Spaces:
Runtime error
Runtime error
File size: 11,675 Bytes
db5855f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "cacbe6b4",
"metadata": {
"id": "rQc-wXjqrEuR"
},
"source": [
"# Accelerate Inference of Sparse Transformer Models with OpenVINO™ and 4th Gen Intel® Xeon® Scalable Processors\n",
"This tutorial demonstrates how to improve performance of sparse Transformer models with [OpenVINO](https://docs.openvino.ai/) on 4th Gen Intel® Xeon® Scalable processors.\n",
"\n",
"The tutorial downloads [a BERT-base model](https://huggingface.co/OpenVINO/bert-base-uncased-sst2-int8-unstructured80) which has been quantized, sparsified, and tuned for [SST2 datasets](https://huggingface.co/datasets/sst2) using [Optimum-Intel](https://github.com/huggingface/optimum-intel). It demonstrates the inference performance advantage on 4th Gen Intel® Xeon® Scalable Processors by running it with [Sparse Weight Decompression](https://docs.openvino.ai/2024/openvino-workflow/running-inference/inference-devices-and-modes/cpu-device.html#sparse-weights-decompression-intel-x86-64), a runtime option that seizes model sparsity for efficiency. The notebook consists of the following steps:\n",
"\n",
"- Install prerequisites\n",
"- Download and quantize sparse public BERT model, using the OpenVINO integration with Hugging Face Optimum.\n",
"- Compare sparse 8-bit vs. dense 8-bit inference performance.\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "5f9d5f14",
"metadata": {},
"source": [
"\n",
"#### Table of contents:\n",
"\n",
"- [Prerequisites](#Prerequisites)\n",
"- [Imports](#Imports)\n",
" - [Download, quantize and sparsify the model, using Hugging Face Optimum API](#Download,-quantize-and-sparsify-the-model,-using-Hugging-Face-Optimum-API)\n",
"- [Benchmark quantized dense inference performance](#Benchmark-quantized-dense-inference-performance)\n",
"- [Benchmark quantized sparse inference performance](#Benchmark-quantized-sparse-inference-performance)\n",
"- [When this might be helpful](#When-this-might-be-helpful)\n",
"\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "7bef22e9",
"metadata": {},
"source": [
"## Prerequisites\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4fc9afb5",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"%pip install -q \"openvino>=2023.1.0\"\n",
"%pip install -q \"git+https://github.com/huggingface/optimum-intel.git\" \"torch>=2.1\" datasets onnx transformers>=4.33.0 --extra-index-url https://download.pytorch.org/whl/cpu"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "4d6b41e6-132b-40da-b3b9-91bacba29e31",
"metadata": {},
"source": [
"## Imports\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "771388d6",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import shutil\n",
"from pathlib import Path\n",
"\n",
"from optimum.intel.openvino import OVModelForSequenceClassification\n",
"from transformers import AutoTokenizer, pipeline\n",
"from huggingface_hub import hf_hub_download"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "7603a481",
"metadata": {},
"source": [
"### Download, quantize and sparsify the model, using Hugging Face Optimum API\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "040a1020-0c12-4f3d-ae9f-9464d2e18b10",
"metadata": {},
"source": [
"The first step is to download a quantized sparse transformers which has been translated to OpenVINO IR. Then, it will be put through a classification as a simple validation of a working downloaded model. To find out how the model is being quantized and sparsified, refer to the [OpenVINO/bert-base-uncased-sst2-int8-unstructured80](https://huggingface.co/OpenVINO/bert-base-uncased-sst2-int8-unstructured80) model card on Hugging Face.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b897c926",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# The following model has been quantized, sparsified using Optimum-Intel 1.7 which is enabled by OpenVINO and NNCF\n",
"# for reproducibility, refer https://huggingface.co/OpenVINO/bert-base-uncased-sst2-int8-unstructured80\n",
"model_id = \"OpenVINO/bert-base-uncased-sst2-int8-unstructured80\"\n",
"\n",
"# The following two steps will set up the model and download them to HF Cache folder\n",
"ov_model = OVModelForSequenceClassification.from_pretrained(model_id)\n",
"tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
"\n",
"# Let's take the model for a spin!\n",
"sentiment_classifier = pipeline(\"text-classification\", model=ov_model, tokenizer=tokenizer)\n",
"\n",
"text = \"He's a dreadful magician.\"\n",
"outputs = sentiment_classifier(text)\n",
"\n",
"print(outputs)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "227d97eb-e91e-48bb-bba9-30598e49bb4f",
"metadata": {},
"source": [
"For benchmarking, we will use OpenVINO's benchmark application and put the IRs into a single folder."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2caade15-cb72-4d49-8400-21ce56b9c220",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# create a folder\n",
"quantized_sparse_dir = Path(\"bert_80pc_sparse_quantized_ir\")\n",
"quantized_sparse_dir.mkdir(parents=True, exist_ok=True)\n",
"\n",
"# following return path to specified filename in cache folder (which we've with the\n",
"ov_ir_xml_path = hf_hub_download(repo_id=model_id, filename=\"openvino_model.xml\")\n",
"ov_ir_bin_path = hf_hub_download(repo_id=model_id, filename=\"openvino_model.bin\")\n",
"\n",
"# copy IRs to the folder\n",
"shutil.copy(ov_ir_xml_path, quantized_sparse_dir)\n",
"shutil.copy(ov_ir_bin_path, quantized_sparse_dir)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "a6830eb7",
"metadata": {},
"source": [
"## Benchmark quantized dense inference performance\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Benchmark dense inference performance using parallel execution on four CPU cores to simulate a small instance in the cloud infrastructure. Sequence length is dependent on use cases, 16 is common for conversational AI while 160 for question answering task. It is set to 64 as an example. It is recommended to tune based on your applications."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aa895f88",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Dump benchmarking config for dense inference\n",
"with (quantized_sparse_dir / \"perf_config.json\").open(\"w\") as outfile:\n",
" outfile.write(\n",
" \"\"\"\n",
" {\n",
" \"CPU\": {\"NUM_STREAMS\": 4, \"INFERENCE_NUM_THREADS\": 4}\n",
" }\n",
" \"\"\"\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5f6c7526",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!benchmark_app -m $quantized_sparse_dir/openvino_model.xml -shape \"input_ids[1,64],attention_mask[1,64],token_type_ids[1,64]\" -load_config $quantized_sparse_dir/perf_config.json"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "f9151b11",
"metadata": {},
"source": [
"## Benchmark quantized sparse inference performance\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "c305661a-27a5-45aa-b3df-777862584adf",
"metadata": {},
"source": [
"To enable sparse weight decompression feature, users can add it to runtime config like below. `CPU_SPARSE_WEIGHTS_DECOMPRESSION_RATE` takes values between 0.5 and 1.0. It is a layer-level sparsity threshold for which a layer will be enabled."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ad77ae5f",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Dump benchmarking config for dense inference\n",
"# \"CPU_SPARSE_WEIGHTS_DECOMPRESSION_RATE\" controls minimum sparsity rate for weights to consider\n",
"# for sparse optimization at the runtime.\n",
"with (quantized_sparse_dir / \"perf_config_sparse.json\").open(\"w\") as outfile:\n",
" outfile.write(\n",
" \"\"\"\n",
" {\n",
" \"CPU\": {\"NUM_STREAMS\": 4, \"INFERENCE_NUM_THREADS\": 4, \"CPU_SPARSE_WEIGHTS_DECOMPRESSION_RATE\": 0.75}\n",
" }\n",
" \"\"\"\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1ddd8b10",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!benchmark_app -m $quantized_sparse_dir/openvino_model.xml -shape \"input_ids[1,64],attention_mask[1,64],token_type_ids[1,64]\" -load_config $quantized_sparse_dir/perf_config_sparse.json"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "cc1d4d61",
"metadata": {},
"source": [
"## When this might be helpful\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "135c8526",
"metadata": {},
"source": [
"This feature can improve inference performance for models with sparse weights in the scenarios when the model is deployed to handle multiple requests in parallel asynchronously. It is especially helpful with a small sequence length, for example, 32 and lower.\n",
"\n",
"For more details about asynchronous inference with OpenVINO, refer to the following documentation:\n",
"\n",
"- [Deployment Optimization Guide](https://docs.openvino.ai/2024/openvino-workflow/running-inference/optimize-inference/general-optimizations.html)\n",
"- [Inference Request API](https://docs.openvino.ai/2024/openvino-workflow/running-inference/integrate-openvino-with-your-application/inference-request.html)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
},
"openvino_notebooks": {
"imageUrl": "",
"tags": {
"categories": [
"Optimize"
],
"libraries": [],
"other": [],
"tasks": [
"Text Classification"
]
}
},
"vscode": {
"interpreter": {
"hash": "cec18e25feb9469b5ff1085a8097bdcd86db6a4ac301d6aeff87d0f3e7ce4ca5"
}
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|