File size: 17,248 Bytes
db5855f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import inspect
from typing import List, Optional, Union, Dict

import PIL
import cv2
import torch
import numpy as np

from transformers import CLIPTokenizer
from diffusers import DiffusionPipeline
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
import openvino as ov


def scale_fit_to_window(dst_width: int, dst_height: int, image_width: int, image_height: int):
    """

    Preprocessing helper function for calculating image size for resize with peserving original aspect ratio

    and fitting image to specific window size



    Parameters:

      dst_width (int): destination window width

      dst_height (int): destination window height

      image_width (int): source image width

      image_height (int): source image height

    Returns:

      result_width (int): calculated width for resize

      result_height (int): calculated height for resize

    """
    im_scale = min(dst_height / image_height, dst_width / image_width)
    return int(im_scale * image_width), int(im_scale * image_height)


def preprocess(image: PIL.Image.Image):
    """

    Image preprocessing function. Takes image in PIL.Image format, resizes it to keep aspect ration and fits to model input window 512x512,

    then converts it to np.ndarray and adds padding with zeros on right or bottom side of image (depends from aspect ratio), after that

    converts data to float32 data type and change range of values from [0, 255] to [-1, 1], finally, converts data layout from planar NHWC to NCHW.

    The function returns preprocessed input tensor and padding size, which can be used in postprocessing.



    Parameters:

      image (PIL.Image.Image): input image

    Returns:

       image (np.ndarray): preprocessed image tensor

       meta (Dict): dictionary with preprocessing metadata info

    """
    src_width, src_height = image.size
    dst_width, dst_height = scale_fit_to_window(512, 512, src_width, src_height)
    image = np.array(image.resize((dst_width, dst_height), resample=PIL.Image.Resampling.LANCZOS))[None, :]
    pad_width = 512 - dst_width
    pad_height = 512 - dst_height
    pad = ((0, 0), (0, pad_height), (0, pad_width), (0, 0))
    image = np.pad(image, pad, mode="constant")
    image = image.astype(np.float32) / 255.0
    image = 2.0 * image - 1.0
    image = image.transpose(0, 3, 1, 2)
    return image, {"padding": pad, "src_width": src_width, "src_height": src_height}


class OVStableDiffusionPipeline(DiffusionPipeline):
    def __init__(

        self,

        vae_decoder: ov.Model,

        text_encoder: ov.Model,

        tokenizer: CLIPTokenizer,

        unet: ov.Model,

        scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],

        vae_encoder: ov.Model = None,

    ):
        """

        Pipeline for text-to-image generation using Stable Diffusion.

        Parameters:

            vae_decoder (Model):

                Variational Auto-Encoder (VAE) Model to decode images to and from latent representations.

            text_encoder (Model):

                Frozen text-encoder. Stable Diffusion uses the text portion of

                [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically

                the clip-vit-large-patch14(https://huggingface.co/openai/clip-vit-large-patch14) variant.

            tokenizer (CLIPTokenizer):

                Tokenizer of class CLIPTokenizer(https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).

            unet (Model): Conditional U-Net architecture to denoise the encoded image latents.

            vae_encoder (Model):

                Variational Auto-Encoder (VAE) Model to encode images to latent representation.

            scheduler (SchedulerMixin):

                A scheduler to be used in combination with unet to denoise the encoded image latents. Can be one of

                DDIMScheduler, LMSDiscreteScheduler, or PNDMScheduler.

        """
        super().__init__()
        self.scheduler = scheduler
        self.vae_decoder = vae_decoder
        self.vae_encoder = vae_encoder
        self.text_encoder = text_encoder
        self.unet = unet
        self._text_encoder_output = text_encoder.output(0)
        self._unet_output = unet.output(0)
        self._vae_d_output = vae_decoder.output(0)
        self._vae_e_output = vae_encoder.output(0) if vae_encoder is not None else None
        self.height = self.unet.input(0).shape[2] * 8
        self.width = self.unet.input(0).shape[3] * 8
        self.tokenizer = tokenizer

    def __call__(

        self,

        prompt: Union[str, List[str]],

        image: PIL.Image.Image = None,

        negative_prompt: Union[str, List[str]] = None,

        num_inference_steps: Optional[int] = 50,

        guidance_scale: Optional[float] = 7.5,

        eta: Optional[float] = 0.0,

        output_type: Optional[str] = "pil",

        seed: Optional[int] = None,

        strength: float = 1.0,

    ):
        """

        Function invoked when calling the pipeline for generation.

        Parameters:

            prompt (str or List[str]):

                The prompt or prompts to guide the image generation.

            image (PIL.Image.Image, *optional*, None):

                 Intinal image for generation.

            negative_prompt (str or List[str]):

                The negative prompt or prompts to guide the image generation.

            num_inference_steps (int, *optional*, defaults to 50):

                The number of denoising steps. More denoising steps usually lead to a higher quality image at the

                expense of slower inference.

            guidance_scale (float, *optional*, defaults to 7.5):

                Guidance scale as defined in Classifier-Free Diffusion Guidance(https://arxiv.org/abs/2207.12598).

                guidance_scale is defined as `w` of equation 2.

                Higher guidance scale encourages to generate images that are closely linked to the text prompt,

                usually at the expense of lower image quality.

            eta (float, *optional*, defaults to 0.0):

                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to

                [DDIMScheduler], will be ignored for others.

            output_type (`str`, *optional*, defaults to "pil"):

                The output format of the generate image. Choose between

                [PIL](https://pillow.readthedocs.io/en/stable/): PIL.Image.Image or np.array.

            seed (int, *optional*, None):

                Seed for random generator state initialization.

            strength (int, *optional*, 1.0):

                strength between initial image and generated in Image-to-Image pipeline, do not used in Text-to-Image

        Returns:

            Dictionary with keys:

                sample - the last generated image PIL.Image.Image or np.array

        """
        if seed is not None:
            np.random.seed(seed)
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0
        # get prompt text embeddings
        text_embeddings = self._encode_prompt(
            prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
        )
        # set timesteps
        accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
        extra_set_kwargs = {}
        if accepts_offset:
            extra_set_kwargs["offset"] = 1

        self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
        timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength)
        latent_timestep = timesteps[:1]

        # get the initial random noise unless the user supplied it
        latents, meta = self.prepare_latents(image, latent_timestep)

        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]
        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        for t in self.progress_bar(timesteps):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

            # predict the noise residual
            noise_pred = self.unet([latent_model_input, np.array(t, dtype=np.float32), text_embeddings])[self._unet_output]
            # perform guidance
            if do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred[0], noise_pred[1]
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # compute the previous noisy sample x_t -> x_t-1
            latents = self.scheduler.step(torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs)["prev_sample"].numpy()
        # scale and decode the image latents with vae
        image = self.vae_decoder(latents * (1 / 0.18215))[self._vae_d_output]

        image = self.postprocess_image(image, meta, output_type)
        return {"sample": image}

    def _encode_prompt(

        self,

        prompt: Union[str, List[str]],

        num_images_per_prompt: int = 1,

        do_classifier_free_guidance: bool = True,

        negative_prompt: Union[str, List[str]] = None,

    ):
        """

        Encodes the prompt into text encoder hidden states.



        Parameters:

            prompt (str or list(str)): prompt to be encoded

            num_images_per_prompt (int): number of images that should be generated per prompt

            do_classifier_free_guidance (bool): whether to use classifier free guidance or not

            negative_prompt (str or list(str)): negative prompt to be encoded

        Returns:

            text_embeddings (np.ndarray): text encoder hidden states

        """
        batch_size = len(prompt) if isinstance(prompt, list) else 1

        # tokenize input prompts
        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="np",
        )
        text_input_ids = text_inputs.input_ids

        text_embeddings = self.text_encoder(text_input_ids)[self._text_encoder_output]

        # duplicate text embeddings for each generation per prompt
        if num_images_per_prompt != 1:
            bs_embed, seq_len, _ = text_embeddings.shape
            text_embeddings = np.tile(text_embeddings, (1, num_images_per_prompt, 1))
            text_embeddings = np.reshape(text_embeddings, (bs_embed * num_images_per_prompt, seq_len, -1))

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance:
            uncond_tokens: List[str]
            max_length = text_input_ids.shape[-1]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            else:
                uncond_tokens = negative_prompt
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="np",
            )

            uncond_embeddings = self.text_encoder(uncond_input.input_ids)[self._text_encoder_output]

            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = uncond_embeddings.shape[1]
            uncond_embeddings = np.tile(uncond_embeddings, (1, num_images_per_prompt, 1))
            uncond_embeddings = np.reshape(uncond_embeddings, (batch_size * num_images_per_prompt, seq_len, -1))

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            text_embeddings = np.concatenate([uncond_embeddings, text_embeddings])

        return text_embeddings

    def prepare_latents(self, image: PIL.Image.Image = None, latent_timestep: torch.Tensor = None):
        """

        Function for getting initial latents for starting generation



        Parameters:

            image (PIL.Image.Image, *optional*, None):

                Input image for generation, if not provided randon noise will be used as starting point

            latent_timestep (torch.Tensor, *optional*, None):

                Predicted by scheduler initial step for image generation, required for latent image mixing with nosie

        Returns:

            latents (np.ndarray):

                Image encoded in latent space

        """
        latents_shape = (1, 4, self.height // 8, self.width // 8)
        noise = np.random.randn(*latents_shape).astype(np.float32)
        if image is None:
            # if we use LMSDiscreteScheduler, let's make sure latents are mulitplied by sigmas
            if isinstance(self.scheduler, LMSDiscreteScheduler):
                noise = noise * self.scheduler.sigmas[0].numpy()
            return noise, {}
        input_image, meta = preprocess(image)
        latents = self.vae_encoder(input_image)[self._vae_e_output]
        latents = latents * 0.18215
        latents = self.scheduler.add_noise(torch.from_numpy(latents), torch.from_numpy(noise), latent_timestep).numpy()
        return latents, meta

    def postprocess_image(self, image: np.ndarray, meta: Dict, output_type: str = "pil"):
        """

        Postprocessing for decoded image. Takes generated image decoded by VAE decoder, unpad it to initila image size (if required),

        normalize and convert to [0, 255] pixels range. Optionally, convertes it from np.ndarray to PIL.Image format



        Parameters:

            image (np.ndarray):

                Generated image

            meta (Dict):

                Metadata obtained on latents preparing step, can be empty

            output_type (str, *optional*, pil):

                Output format for result, can be pil or numpy

        Returns:

            image (List of np.ndarray or PIL.Image.Image):

                Postprocessed images

        """
        if "padding" in meta:
            pad = meta["padding"]
            (_, end_h), (_, end_w) = pad[1:3]
            h, w = image.shape[2:]
            unpad_h = h - end_h
            unpad_w = w - end_w
            image = image[:, :, :unpad_h, :unpad_w]
        image = np.clip(image / 2 + 0.5, 0, 1)
        image = np.transpose(image, (0, 2, 3, 1))
        # 9. Convert to PIL
        if output_type == "pil":
            image = self.numpy_to_pil(image)
            if "src_height" in meta:
                orig_height, orig_width = meta["src_height"], meta["src_width"]
                image = [img.resize((orig_width, orig_height), PIL.Image.Resampling.LANCZOS) for img in image]
        else:
            if "src_height" in meta:
                orig_height, orig_width = meta["src_height"], meta["src_width"]
                image = [cv2.resize(img, (orig_width, orig_width)) for img in image]
        return image

    def get_timesteps(self, num_inference_steps: int, strength: float):
        """

        Helper function for getting scheduler timesteps for generation

        In case of image-to-image generation, it updates number of steps according to strength



        Parameters:

           num_inference_steps (int):

              number of inference steps for generation

           strength (float):

               value between 0.0 and 1.0, that controls the amount of noise that is added to the input image.

               Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input.

        """
        # get the original timestep using init_timestep
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

        t_start = max(num_inference_steps - init_timestep, 0)
        timesteps = self.scheduler.timesteps[t_start:]

        return timesteps, num_inference_steps - t_start