398c3",
"metadata": {},
"source": [
"# SoftVC VITS Singing Voice Conversion and OpenVINO™\n",
"This tutorial is based on [SoftVC VITS Singing Voice Conversion project](https://github.com/svc-develop-team/so-vits-svc). The purpose of this project was to enable developers to have their beloved anime characters perform singing tasks. The developers' intention was to focus solely on fictional characters and avoid any involvement of real individuals, anything related to real individuals deviates from the developer's original intention.\n",
"\n",
"The singing voice conversion model uses SoftVC content encoder to extract speech features from the source audio. These feature vectors are directly fed into [VITS](https://github.com/jaywalnut310/vits) without the need for conversion to a text-based intermediate representation. As a result, the pitch and intonations of the original audio are preserved.\n",
"\n",
"In this tutorial we will use the base model flow.\n",
"\n",
"\n",
"#### Table of contents:\n",
"\n",
"- [Prerequisites](#Prerequisites)\n",
"- [Use the original model to run an inference](#Use-the-original-model-to-run-an-inference)\n",
"- [Convert to OpenVINO IR model](#Convert-to-OpenVINO-IR-model)\n",
"- [Run the OpenVINO model](#Run-the-OpenVINO-model)\n",
"- [Interactive inference](#Interactive-inference)\n",
"\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "a921abbc-41a4-4ae4-a20c-7541f0a69a4b",
"metadata": {},
"source": [
"## Prerequisites\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a1aaa6bb335f4efe",
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%pip install -q --upgrade pip setuptools\n",
"%pip install -q \"openvino>=2023.2.0\"\n",
"!git clone https://github.com/svc-develop-team/so-vits-svc -b 4.1-Stable\n",
"%pip install -q --extra-index-url https://download.pytorch.org/whl/cpu tqdm librosa \"torch>=2.1.0\" \"torchaudio>=2.1.0\" faiss-cpu \"gradio>=4.19\" \"numpy>=1.23.5\" \"fairseq==0.12.2\" praat-parselmouth"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "19df02f3-a4e7-4063-8b8c-b05a68a63c6e",
"metadata": {},
"source": [
"Download pretrained models and configs. We use a recommended encoder [ContentVec](https://arxiv.org/abs/2204.09224) and models from [a collection of so-vits-svc-4.0 models made by the Pony Preservation Project](https://huggingface.co/therealvul/so-vits-svc-4.0) for example. You can choose any other pretrained model from this or another project or [prepare your own](https://github.com/svc-develop-team/so-vits-svc#%EF%B8%8F-training)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5ca855b365c4e0e7",
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# Fetch `notebook_utils` module\n",
"import requests\n",
"\n",
"r = requests.get(\n",
" url=\"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py\",\n",
")\n",
"\n",
"open(\"notebook_utils.py\", \"w\").write(r.text)\n",
"from notebook_utils import download_file\n",
"\n",
"# ContentVec\n",
"download_file(\n",
" \"https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt\",\n",
" \"checkpoint_best_legacy_500.pt\",\n",
" directory=\"so-vits-svc/pretrain/\",\n",
")\n",
"\n",
"# pretrained models and configs from a collection of so-vits-svc-4.0 models. You can use other models.\n",
"download_file(\n",
" \"https://huggingface.co/therealvul/so-vits-svc-4.0/resolve/main/Rainbow%20Dash%20(singing)/kmeans_10000.pt\",\n",
" \"kmeans_10000.pt\",\n",
" directory=\"so-vits-svc/logs/44k/\",\n",
")\n",
"download_file(\n",
" \"https://huggingface.co/therealvul/so-vits-svc-4.0/resolve/main/Rainbow%20Dash%20(singing)/config.json\",\n",
" \"config.json\",\n",
" directory=\"so-vits-svc/configs/\",\n",
")\n",
"download_file(\n",
" \"https://huggingface.co/therealvul/so-vits-svc-4.0/resolve/main/Rainbow%20Dash%20(singing)/G_30400.pth\",\n",
" \"G_30400.pth\",\n",
" directory=\"so-vits-svc/logs/44k/\",\n",
")\n",
"download_file(\n",
" \"https://huggingface.co/therealvul/so-vits-svc-4.0/resolve/main/Rainbow%20Dash%20(singing)/D_30400.pth\",\n",
" \"D_30400.pth\",\n",
" directory=\"so-vits-svc/logs/44k/\",\n",
")\n",
"\n",
"# a wav sample\n",
"download_file(\n",
" \"https://huggingface.co/datasets/santifiorino/spinetta/resolve/main/spinetta/000.wav\",\n",
" \"000.wav\",\n",
" directory=\"so-vits-svc/raw/\",\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "6f53cf28ef37988f",
"metadata": {},
"source": [
"## Use the original model to run an inference\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "ea7218ff-e99c-4b05-ac54-99b097aab23f",
"metadata": {},
"source": [
"Change directory to `so-vits-svc` in purpose not to brake internal relative paths."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "324125b043342928",
"metadata": {
"ExecuteTime": {
"end_time": "2023-10-11T16:23:39.582765900Z",
"start_time": "2023-10-11T16:23:39.441185100Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"%cd so-vits-svc"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "531f9121-2452-4dca-9da1-0e0272f54e0b",
"metadata": {},
"source": [
"Define the Sovits Model."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8cba0ed03ac900ce",
"metadata": {
"ExecuteTime": {
"end_time": "2023-10-11T16:24:11.594409400Z",
"start_time": "2023-10-11T16:23:48.236884800Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"from inference.infer_tool import Svc\n",
"\n",
"model = Svc(\"logs/44k/G_30400.pth\", \"configs/config.json\", device=\"cpu\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "3e38baeb-14bd-4dbf-86de-36a7d69b0026",
"metadata": {},
"source": [
"Define `kwargs` and make an inference."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "364d72774d2863d0",
"metadata": {
"ExecuteTime": {
"end_time": "2023-10-11T16:24:34.084985700Z",
"start_time": "2023-10-11T16:24:22.823731700Z"
},
"collapsed": false
},
"outputs": [],
"source": [
"kwargs = {\n",
" \"raw_audio_path\": \"raw/000.wav\", # path to a source audio\n",
" \"spk\": \"Rainbow Dash (singing)\", # speaker ID in which the source audio should be converted.\n",
" \"tran\": 0,\n",
" \"slice_db\": -40,\n",
" \"cluster_infer_ratio\": 0,\n",
" \"auto_predict_f0\": False,\n",
" \"noice_scale\": 0.4,\n",
"}\n",
"\n",
"audio = model.slice_inference(**kwargs)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "6d6882b1-1762-4909-ba58-66314fd24108",
"metadata": {},
"source": [
"And let compare the original audio with the result."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a941d393fb0d9f5b",
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import IPython.display as ipd\n",
"\n",
"# original\n",
"ipd.Audio(\"raw/000.wav\", rate=model.target_sample)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8fe21dc8-794c-48b0-a9a1-1ca2280d65d5",
"metadata": {},
"outputs": [],
"source": [
"# result\n",
"ipd.Audio(audio, rate=model.target_sample)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "ae244d48f7982d4c",
"metadata": {},
"source": [
"## Convert to OpenVINO IR model\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Model components are PyTorch modules, that can be converted with `ov.convert_model` function directly. We also use `ov.save_model` function to serialize the result of conversion.\n",
"`Svc` is not a model, it runs model inference inside. In base scenario only `SynthesizerTrn` named `net_g_ms` is used. It is enough to convert only this model and we should re-assign `forward` method on `infer` method for this purpose.\n",
"\n",
"`SynthesizerTrn` uses several models inside it's flow, i.e. `TextEncoder`, `Generator`, `ResidualCouplingBlock`, etc., but in our case OpenVINO allows to convert whole pipeline by one step without need to look inside."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "259b86a26d06f881",
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import openvino as ov\n",
"import torch\n",
"from pathlib import Path\n",
"\n",
"\n",
"dummy_c = torch.randn(1, 256, 813)\n",
"dummy_f0 = torch.randn(1, 813)\n",
"dummy_uv = torch.ones(1, 813)\n",
"dummy_g = torch.tensor([[0]])\n",
"model.net_g_ms.forward = model.net_g_ms.infer\n",
"\n",
"net_g_kwargs = {\n",
" \"c\": dummy_c,\n",
" \"f0\": dummy_f0,\n",
" \"uv\": dummy_uv,\n",
" \"g\": dummy_g,\n",
" \"noice_scale\": torch.tensor(0.35), # need to wrap numeric and boolean values for conversion\n",
" \"seed\": torch.tensor(52468),\n",
" \"predict_f0\": torch.tensor(False),\n",
" \"vol\": torch.tensor(0),\n",
"}\n",
"core = ov.Core()\n",
"\n",
"\n",
"net_g_model_xml_path = Path(\"models/ov_net_g_model.xml\")\n",
"\n",
"if not net_g_model_xml_path.exists():\n",
" converted_model = ov.convert_model(model.net_g_ms, example_input=net_g_kwargs)\n",
" net_g_model_xml_path.parent.mkdir(parents=True, exist_ok=True)\n",
" ov.save_model(converted_model, net_g_model_xml_path)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "e211edea-0515-4070-8d66-d5b3bfb398dc",
"metadata": {},
"source": [
"## Run the OpenVINO model\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Select a device from dropdown list for running inference using OpenVINO."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b907034e797533dc",
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import ipywidgets as widgets\n",
"import openvino as ov\n",
"\n",
"core = ov.Core()\n",
"\n",
"device = widgets.Dropdown(\n",
" options=core.available_devices + [\"AUTO\"],\n",
" value=\"AUTO\",\n",
" description=\"Device:\",\n",
" disabled=False,\n",
")\n",
"\n",
"device"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "a49a84e3-6ae2-4336-a77b-b5818ae1d985",
"metadata": {},
"source": [
"We should create a wrapper for `net_g_ms` model to keep it's interface. Then replace `net_g_ms` original model by the converted IR model. We use `ov.compile_model` to make it ready to use for loading on a device."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fb890ffe86cd0a84",
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"class NetGModelWrapper:\n",
" def __init__(self, net_g_model_xml_path):\n",
" super().__init__()\n",
" self.net_g_model = core.compile_model(net_g_model_xml_path, device.value)\n",
"\n",
" def infer(self, c, *, f0, uv, g, noice_scale=0.35, seed=52468, predict_f0=False, vol=None):\n",
" if vol is None: # None is not allowed as an input\n",
" results = self.net_g_model((c, f0, uv, g, noice_scale, seed, predict_f0))\n",
" else:\n",
" results = self.net_g_model((c, f0, uv, g, noice_scale, seed, predict_f0, vol))\n",
"\n",
" return torch.from_numpy(results[0]), torch.from_numpy(results[1])\n",
"\n",
"\n",
"model.net_g_ms = NetGModelWrapper(net_g_model_xml_path)\n",
"audio = model.slice_inference(**kwargs)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "72924b58-e565-4855-8b1a-97be9144b943",
"metadata": {},
"source": [
"Check result. Is it identical to that created by the original model. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bea8d8b65b7fb95d",
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import IPython.display as ipd\n",
"\n",
"ipd.Audio(audio, rate=model.target_sample)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "69937fb6-3da5-4e1e-b4e4-304ee5e6a421",
"metadata": {},
"source": [
"## Interactive inference\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "52af2039-b06f-490e-aa7c-b8588a420fdc",
"metadata": {},
"outputs": [],
"source": [
"import gradio as gr\n",
"\n",
"\n",
"src_audio = gr.Audio(label=\"Source Audio\", type=\"filepath\")\n",
"output_audio = gr.Audio(label=\"Output Audio\", type=\"numpy\")\n",
"\n",
"title = \"SoftVC VITS Singing Voice Conversion with Gradio\"\n",
"description = f'Gradio Demo for SoftVC VITS Singing Voice Conversion and OpenVINO™. Upload a source audio, then click the \"Submit\" button to inference. Audio sample rate should be {model.target_sample}'\n",
"\n",
"\n",
"def infer(src_audio, tran, slice_db, noice_scale):\n",
" kwargs[\"raw_audio_path\"] = src_audio\n",
" kwargs[\"tran\"] = tran\n",
" kwargs[\"slice_db\"] = slice_db\n",
" kwargs[\"noice_scale\"] = noice_scale\n",
"\n",
" audio = model.slice_inference(**kwargs)\n",
"\n",
" return model.target_sample, audio\n",
"\n",
"\n",
"demo = gr.Interface(\n",
" infer,\n",
" [\n",
" src_audio,\n",
" gr.Slider(-100, 100, value=0, label=\"Pitch shift\", step=1),\n",
" gr.Slider(\n",
" -80,\n",
" -20,\n",
" value=-30,\n",
" label=\"Slice db\",\n",
" step=10,\n",
" info=\"The default is -30, noisy audio can be -30, dry sound can be -50 to preserve breathing.\",\n",
" ),\n",
" gr.Slider(\n",
" 0,\n",
" 1,\n",
" value=0.4,\n",
" label=\"Noise scale\",\n",
" step=0.1,\n",
" info=\"Noise level will affect pronunciation and sound quality, which is more metaphysical\",\n",
" ),\n",
" ],\n",
" output_audio,\n",
" title=title,\n",
" description=description,\n",
" examples=[[\"raw/000.wav\", 0, -30, 0.4, False]],\n",
")\n",
"\n",
"try:\n",
" demo.queue().launch(debug=True)\n",
"except Exception:\n",
" demo.queue().launch(share=True, debug=True)\n",
"# if you are launching remotely, specify server_name and server_port\n",
"# demo.launch(server_name='your server name', server_port='server port in int')\n",
"# Read more in the docs: https://gradio.app/docs/"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
},
"openvino_notebooks": {
"imageUrl": "https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/bb43bea1-6709-48e5-a928-b86061399849",
"tags": {
"categories": [
"Model Demos",
"AI Trends"
],
"libraries": [],
"other": [],
"tasks": [
"Audio-to-Audio",
"Voice Conversion"
]
}
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|