File size: 11,675 Bytes
db5855f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
{
 "cells": [
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "cacbe6b4",
   "metadata": {
    "id": "rQc-wXjqrEuR"
   },
   "source": [
    "# Accelerate Inference of Sparse Transformer Models with OpenVINO™ and 4th Gen Intel® Xeon® Scalable Processors\n",
    "This tutorial demonstrates how to improve performance of sparse Transformer models with [OpenVINO](https://docs.openvino.ai/) on 4th Gen Intel® Xeon® Scalable processors.\n",
    "\n",
    "The tutorial downloads [a BERT-base model](https://huggingface.co/OpenVINO/bert-base-uncased-sst2-int8-unstructured80) which has been quantized, sparsified, and tuned for [SST2 datasets](https://huggingface.co/datasets/sst2) using [Optimum-Intel](https://github.com/huggingface/optimum-intel). It demonstrates the inference performance advantage on 4th Gen Intel® Xeon® Scalable Processors by running it with [Sparse Weight Decompression](https://docs.openvino.ai/2024/openvino-workflow/running-inference/inference-devices-and-modes/cpu-device.html#sparse-weights-decompression-intel-x86-64), a runtime option that seizes model sparsity for efficiency. The notebook consists of the following steps:\n",
    "\n",
    "- Install prerequisites\n",
    "- Download and quantize sparse public BERT model, using the OpenVINO integration with Hugging Face Optimum.\n",
    "- Compare sparse 8-bit vs. dense 8-bit inference performance.\n"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "5f9d5f14",
   "metadata": {},
   "source": [
    "\n",
    "#### Table of contents:\n",
    "\n",
    "- [Prerequisites](#Prerequisites)\n",
    "- [Imports](#Imports)\n",
    "    - [Download, quantize and sparsify the model, using Hugging Face Optimum API](#Download,-quantize-and-sparsify-the-model,-using-Hugging-Face-Optimum-API)\n",
    "- [Benchmark quantized dense inference performance](#Benchmark-quantized-dense-inference-performance)\n",
    "- [Benchmark quantized sparse inference performance](#Benchmark-quantized-sparse-inference-performance)\n",
    "- [When this might be helpful](#When-this-might-be-helpful)\n",
    "\n"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "7bef22e9",
   "metadata": {},
   "source": [
    "## Prerequisites\n",
    "[back to top ⬆️](#Table-of-contents:)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4fc9afb5",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "%pip install -q \"openvino>=2023.1.0\"\n",
    "%pip install -q \"git+https://github.com/huggingface/optimum-intel.git\" \"torch>=2.1\" datasets onnx transformers>=4.33.0 --extra-index-url https://download.pytorch.org/whl/cpu"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "4d6b41e6-132b-40da-b3b9-91bacba29e31",
   "metadata": {},
   "source": [
    "## Imports\n",
    "[back to top ⬆️](#Table-of-contents:)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "771388d6",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "import shutil\n",
    "from pathlib import Path\n",
    "\n",
    "from optimum.intel.openvino import OVModelForSequenceClassification\n",
    "from transformers import AutoTokenizer, pipeline\n",
    "from huggingface_hub import hf_hub_download"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "7603a481",
   "metadata": {},
   "source": [
    "### Download, quantize and sparsify the model, using Hugging Face Optimum API\n",
    "[back to top ⬆️](#Table-of-contents:)\n"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "040a1020-0c12-4f3d-ae9f-9464d2e18b10",
   "metadata": {},
   "source": [
    "The first step is to download a quantized sparse transformers which has been translated to OpenVINO IR. Then, it will be put through a classification as a simple validation of a working downloaded model. To find out how the model is being quantized and sparsified, refer to the [OpenVINO/bert-base-uncased-sst2-int8-unstructured80](https://huggingface.co/OpenVINO/bert-base-uncased-sst2-int8-unstructured80) model card on Hugging Face.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b897c926",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "# The following model has been quantized, sparsified using Optimum-Intel 1.7 which is enabled by OpenVINO and NNCF\n",
    "# for reproducibility, refer https://huggingface.co/OpenVINO/bert-base-uncased-sst2-int8-unstructured80\n",
    "model_id = \"OpenVINO/bert-base-uncased-sst2-int8-unstructured80\"\n",
    "\n",
    "# The following two steps will set up the model and download them to HF Cache folder\n",
    "ov_model = OVModelForSequenceClassification.from_pretrained(model_id)\n",
    "tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
    "\n",
    "# Let's take the model for a spin!\n",
    "sentiment_classifier = pipeline(\"text-classification\", model=ov_model, tokenizer=tokenizer)\n",
    "\n",
    "text = \"He's a dreadful magician.\"\n",

    "outputs = sentiment_classifier(text)\n",

    "\n",

    "print(outputs)"

   ]

  },

  {

   "attachments": {},

   "cell_type": "markdown",

   "id": "227d97eb-e91e-48bb-bba9-30598e49bb4f",

   "metadata": {},

   "source": [

    "For benchmarking, we will use OpenVINO's benchmark application and put the IRs into a single folder."

   ]

  },

  {

   "cell_type": "code",

   "execution_count": null,

   "id": "2caade15-cb72-4d49-8400-21ce56b9c220",

   "metadata": {

    "tags": []

   },

   "outputs": [],

   "source": [

    "# create a folder\n",

    "quantized_sparse_dir = Path(\"bert_80pc_sparse_quantized_ir\")\n",

    "quantized_sparse_dir.mkdir(parents=True, exist_ok=True)\n",

    "\n",

    "# following return path to specified filename in cache folder (which we've with the\n",

    "ov_ir_xml_path = hf_hub_download(repo_id=model_id, filename=\"openvino_model.xml\")\n",

    "ov_ir_bin_path = hf_hub_download(repo_id=model_id, filename=\"openvino_model.bin\")\n",

    "\n",

    "# copy IRs to the folder\n",

    "shutil.copy(ov_ir_xml_path, quantized_sparse_dir)\n",

    "shutil.copy(ov_ir_bin_path, quantized_sparse_dir)"

   ]

  },

  {

   "attachments": {},

   "cell_type": "markdown",

   "id": "a6830eb7",

   "metadata": {},

   "source": [

    "## Benchmark quantized dense inference performance\n",

    "[back to top ⬆️](#Table-of-contents:)\n",

    "\n",

    "Benchmark dense inference performance using parallel execution on four CPU cores to simulate a small instance in the cloud infrastructure. Sequence length is dependent on use cases, 16 is common for conversational AI while 160 for question answering task. It is set to 64 as an example. It is recommended to tune based on your applications."

   ]

  },

  {

   "cell_type": "code",

   "execution_count": null,

   "id": "aa895f88",

   "metadata": {

    "tags": []

   },

   "outputs": [],

   "source": [

    "# Dump benchmarking config for dense inference\n",

    "with (quantized_sparse_dir / \"perf_config.json\").open(\"w\") as outfile:\n",

    "    outfile.write(\n",

    "        \"\"\"\n",

    "        {\n",

    "            \"CPU\": {\"NUM_STREAMS\": 4, \"INFERENCE_NUM_THREADS\": 4}\n",

    "        }\n",

    "        \"\"\"\n",

    "    )"

   ]

  },

  {

   "cell_type": "code",

   "execution_count": null,

   "id": "5f6c7526",

   "metadata": {

    "tags": []

   },

   "outputs": [],

   "source": [

    "!benchmark_app -m $quantized_sparse_dir/openvino_model.xml -shape \"input_ids[1,64],attention_mask[1,64],token_type_ids[1,64]\" -load_config $quantized_sparse_dir/perf_config.json"

   ]

  },

  {

   "attachments": {},

   "cell_type": "markdown",

   "id": "f9151b11",

   "metadata": {},

   "source": [

    "## Benchmark quantized sparse inference performance\n",

    "[back to top ⬆️](#Table-of-contents:)\n"

   ]

  },

  {

   "attachments": {},

   "cell_type": "markdown",

   "id": "c305661a-27a5-45aa-b3df-777862584adf",

   "metadata": {},

   "source": [

    "To enable sparse weight decompression feature, users can add it to runtime config like below. `CPU_SPARSE_WEIGHTS_DECOMPRESSION_RATE` takes values between 0.5 and 1.0. It is a layer-level sparsity threshold for which a layer will be enabled."

   ]

  },

  {

   "cell_type": "code",

   "execution_count": null,

   "id": "ad77ae5f",

   "metadata": {

    "tags": []

   },

   "outputs": [],

   "source": [

    "# Dump benchmarking config for dense inference\n",

    "# \"CPU_SPARSE_WEIGHTS_DECOMPRESSION_RATE\" controls minimum sparsity rate for weights to consider\n",

    "# for sparse optimization at the runtime.\n",

    "with (quantized_sparse_dir / \"perf_config_sparse.json\").open(\"w\") as outfile:\n",

    "    outfile.write(\n",

    "        \"\"\"\n",

    "        {\n",

    "            \"CPU\": {\"NUM_STREAMS\": 4, \"INFERENCE_NUM_THREADS\": 4, \"CPU_SPARSE_WEIGHTS_DECOMPRESSION_RATE\": 0.75}\n",

    "        }\n",

    "        \"\"\"\n",

    "    )"

   ]

  },

  {

   "cell_type": "code",

   "execution_count": null,

   "id": "1ddd8b10",

   "metadata": {

    "tags": []

   },

   "outputs": [],

   "source": [

    "!benchmark_app -m $quantized_sparse_dir/openvino_model.xml -shape \"input_ids[1,64],attention_mask[1,64],token_type_ids[1,64]\" -load_config $quantized_sparse_dir/perf_config_sparse.json"

   ]

  },

  {

   "attachments": {},

   "cell_type": "markdown",

   "id": "cc1d4d61",

   "metadata": {},

   "source": [

    "## When this might be helpful\n",

    "[back to top ⬆️](#Table-of-contents:)\n"

   ]

  },

  {

   "attachments": {},

   "cell_type": "markdown",

   "id": "135c8526",

   "metadata": {},

   "source": [

    "This feature can improve inference performance for models with sparse weights in the scenarios when the model is deployed to handle multiple requests in parallel asynchronously. It is especially helpful with a small sequence length, for example, 32 and lower.\n",

    "\n",

    "For more details about asynchronous inference with OpenVINO, refer to the following documentation:\n",

    "\n",

    "- [Deployment Optimization Guide](https://docs.openvino.ai/2024/openvino-workflow/running-inference/optimize-inference/general-optimizations.html)\n",

    "- [Inference Request API](https://docs.openvino.ai/2024/openvino-workflow/running-inference/integrate-openvino-with-your-application/inference-request.html)"

   ]

  }

 ],

 "metadata": {

  "kernelspec": {

   "display_name": "Python 3 (ipykernel)",

   "language": "python",

   "name": "python3"

  },

  "language_info": {

   "codemirror_mode": {

    "name": "ipython",

    "version": 3

   },

   "file_extension": ".py",

   "mimetype": "text/x-python",

   "name": "python",

   "nbconvert_exporter": "python",

   "pygments_lexer": "ipython3",

   "version": "3.8.10"

  },

  "openvino_notebooks": {

   "imageUrl": "",

   "tags": {

    "categories": [

     "Optimize"

    ],

    "libraries": [],

    "other": [],

    "tasks": [

     "Text Classification"

    ]

   }

  },

  "vscode": {

   "interpreter": {

    "hash": "cec18e25feb9469b5ff1085a8097bdcd86db6a4ac301d6aeff87d0f3e7ce4ca5"

   }

  },

  "widgets": {

   "application/vnd.jupyter.widget-state+json": {

    "state": {},

    "version_major": 2,

    "version_minor": 0

   }

  }

 },

 "nbformat": 4,

 "nbformat_minor": 5

}