Spaces:
Runtime error
Runtime error
File size: 71,097 Bytes
db5855f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 |
{
"cells": [
{
"cell_type": "markdown",
"id": "e5501f221fd5d19f",
"metadata": {},
"source": [
"# Text-to-Image Generation with Stable Diffusion v2 and OpenVINO™\n",
"\n",
"Stable Diffusion v2 is the next generation of Stable Diffusion model a Text-to-Image latent diffusion model created by the researchers and engineers from [Stability AI](https://stability.ai/) and [LAION](https://laion.ai/). \n",
"\n",
"General diffusion models are machine learning systems that are trained to denoise random gaussian noise step by step, to get to a sample of interest, such as an image.\n",
"Diffusion models have shown to achieve state-of-the-art results for generating image data. But one downside of diffusion models is that the reverse denoising process is slow. In addition, these models consume a lot of memory because they operate in pixel space, which becomes unreasonably expensive when generating high-resolution images. Therefore, it is challenging to train these models and also use them for inference. OpenVINO brings capabilities to run model inference on Intel hardware and opens the door to the fantastic world of diffusion models for everyone!\n",
"\n",
"In previous notebooks, we already discussed how to run [Text-to-Image generation and Image-to-Image generation using Stable Diffusion v1](../stable-diffusion-text-to-image/stable-diffusion-text-to-image.ipynb) and [controlling its generation process using ControlNet](./controlnet-stable-diffusion/controlnet-stable-diffusion.ipynb). Now is turn of Stable Diffusion v2.\n",
"\n",
"## Stable Diffusion v2: What’s new?\n",
"\n",
"The new stable diffusion model offers a bunch of new features inspired by the other models that have emerged since the introduction of the first iteration. Some of the features that can be found in the new model are:\n",
"\n",
"* The model comes with a new robust encoder, OpenCLIP, created by LAION and aided by Stability AI; this version v2 significantly enhances the produced photos over the V1 versions. \n",
"* The model can now generate images in a 768x768 resolution, offering more information to be shown in the generated images.\n",
"* The model finetuned with [v-objective](https://arxiv.org/abs/2202.00512). The v-parameterization is particularly useful for numerical stability throughout the diffusion process to enable progressive distillation for models. For models that operate at higher resolution, it is also discovered that the v-parameterization avoids color shifting artifacts that are known to affect high resolution diffusion models, and in the video setting it avoids temporal color shifting that sometimes appears with epsilon-prediction used in Stable Diffusion v1. \n",
"* The model also comes with a new diffusion model capable of running upscaling on the images generated. Upscaled images can be adjusted up to 4 times the original image. Provided as separated model, for more details please check [stable-diffusion-x4-upscaler](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler)\n",
"* The model comes with a new refined depth architecture capable of preserving context from prior generation layers in an image-to-image setting. This structure preservation helps generate images that preserving forms and shadow of objects, but with different content.\n",
"* The model comes with an updated inpainting module built upon the previous model. This text-guided inpainting makes switching out parts in the image easier than before.\n",
"\n",
"This notebook demonstrates how to convert and run Stable Diffusion v2 model using OpenVINO.\n",
"\n",
"Notebook contains the following steps:\n",
"\n",
"1. Create PyTorch models pipeline using Diffusers library.\n",
"2. Convert PyTorch models to OpenVINO IR format, using model conversion API.\n",
"3. Apply hybrid post-training quantization to UNet model with [NNCF](https://github.com/openvinotoolkit/nncf/).\n",
"4. Run Stable Diffusion v2 Text-to-Image pipeline with OpenVINO.\n",
"\n",
"**Note:** This is the full version of the Stable Diffusion text-to-image implementation. If you would like to get started and run the notebook quickly, check out [stable-diffusion-v2-text-to-image-demo notebook](../stable-diffusion-v2/stable-diffusion-v2-text-to-image-demo.ipynb).\n"
]
},
{
"cell_type": "markdown",
"id": "e2bceddde9f8d526",
"metadata": {},
"source": [
"#### Table of contents:\n",
"\n",
"- [Prerequisites](#Prerequisites)\n",
"- [Stable Diffusion v2 for Text-to-Image Generation](#Stable-Diffusion-v2-for-Text-to-Image-Generation)\n",
" - [Stable Diffusion in Diffusers library](#Stable-Diffusion-in-Diffusers-library)\n",
" - [Convert models to OpenVINO Intermediate representation (IR) format](#Convert-models-to-OpenVINO-Intermediate-representation-(IR)-format)\n",
" - [Text Encoder](#Text-Encoder)\n",
" - [U-Net](#U-Net)\n",
" - [VAE](#VAE)\n",
" - [Prepare Inference Pipeline](#Prepare-Inference-Pipeline)\n",
" - [Configure Inference Pipeline](#Configure-Inference-Pipeline)\n",
"- [Quantization](#Quantization)\n",
" - [Prepare calibration dataset](#Prepare-calibration-dataset)\n",
" - [Run Hybrid Model Quantization](#Run-Hybrid-Model-Quantization)\n",
" - [Compare inference time of the FP16 and INT8 pipelines](#Compare-inference-time-of-the-FP16-and-INT8-pipelines)\n",
"- [Run Text-to-Image generation](#Run-Text-to-Image-generation)\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "1a571d16e81bf3c4",
"metadata": {},
"source": [
"## Prerequisites\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"install required packages"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "6723fa8e346926b7",
"metadata": {
"ExecuteTime": {
"end_time": "2024-02-13T13:29:10.765014Z",
"start_time": "2024-02-13T13:29:08.472566Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install -q \"diffusers>=0.14.0\" \"openvino>=2023.1.0\" \"datasets>=2.14.6\" \"transformers>=4.25.1\" \"gradio>=4.19\" \"torch>=2.1\" Pillow opencv-python --extra-index-url https://download.pytorch.org/whl/cpu\n",
"%pip install -q \"nncf>=2.9.0\""
]
},
{
"cell_type": "markdown",
"id": "3c4a678aa7817277",
"metadata": {},
"source": [
"## Stable Diffusion v2 for Text-to-Image Generation\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"To start, let's look on Text-to-Image process for Stable Diffusion v2. We will use [Stable Diffusion v2-1](https://huggingface.co/stabilityai/stable-diffusion-2-1) model for these purposes. The main difference from Stable Diffusion v2 and Stable Diffusion v2.1 is usage of more data, more training, and less restrictive filtering of the dataset, that gives promising results for selecting wide range of input text prompts. More details about model can be found in [Stability AI blog post](https://stability.ai/blog/stablediffusion2-1-release7-dec-2022) and original model [repository](https://github.com/Stability-AI/stablediffusion).\n",
"\n",
"### Stable Diffusion in Diffusers library\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"To work with Stable Diffusion v2, we will use Hugging Face [Diffusers](https://github.com/huggingface/diffusers) library. To experiment with Stable Diffusion models, Diffusers exposes the [`StableDiffusionPipeline`](https://huggingface.co/docs/diffusers/using-diffusers/conditional_image_generation) similar to the [other Diffusers pipelines](https://huggingface.co/docs/diffusers/api/pipelines/overview). The code below demonstrates how to create `StableDiffusionPipeline` using `stable-diffusion-2-1`:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "d277beedf7e92c43",
"metadata": {
"ExecuteTime": {
"end_time": "2024-02-13T13:29:13.431319Z",
"start_time": "2024-02-13T13:29:10.766275Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "35c151ae50214855ac10300a2e2bb495",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading pipeline components...: 0%| | 0/6 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from diffusers import StableDiffusionPipeline\n",
"\n",
"pipe = StableDiffusionPipeline.from_pretrained(\"stabilityai/stable-diffusion-2-1-base\").to(\"cpu\")\n",
"\n",
"# for reducing memory consumption get all components from pipeline independently\n",
"text_encoder = pipe.text_encoder\n",
"text_encoder.eval()\n",
"unet = pipe.unet\n",
"unet.eval()\n",
"vae = pipe.vae\n",
"vae.eval()\n",
"\n",
"conf = pipe.scheduler.config\n",
"\n",
"del pipe"
]
},
{
"cell_type": "markdown",
"id": "a636f5007c3781e",
"metadata": {},
"source": [
"### Convert models to OpenVINO Intermediate representation (IR) format\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Starting from 2023.0 release, OpenVINO supports PyTorch models directly via Model Conversion API. `ov.convert_model` function accepts instance of PyTorch model and example inputs for tracing and returns object of `ov.Model` class, ready to use or save on disk using `ov.save_model` function. \n",
"\n",
"\n",
"The pipeline consists of three important parts:\n",
"\n",
"* Text Encoder to create condition to generate an image from a text prompt.\n",
"* U-Net for step-by-step denoising latent image representation.\n",
"* Autoencoder (VAE) for decoding latent space to image.\n",
"\n",
"Let us convert each part:"
]
},
{
"cell_type": "markdown",
"id": "d4f14633b43a9034",
"metadata": {},
"source": [
"### Text Encoder\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"The text-encoder is responsible for transforming the input prompt, for example, \"a photo of an astronaut riding a horse\" into an embedding space that can be understood by the U-Net. It is usually a simple transformer-based encoder that maps a sequence of input tokens to a sequence of latent text embeddings.\n",
"\n",
"The input of the text encoder is tensor `input_ids`, which contains indexes of tokens from text processed by the tokenizer and padded to the maximum length accepted by the model. Model outputs are two tensors: `last_hidden_state` - hidden state from the last MultiHeadAttention layer in the model and `pooler_out` - pooled output for whole model hidden states."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "3fd5f7ff0751a146",
"metadata": {
"ExecuteTime": {
"end_time": "2024-02-13T13:29:13.434571Z",
"start_time": "2024-02-13T13:29:13.432325Z"
}
},
"outputs": [],
"source": [
"from pathlib import Path\n",
"\n",
"sd2_1_model_dir = Path(\"sd2.1\")\n",
"sd2_1_model_dir.mkdir(exist_ok=True)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "19a36c5ca10a998a",
"metadata": {
"ExecuteTime": {
"end_time": "2024-02-13T13:29:20.605486Z",
"start_time": "2024-02-13T13:29:13.435752Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Text encoder will be loaded from sd2.1/text_encoder.xml\n"
]
}
],
"source": [
"import gc\n",
"import torch\n",
"import openvino as ov\n",
"\n",
"TEXT_ENCODER_OV_PATH = sd2_1_model_dir / \"text_encoder.xml\"\n",
"\n",
"\n",
"def cleanup_torchscript_cache():\n",
" \"\"\"\n",
" Helper for removing cached model representation\n",
" \"\"\"\n",
" torch._C._jit_clear_class_registry()\n",
" torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()\n",
" torch.jit._state._clear_class_state()\n",
"\n",
"\n",
"def convert_encoder(text_encoder: torch.nn.Module, ir_path: Path):\n",
" \"\"\"\n",
" Convert Text Encoder model to IR.\n",
" Function accepts pipeline, prepares example inputs for conversion\n",
" Parameters:\n",
" text_encoder (torch.nn.Module): text encoder PyTorch model\n",
" ir_path (Path): File for storing model\n",
" Returns:\n",
" None\n",
" \"\"\"\n",
" if not ir_path.exists():\n",
" input_ids = torch.ones((1, 77), dtype=torch.long)\n",
" # switch model to inference mode\n",
" text_encoder.eval()\n",
"\n",
" # disable gradients calculation for reducing memory consumption\n",
" with torch.no_grad():\n",
" # export model\n",
" ov_model = ov.convert_model(\n",
" text_encoder, # model instance\n",
" example_input=input_ids, # example inputs for model tracing\n",
" input=([1, 77],), # input shape for conversion\n",
" )\n",
" ov.save_model(ov_model, ir_path)\n",
" del ov_model\n",
" cleanup_torchscript_cache()\n",
" print(\"Text Encoder successfully converted to IR\")\n",
"\n",
"\n",
"if not TEXT_ENCODER_OV_PATH.exists():\n",
" convert_encoder(text_encoder, TEXT_ENCODER_OV_PATH)\n",
"else:\n",
" print(f\"Text encoder will be loaded from {TEXT_ENCODER_OV_PATH}\")\n",
"\n",
"del text_encoder\n",
"gc.collect();"
]
},
{
"cell_type": "markdown",
"id": "ccaba8325efa1177",
"metadata": {},
"source": [
"### U-Net\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"U-Net model gradually denoises latent image representation guided by text encoder hidden state.\n",
"\n",
"U-Net model has three inputs:\n",
"\n",
"* `sample` - latent image sample from previous step. Generation process has not been started yet, so you will use random noise.\n",
"* `timestep` - current scheduler step.\n",
"* `encoder_hidden_state` - hidden state of text encoder.\n",
"\n",
"Model predicts the `sample` state for the next step.\n",
"\n",
"Generally, U-Net model conversion process remain the same like in Stable Diffusion v1, expect small changes in input sample size. Our model was pretrained to generate images with resolution 768x768, initial latent sample size for this case is 96x96. Besides that, for different use cases like inpainting and depth to image generation model also can accept additional image information: depth map or mask as channel-wise concatenation with initial latent sample. For converting U-Net model for such use cases required to modify number of input channels."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "dbf8ba161bad414",
"metadata": {
"ExecuteTime": {
"end_time": "2024-02-13T13:29:44.429898Z",
"start_time": "2024-02-13T13:29:20.606525Z"
}
},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"UNET_OV_PATH = sd2_1_model_dir / \"unet.xml\"\n",
"\n",
"\n",
"def convert_unet(\n",
" unet: torch.nn.Module,\n",
" ir_path: Path,\n",
" num_channels: int = 4,\n",
" width: int = 64,\n",
" height: int = 64,\n",
"):\n",
" \"\"\"\n",
" Convert Unet model to IR format.\n",
" Function accepts pipeline, prepares example inputs for conversion\n",
" Parameters:\n",
" unet (torch.nn.Module): UNet PyTorch model\n",
" ir_path (Path): File for storing model\n",
" num_channels (int, optional, 4): number of input channels\n",
" width (int, optional, 64): input width\n",
" height (int, optional, 64): input height\n",
" Returns:\n",
" None\n",
" \"\"\"\n",
" dtype_mapping = {torch.float32: ov.Type.f32, torch.float64: ov.Type.f64}\n",
" if not ir_path.exists():\n",
" # prepare inputs\n",
" encoder_hidden_state = torch.ones((2, 77, 1024))\n",
" latents_shape = (2, num_channels, width, height)\n",
" latents = torch.randn(latents_shape)\n",
" t = torch.from_numpy(np.array(1, dtype=np.float32))\n",
" unet.eval()\n",
" dummy_inputs = (latents, t, encoder_hidden_state)\n",
" input_info = []\n",
" for input_tensor in dummy_inputs:\n",
" shape = ov.PartialShape(tuple(input_tensor.shape))\n",
" element_type = dtype_mapping[input_tensor.dtype]\n",
" input_info.append((shape, element_type))\n",
"\n",
" with torch.no_grad():\n",
" ov_model = ov.convert_model(unet, example_input=dummy_inputs, input=input_info)\n",
" ov.save_model(ov_model, ir_path)\n",
" del ov_model\n",
" cleanup_torchscript_cache()\n",
" print(\"U-Net successfully converted to IR\")\n",
"\n",
"\n",
"if not UNET_OV_PATH.exists():\n",
" convert_unet(unet, UNET_OV_PATH, width=96, height=96)\n",
" del unet\n",
" gc.collect()\n",
"else:\n",
" del unet\n",
"gc.collect();"
]
},
{
"cell_type": "markdown",
"id": "e52e6090fd6a87b3",
"metadata": {},
"source": [
"### VAE\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"The VAE model has two parts, an encoder and a decoder. The encoder is used to convert the image into a low dimensional latent representation, which will serve as the input to the U-Net model. The decoder, conversely, transforms the latent representation back into an image.\n",
"\n",
"During latent diffusion training, the encoder is used to get the latent representations (latents) of the images for the forward diffusion process, which applies more and more noise at each step. During inference, the denoised latents generated by the reverse diffusion process are converted back into images using the VAE decoder. When you run inference for Text-to-Image, there is no initial image as a starting point. You can skip this step and directly generate initial random noise.\n",
"\n",
"When running Text-to-Image pipeline, we will see that we **only need the VAE decoder**, but preserve VAE encoder conversion, it will be useful in next chapter of our tutorial. \n",
"\n",
"Note: This process will take a few minutes and use significant amount of RAM (recommended at least 32GB)."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "442461d2f19e8c99",
"metadata": {
"ExecuteTime": {
"end_time": "2024-02-13T13:30:16.030912Z",
"start_time": "2024-02-13T13:29:44.431075Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"VAE encoder will be loaded from sd2.1/vae_encoder.xml\n",
"VAE decoder will be loaded from sd2.1/vae_decoder.xml\n"
]
}
],
"source": [
"VAE_ENCODER_OV_PATH = sd2_1_model_dir / \"vae_encoder.xml\"\n",
"\n",
"\n",
"def convert_vae_encoder(vae: torch.nn.Module, ir_path: Path, width: int = 512, height: int = 512):\n",
" \"\"\"\n",
" Convert VAE model to IR format.\n",
" VAE model, creates wrapper class for export only necessary for inference part,\n",
" prepares example inputs for onversion\n",
" Parameters:\n",
" vae (torch.nn.Module): VAE PyTorch model\n",
" ir_path (Path): File for storing model\n",
" width (int, optional, 512): input width\n",
" height (int, optional, 512): input height\n",
" Returns:\n",
" None\n",
" \"\"\"\n",
"\n",
" class VAEEncoderWrapper(torch.nn.Module):\n",
" def __init__(self, vae):\n",
" super().__init__()\n",
" self.vae = vae\n",
"\n",
" def forward(self, image):\n",
" return self.vae.encode(x=image)[\"latent_dist\"].sample()\n",
"\n",
" if not ir_path.exists():\n",
" vae_encoder = VAEEncoderWrapper(vae)\n",
" vae_encoder.eval()\n",
" image = torch.zeros((1, 3, width, height))\n",
" with torch.no_grad():\n",
" ov_model = ov.convert_model(vae_encoder, example_input=image, input=([1, 3, width, height],))\n",
" ov.save_model(ov_model, ir_path)\n",
" del ov_model\n",
" cleanup_torchscript_cache()\n",
" print(\"VAE encoder successfully converted to IR\")\n",
"\n",
"\n",
"def convert_vae_decoder(vae: torch.nn.Module, ir_path: Path, width: int = 64, height: int = 64):\n",
" \"\"\"\n",
" Convert VAE decoder model to IR format.\n",
" Function accepts VAE model, creates wrapper class for export only necessary for inference part,\n",
" prepares example inputs for conversion\n",
" Parameters:\n",
" vae (torch.nn.Module): VAE model\n",
" ir_path (Path): File for storing model\n",
" width (int, optional, 64): input width\n",
" height (int, optional, 64): input height\n",
" Returns:\n",
" None\n",
" \"\"\"\n",
"\n",
" class VAEDecoderWrapper(torch.nn.Module):\n",
" def __init__(self, vae):\n",
" super().__init__()\n",
" self.vae = vae\n",
"\n",
" def forward(self, latents):\n",
" return self.vae.decode(latents)\n",
"\n",
" if not ir_path.exists():\n",
" vae_decoder = VAEDecoderWrapper(vae)\n",
" latents = torch.zeros((1, 4, width, height))\n",
"\n",
" vae_decoder.eval()\n",
" with torch.no_grad():\n",
" ov_model = ov.convert_model(vae_decoder, example_input=latents, input=([1, 4, width, height],))\n",
" ov.save_model(ov_model, ir_path)\n",
" del ov_model\n",
" cleanup_torchscript_cache()\n",
" print(\"VAE decoder successfully converted to IR\")\n",
"\n",
"\n",
"if not VAE_ENCODER_OV_PATH.exists():\n",
" convert_vae_encoder(vae, VAE_ENCODER_OV_PATH, 768, 768)\n",
"else:\n",
" print(f\"VAE encoder will be loaded from {VAE_ENCODER_OV_PATH}\")\n",
"\n",
"VAE_DECODER_OV_PATH = sd2_1_model_dir / \"vae_decoder.xml\"\n",
"\n",
"if not VAE_DECODER_OV_PATH.exists():\n",
" convert_vae_decoder(vae, VAE_DECODER_OV_PATH, 96, 96)\n",
"else:\n",
" print(f\"VAE decoder will be loaded from {VAE_DECODER_OV_PATH}\")\n",
"\n",
"del vae\n",
"gc.collect();"
]
},
{
"cell_type": "markdown",
"id": "2009916bbc6c3ec8",
"metadata": {},
"source": [
"### Prepare Inference Pipeline\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Putting it all together, let us now take a closer look at how the model works in inference by illustrating the logical flow.\n",
"\n",
"\n",
"\n",
"The stable diffusion model takes both a latent seed and a text prompt as input. The latent seed is then used to generate random latent image representations of size $96 \\times 96$ where as the text prompt is transformed to text embeddings of size $77 \\times 1024$ via OpenCLIP's text encoder.\n",
"\n",
"Next, the U-Net iteratively *denoises* the random latent image representations while being conditioned on the text embeddings. The output of the U-Net, being the noise residual, is used to compute a denoised latent image representation via a scheduler algorithm. Many different scheduler algorithms can be used for this computation, each having its pros and cons. For Stable Diffusion, it is recommended to use one of:\n",
"\n",
"- [PNDM scheduler](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_pndm.py)\n",
"- [DDIM scheduler](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddim.py)\n",
"- [K-LMS scheduler](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_lms_discrete.py)\n",
"\n",
"Theory on how the scheduler algorithm function works is out of scope for this notebook, but in short, you should remember that they compute the predicted denoised image representation from the previous noise representation and the predicted noise residual.\n",
"For more information, it is recommended to look into [Elucidating the Design Space of Diffusion-Based Generative Models](https://arxiv.org/abs/2206.00364).\n",
"\n",
"\n",
"The chart above looks very similar to Stable Diffusion V1 from [notebook](../stable-diffusion-text-to-image/stable-diffusion-text-to-image.ipynb), but there is some small difference in details:\n",
"\n",
"* Changed input resolution for U-Net model.\n",
"* Changed text encoder and as the result size of its hidden state embeddings.\n",
"* Additionally, to improve image generation quality authors introduced negative prompting. Technically, positive prompt steers the diffusion toward the images associated with it, while negative prompt steers the diffusion away from it.In other words, negative prompt declares undesired concepts for generation image, e.g. if we want to have colorful and bright image, gray scale image will be result which we want to avoid, in this case gray scale can be treated as negative prompt. The positive and negative prompt are in equal footing. You can always use one with or without the other. More explanation of how it works can be found in this [article](https://stable-diffusion-art.com/how-negative-prompt-work/). "
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "ba60aaf6be593f39",
"metadata": {
"ExecuteTime": {
"end_time": "2024-02-13T13:30:16.082794Z",
"start_time": "2024-02-13T13:30:16.032084Z"
}
},
"outputs": [],
"source": [
"import inspect\n",
"from typing import List, Optional, Union, Dict\n",
"\n",
"import PIL\n",
"import cv2\n",
"import torch\n",
"\n",
"from transformers import CLIPTokenizer\n",
"from diffusers import DiffusionPipeline\n",
"from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler\n",
"\n",
"\n",
"def scale_fit_to_window(dst_width: int, dst_height: int, image_width: int, image_height: int):\n",
" \"\"\"\n",
" Preprocessing helper function for calculating image size for resize with peserving original aspect ratio\n",
" and fitting image to specific window size\n",
"\n",
" Parameters:\n",
" dst_width (int): destination window width\n",
" dst_height (int): destination window height\n",
" image_width (int): source image width\n",
" image_height (int): source image height\n",
" Returns:\n",
" result_width (int): calculated width for resize\n",
" result_height (int): calculated height for resize\n",
" \"\"\"\n",
" im_scale = min(dst_height / image_height, dst_width / image_width)\n",
" return int(im_scale * image_width), int(im_scale * image_height)\n",
"\n",
"\n",
"def preprocess(image: PIL.Image.Image):\n",
" \"\"\"\n",
" Image preprocessing function. Takes image in PIL.Image format, resizes it to keep aspect ration and fits to model input window 512x512,\n",
" then converts it to np.ndarray and adds padding with zeros on right or bottom side of image (depends from aspect ratio), after that\n",
" converts data to float32 data type and change range of values from [0, 255] to [-1, 1], finally, converts data layout from planar NHWC to NCHW.\n",
" The function returns preprocessed input tensor and padding size, which can be used in postprocessing.\n",
"\n",
" Parameters:\n",
" image (PIL.Image.Image): input image\n",
" Returns:\n",
" image (np.ndarray): preprocessed image tensor\n",
" meta (Dict): dictionary with preprocessing metadata info\n",
" \"\"\"\n",
" src_width, src_height = image.size\n",
" dst_width, dst_height = scale_fit_to_window(512, 512, src_width, src_height)\n",
" image = np.array(image.resize((dst_width, dst_height), resample=PIL.Image.Resampling.LANCZOS))[None, :]\n",
" pad_width = 512 - dst_width\n",
" pad_height = 512 - dst_height\n",
" pad = ((0, 0), (0, pad_height), (0, pad_width), (0, 0))\n",
" image = np.pad(image, pad, mode=\"constant\")\n",
" image = image.astype(np.float32) / 255.0\n",
" image = 2.0 * image - 1.0\n",
" image = image.transpose(0, 3, 1, 2)\n",
" return image, {\"padding\": pad, \"src_width\": src_width, \"src_height\": src_height}\n",
"\n",
"\n",
"class OVStableDiffusionPipeline(DiffusionPipeline):\n",
" def __init__(\n",
" self,\n",
" vae_decoder: ov.Model,\n",
" text_encoder: ov.Model,\n",
" tokenizer: CLIPTokenizer,\n",
" unet: ov.Model,\n",
" scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],\n",
" vae_encoder: ov.Model = None,\n",
" ):\n",
" \"\"\"\n",
" Pipeline for text-to-image generation using Stable Diffusion.\n",
" Parameters:\n",
" vae_decoder (Model):\n",
" Variational Auto-Encoder (VAE) Model to decode images to and from latent representations.\n",
" text_encoder (Model):\n",
" Frozen text-encoder. Stable Diffusion uses the text portion of\n",
" [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically\n",
" the clip-vit-large-patch14(https://huggingface.co/openai/clip-vit-large-patch14) variant.\n",
" tokenizer (CLIPTokenizer):\n",
" Tokenizer of class CLIPTokenizer(https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).\n",
" unet (Model): Conditional U-Net architecture to denoise the encoded image latents.\n",
" vae_encoder (Model):\n",
" Variational Auto-Encoder (VAE) Model to encode images to latent representation.\n",
" scheduler (SchedulerMixin):\n",
" A scheduler to be used in combination with unet to denoise the encoded image latents. Can be one of\n",
" DDIMScheduler, LMSDiscreteScheduler, or PNDMScheduler.\n",
" \"\"\"\n",
" super().__init__()\n",
" self.scheduler = scheduler\n",
" self.vae_decoder = vae_decoder\n",
" self.vae_encoder = vae_encoder\n",
" self.text_encoder = text_encoder\n",
" self.unet = unet\n",
" self.register_to_config(unet=unet)\n",
" self._text_encoder_output = text_encoder.output(0)\n",
" self._unet_output = unet.output(0)\n",
" self._vae_d_output = vae_decoder.output(0)\n",
" self._vae_e_output = vae_encoder.output(0) if vae_encoder is not None else None\n",
" self.height = self.unet.input(0).shape[2] * 8\n",
" self.width = self.unet.input(0).shape[3] * 8\n",
" self.tokenizer = tokenizer\n",
"\n",
" def __call__(\n",
" self,\n",
" prompt: Union[str, List[str]],\n",
" image: PIL.Image.Image = None,\n",
" negative_prompt: Union[str, List[str]] = None,\n",
" num_inference_steps: Optional[int] = 50,\n",
" guidance_scale: Optional[float] = 7.5,\n",
" eta: Optional[float] = 0.0,\n",
" output_type: Optional[str] = \"pil\",\n",
" seed: Optional[int] = None,\n",
" strength: float = 1.0,\n",
" ):\n",
" \"\"\"\n",
" Function invoked when calling the pipeline for generation.\n",
" Parameters:\n",
" prompt (str or List[str]):\n",
" The prompt or prompts to guide the image generation.\n",
" image (PIL.Image.Image, *optional*, None):\n",
" Intinal image for generation.\n",
" negative_prompt (str or List[str]):\n",
" The negative prompt or prompts to guide the image generation.\n",
" num_inference_steps (int, *optional*, defaults to 50):\n",
" The number of denoising steps. More denoising steps usually lead to a higher quality image at the\n",
" expense of slower inference.\n",
" guidance_scale (float, *optional*, defaults to 7.5):\n",
" Guidance scale as defined in Classifier-Free Diffusion Guidance(https://arxiv.org/abs/2207.12598).\n",
" guidance_scale is defined as `w` of equation 2.\n",
" Higher guidance scale encourages to generate images that are closely linked to the text prompt,\n",
" usually at the expense of lower image quality.\n",
" eta (float, *optional*, defaults to 0.0):\n",
" Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to\n",
" [DDIMScheduler], will be ignored for others.\n",
" output_type (`str`, *optional*, defaults to \"pil\"):\n",
" The output format of the generate image. Choose between\n",
" [PIL](https://pillow.readthedocs.io/en/stable/): PIL.Image.Image or np.array.\n",
" seed (int, *optional*, None):\n",
" Seed for random generator state initialization.\n",
" strength (int, *optional*, 1.0):\n",
" strength between initial image and generated in Image-to-Image pipeline, do not used in Text-to-Image\n",
" Returns:\n",
" Dictionary with keys:\n",
" sample - the last generated image PIL.Image.Image or np.array\n",
" \"\"\"\n",
" if seed is not None:\n",
" np.random.seed(seed)\n",
" # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)\n",
" # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`\n",
" # corresponds to doing no classifier free guidance.\n",
" do_classifier_free_guidance = guidance_scale > 1.0\n",
" # get prompt text embeddings\n",
" text_embeddings = self._encode_prompt(\n",
" prompt,\n",
" do_classifier_free_guidance=do_classifier_free_guidance,\n",
" negative_prompt=negative_prompt,\n",
" )\n",
" # set timesteps\n",
" accepts_offset = \"offset\" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())\n",
" extra_set_kwargs = {}\n",
" if accepts_offset:\n",
" extra_set_kwargs[\"offset\"] = 1\n",
"\n",
" self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)\n",
" timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength)\n",
" latent_timestep = timesteps[:1]\n",
"\n",
" # get the initial random noise unless the user supplied it\n",
" latents, meta = self.prepare_latents(image, latent_timestep)\n",
"\n",
" # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature\n",
" # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.\n",
" # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502\n",
" # and should be between [0, 1]\n",
" accepts_eta = \"eta\" in set(inspect.signature(self.scheduler.step).parameters.keys())\n",
" extra_step_kwargs = {}\n",
" if accepts_eta:\n",
" extra_step_kwargs[\"eta\"] = eta\n",
"\n",
" for t in self.progress_bar(timesteps):\n",
" # expand the latents if we are doing classifier free guidance\n",
" latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents\n",
" latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)\n",
"\n",
" # predict the noise residual\n",
" noise_pred = self.unet([latent_model_input, np.array(t, dtype=np.float32), text_embeddings])[self._unet_output]\n",
" # perform guidance\n",
" if do_classifier_free_guidance:\n",
" noise_pred_uncond, noise_pred_text = noise_pred[0], noise_pred[1]\n",
" noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)\n",
"\n",
" # compute the previous noisy sample x_t -> x_t-1\n",
" latents = self.scheduler.step(torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs)[\"prev_sample\"].numpy()\n",
" # scale and decode the image latents with vae\n",
" image = self.vae_decoder(latents * (1 / 0.18215))[self._vae_d_output]\n",
"\n",
" image = self.postprocess_image(image, meta, output_type)\n",
" return {\"sample\": image}\n",
"\n",
" def _encode_prompt(\n",
" self,\n",
" prompt: Union[str, List[str]],\n",
" num_images_per_prompt: int = 1,\n",
" do_classifier_free_guidance: bool = True,\n",
" negative_prompt: Union[str, List[str]] = None,\n",
" ):\n",
" \"\"\"\n",
" Encodes the prompt into text encoder hidden states.\n",
"\n",
" Parameters:\n",
" prompt (str or list(str)): prompt to be encoded\n",
" num_images_per_prompt (int): number of images that should be generated per prompt\n",
" do_classifier_free_guidance (bool): whether to use classifier free guidance or not\n",
" negative_prompt (str or list(str)): negative prompt to be encoded\n",
" Returns:\n",
" text_embeddings (np.ndarray): text encoder hidden states\n",
" \"\"\"\n",
" batch_size = len(prompt) if isinstance(prompt, list) else 1\n",
"\n",
" # tokenize input prompts\n",
" text_inputs = self.tokenizer(\n",
" prompt,\n",
" padding=\"max_length\",\n",
" max_length=self.tokenizer.model_max_length,\n",
" truncation=True,\n",
" return_tensors=\"np\",\n",
" )\n",
" text_input_ids = text_inputs.input_ids\n",
"\n",
" text_embeddings = self.text_encoder(text_input_ids)[self._text_encoder_output]\n",
"\n",
" # duplicate text embeddings for each generation per prompt\n",
" if num_images_per_prompt != 1:\n",
" bs_embed, seq_len, _ = text_embeddings.shape\n",
" text_embeddings = np.tile(text_embeddings, (1, num_images_per_prompt, 1))\n",
" text_embeddings = np.reshape(text_embeddings, (bs_embed * num_images_per_prompt, seq_len, -1))\n",
"\n",
" # get unconditional embeddings for classifier free guidance\n",
" if do_classifier_free_guidance:\n",
" uncond_tokens: List[str]\n",
" max_length = text_input_ids.shape[-1]\n",
" if negative_prompt is None:\n",
" uncond_tokens = [\"\"] * batch_size\n",
" elif isinstance(negative_prompt, str):\n",
" uncond_tokens = [negative_prompt]\n",
" else:\n",
" uncond_tokens = negative_prompt\n",
" uncond_input = self.tokenizer(\n",
" uncond_tokens,\n",
" padding=\"max_length\",\n",
" max_length=max_length,\n",
" truncation=True,\n",
" return_tensors=\"np\",\n",
" )\n",
"\n",
" uncond_embeddings = self.text_encoder(uncond_input.input_ids)[self._text_encoder_output]\n",
"\n",
" # duplicate unconditional embeddings for each generation per prompt, using mps friendly method\n",
" seq_len = uncond_embeddings.shape[1]\n",
" uncond_embeddings = np.tile(uncond_embeddings, (1, num_images_per_prompt, 1))\n",
" uncond_embeddings = np.reshape(uncond_embeddings, (batch_size * num_images_per_prompt, seq_len, -1))\n",
"\n",
" # For classifier free guidance, we need to do two forward passes.\n",
" # Here we concatenate the unconditional and text embeddings into a single batch\n",
" # to avoid doing two forward passes\n",
" text_embeddings = np.concatenate([uncond_embeddings, text_embeddings])\n",
"\n",
" return text_embeddings\n",
"\n",
" def prepare_latents(self, image: PIL.Image.Image = None, latent_timestep: torch.Tensor = None):\n",
" \"\"\"\n",
" Function for getting initial latents for starting generation\n",
"\n",
" Parameters:\n",
" image (PIL.Image.Image, *optional*, None):\n",
" Input image for generation, if not provided randon noise will be used as starting point\n",
" latent_timestep (torch.Tensor, *optional*, None):\n",
" Predicted by scheduler initial step for image generation, required for latent image mixing with nosie\n",
" Returns:\n",
" latents (np.ndarray):\n",
" Image encoded in latent space\n",
" \"\"\"\n",
" latents_shape = (1, 4, self.height // 8, self.width // 8)\n",
" noise = np.random.randn(*latents_shape).astype(np.float32)\n",
" if image is None:\n",
" # if we use LMSDiscreteScheduler, let's make sure latents are mulitplied by sigmas\n",
" if isinstance(self.scheduler, LMSDiscreteScheduler):\n",
" noise = noise * self.scheduler.sigmas[0].numpy()\n",
" return noise, {}\n",
" input_image, meta = preprocess(image)\n",
" latents = self.vae_encoder(input_image)[self._vae_e_output]\n",
" latents = latents * 0.18215\n",
" latents = self.scheduler.add_noise(torch.from_numpy(latents), torch.from_numpy(noise), latent_timestep).numpy()\n",
" return latents, meta\n",
"\n",
" def postprocess_image(self, image: np.ndarray, meta: Dict, output_type: str = \"pil\"):\n",
" \"\"\"\n",
" Postprocessing for decoded image. Takes generated image decoded by VAE decoder, unpad it to initila image size (if required),\n",
" normalize and convert to [0, 255] pixels range. Optionally, convertes it from np.ndarray to PIL.Image format\n",
"\n",
" Parameters:\n",
" image (np.ndarray):\n",
" Generated image\n",
" meta (Dict):\n",
" Metadata obtained on latents preparing step, can be empty\n",
" output_type (str, *optional*, pil):\n",
" Output format for result, can be pil or numpy\n",
" Returns:\n",
" image (List of np.ndarray or PIL.Image.Image):\n",
" Postprocessed images\n",
" \"\"\"\n",
" if \"padding\" in meta:\n",
" pad = meta[\"padding\"]\n",
" (_, end_h), (_, end_w) = pad[1:3]\n",
" h, w = image.shape[2:]\n",
" unpad_h = h - end_h\n",
" unpad_w = w - end_w\n",
" image = image[:, :, :unpad_h, :unpad_w]\n",
" image = np.clip(image / 2 + 0.5, 0, 1)\n",
" image = np.transpose(image, (0, 2, 3, 1))\n",
" # 9. Convert to PIL\n",
" if output_type == \"pil\":\n",
" image = self.numpy_to_pil(image)\n",
" if \"src_height\" in meta:\n",
" orig_height, orig_width = meta[\"src_height\"], meta[\"src_width\"]\n",
" image = [img.resize((orig_width, orig_height), PIL.Image.Resampling.LANCZOS) for img in image]\n",
" else:\n",
" if \"src_height\" in meta:\n",
" orig_height, orig_width = meta[\"src_height\"], meta[\"src_width\"]\n",
" image = [cv2.resize(img, (orig_width, orig_width)) for img in image]\n",
" return image\n",
"\n",
" def get_timesteps(self, num_inference_steps: int, strength: float):\n",
" \"\"\"\n",
" Helper function for getting scheduler timesteps for generation\n",
" In case of image-to-image generation, it updates number of steps according to strength\n",
"\n",
" Parameters:\n",
" num_inference_steps (int):\n",
" number of inference steps for generation\n",
" strength (float):\n",
" value between 0.0 and 1.0, that controls the amount of noise that is added to the input image.\n",
" Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input.\n",
" \"\"\"\n",
" # get the original timestep using init_timestep\n",
" init_timestep = min(int(num_inference_steps * strength), num_inference_steps)\n",
"\n",
" t_start = max(num_inference_steps - init_timestep, 0)\n",
" timesteps = self.scheduler.timesteps[t_start:]\n",
"\n",
" return timesteps, num_inference_steps - t_start"
]
},
{
"cell_type": "markdown",
"id": "8ae7b18e9f8c995a",
"metadata": {},
"source": [
"### Configure Inference Pipeline\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"First, you should create instances of OpenVINO Model."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "635200a7b5d84bf3",
"metadata": {
"ExecuteTime": {
"end_time": "2024-02-13T13:30:16.325848Z",
"start_time": "2024-02-13T13:30:16.083685Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "68783cc794cb49a1b5ca674b689805d1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Dropdown(description='Device:', index=4, options=('CPU', 'GPU.0', 'GPU.1', 'GPU.2', 'AUTO'), value='AUTO')"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import ipywidgets as widgets\n",
"\n",
"core = ov.Core()\n",
"device = widgets.Dropdown(\n",
" options=core.available_devices + [\"AUTO\"],\n",
" value=\"AUTO\",\n",
" description=\"Device:\",\n",
" disabled=False,\n",
")\n",
"\n",
"device"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "ab277c23095fa5a7",
"metadata": {
"ExecuteTime": {
"end_time": "2024-02-13T13:30:19.234103Z",
"start_time": "2024-02-13T13:30:16.326662Z"
}
},
"outputs": [],
"source": [
"ov_config = {\"INFERENCE_PRECISION_HINT\": \"f32\"} if device.value != \"CPU\" else {}\n",
"\n",
"text_enc = core.compile_model(TEXT_ENCODER_OV_PATH, device.value)\n",
"unet_model = core.compile_model(UNET_OV_PATH, device.value)\n",
"vae_decoder = core.compile_model(VAE_DECODER_OV_PATH, device.value, ov_config)\n",
"vae_encoder = core.compile_model(VAE_ENCODER_OV_PATH, device.value, ov_config)"
]
},
{
"cell_type": "markdown",
"id": "e0cdcdb5a1c10f1a",
"metadata": {},
"source": [
"Model tokenizer and scheduler are also important parts of the pipeline. Let us define them and put all components together."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "25897d22da482d91",
"metadata": {
"ExecuteTime": {
"end_time": "2024-02-13T13:30:19.432106Z",
"start_time": "2024-02-13T13:30:19.236629Z"
}
},
"outputs": [],
"source": [
"from transformers import CLIPTokenizer\n",
"\n",
"scheduler = DDIMScheduler.from_config(conf) # DDIMScheduler is used because UNet quantization produces better results with it\n",
"tokenizer = CLIPTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
"\n",
"ov_pipe = OVStableDiffusionPipeline(\n",
" tokenizer=tokenizer,\n",
" text_encoder=text_enc,\n",
" unet=unet_model,\n",
" vae_encoder=vae_encoder,\n",
" vae_decoder=vae_decoder,\n",
" scheduler=scheduler,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "5a5f91dfea77c91",
"metadata": {},
"source": [
"## Quantization\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"[NNCF](https://github.com/openvinotoolkit/nncf/) enables post-training quantization by adding quantization layers into model graph and then using a subset of the training dataset to initialize the parameters of these additional quantization layers. Quantized operations are executed in `INT8` instead of `FP32`/`FP16` making model inference faster.\n",
"\n",
"According to `Stable Diffusion v2` structure, the UNet model takes up significant portion of the overall pipeline execution time. Now we will show you how to optimize the UNet part using [NNCF](https://github.com/openvinotoolkit/nncf/) to reduce computation cost and speed up the pipeline. Quantizing the rest of the pipeline does not significantly improve inference performance but can lead to a substantial degradation of accuracy.\n",
"\n",
"For this model we apply quantization in hybrid mode which means that we quantize: (1) weights of MatMul and Embedding layers and (2) activations of other layers. The steps are the following:\n",
"\n",
"1. Create a calibration dataset for quantization.\n",
"2. Collect operations with weights.\n",
"3. Run `nncf.compress_model()` to compress only the model weights.\n",
"4. Run `nncf.quantize()` on the compressed model with weighted operations ignored by providing `ignored_scope` parameter.\n",
"5. Save the `INT8` model using `openvino.save_model()` function.\n",
"\n",
"Please select below whether you would like to run quantization to improve model inference speed.\n",
"\n",
"> **NOTE**: Quantization is time and memory consuming operation. Running quantization code below may take some time."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "d5850cecdf32cb56",
"metadata": {
"ExecuteTime": {
"end_time": "2024-02-13T13:30:19.437075Z",
"start_time": "2024-02-13T13:30:19.433071Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a254008cba184c21844c547636b96931",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Checkbox(value=True, description='Quantization')"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"to_quantize = widgets.Checkbox(\n",
" value=True,\n",
" description=\"Quantization\",\n",
" disabled=False,\n",
")\n",
"\n",
"to_quantize"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "7f9846bbc13089cd",
"metadata": {
"ExecuteTime": {
"end_time": "2024-02-13T13:30:19.441469Z",
"start_time": "2024-02-13T13:30:19.437809Z"
}
},
"outputs": [],
"source": [
"# Fetch `skip_kernel_extension` module\n",
"import requests\n",
"\n",
"r = requests.get(\n",
" url=\"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/skip_kernel_extension.py\",\n",
")\n",
"open(\"skip_kernel_extension.py\", \"w\").write(r.text)\n",
"\n",
"int8_ov_pipe = None\n",
"\n",
"%load_ext skip_kernel_extension"
]
},
{
"cell_type": "markdown",
"id": "75734990a15dcf4b",
"metadata": {},
"source": [
"### Prepare calibration dataset\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"We use a portion of [conceptual_captions](https://huggingface.co/datasets/conceptual_captions) dataset from Hugging Face as calibration data.\n",
"To collect intermediate model inputs for calibration we should customize `CompiledModel`."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "e277c7ebebde9973",
"metadata": {
"ExecuteTime": {
"end_time": "2024-02-13T13:30:20.034818Z",
"start_time": "2024-02-13T13:30:19.442211Z"
}
},
"outputs": [],
"source": [
"%%skip not $to_quantize.value\n",
"\n",
"import datasets\n",
"import numpy as np\n",
"from tqdm.notebook import tqdm\n",
"from typing import Any, Dict, List\n",
"\n",
"\n",
"def disable_progress_bar(pipeline, disable=True):\n",
" if not hasattr(pipeline, \"_progress_bar_config\"):\n",
" pipeline._progress_bar_config = {'disable': disable}\n",
" else:\n",
" pipeline._progress_bar_config['disable'] = disable\n",
"\n",
"\n",
"class CompiledModelDecorator(ov.CompiledModel):\n",
" def __init__(self, compiled_model: ov.CompiledModel, data_cache: List[Any] = None, keep_prob: float = 0.5):\n",
" super().__init__(compiled_model)\n",
" self.data_cache = data_cache if data_cache is not None else []\n",
" self.keep_prob = keep_prob\n",
"\n",
" def __call__(self, *args, **kwargs):\n",
" if np.random.rand() <= self.keep_prob:\n",
" self.data_cache.append(*args)\n",
" return super().__call__(*args, **kwargs)\n",
"\n",
"\n",
"def collect_calibration_data(ov_pipe, calibration_dataset_size: int, num_inference_steps: int) -> List[Dict]:\n",
" original_unet = ov_pipe.unet\n",
" calibration_data = []\n",
" ov_pipe.unet = CompiledModelDecorator(original_unet, calibration_data, keep_prob=0.7)\n",
" disable_progress_bar(ov_pipe)\n",
"\n",
" dataset = datasets.load_dataset(\"conceptual_captions\", split=\"train\").shuffle(seed=42)\n",
"\n",
" # Run inference for data collection\n",
" pbar = tqdm(total=calibration_dataset_size)\n",
" for batch in dataset:\n",
" prompt = batch[\"caption\"]\n",
" if len(prompt) > ov_pipe.tokenizer.model_max_length:\n",
" continue\n",
" ov_pipe(prompt, num_inference_steps=num_inference_steps, seed=1)\n",
" pbar.update(len(calibration_data) - pbar.n)\n",
" if pbar.n >= calibration_dataset_size:\n",
" break\n",
"\n",
" disable_progress_bar(ov_pipe, disable=False)\n",
" ov_pipe.unet = original_unet\n",
" return calibration_data"
]
},
{
"cell_type": "markdown",
"id": "1a5d9c1dcbebb1a8",
"metadata": {},
"source": [
"### Run Hybrid Model Quantization\n",
"[back to top ⬆️](#Table-of-contents:)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "586920796dacd8db",
"metadata": {
"ExecuteTime": {
"end_time": "2024-02-13T14:31:36.656460Z",
"start_time": "2024-02-13T13:32:03.144519Z"
},
"test_replace": {
"calibration_dataset_size = 300": "calibration_dataset_size = 10",
"num_inference_steps=50)": "num_inference_steps=10)"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:nncf:NNCF initialized successfully. Supported frameworks detected: torch, onnx, openvino\n"
]
}
],
"source": [
"%%skip not $to_quantize.value\n",
"\n",
"from collections import deque\n",
"from transformers import set_seed\n",
"import nncf\n",
"\n",
"def get_operation_const_op(operation, const_port_id: int):\n",
" node = operation.input_value(const_port_id).get_node()\n",
" queue = deque([node])\n",
" constant_node = None\n",
" allowed_propagation_types_list = [\"Convert\", \"FakeQuantize\", \"Reshape\"]\n",
"\n",
" while len(queue) != 0:\n",
" curr_node = queue.popleft()\n",
" if curr_node.get_type_name() == \"Constant\":\n",
" constant_node = curr_node\n",
" break\n",
" if len(curr_node.inputs()) == 0:\n",
" break\n",
" if curr_node.get_type_name() in allowed_propagation_types_list:\n",
" queue.append(curr_node.input_value(0).get_node())\n",
"\n",
" return constant_node\n",
"\n",
"\n",
"def is_embedding(node) -> bool:\n",
" allowed_types_list = [\"f16\", \"f32\", \"f64\"]\n",
" const_port_id = 0\n",
" input_tensor = node.input_value(const_port_id)\n",
" if input_tensor.get_element_type().get_type_name() in allowed_types_list:\n",
" const_node = get_operation_const_op(node, const_port_id)\n",
" if const_node is not None:\n",
" return True\n",
"\n",
" return False\n",
"\n",
"\n",
"def collect_ops_with_weights(model):\n",
" ops_with_weights = []\n",
" for op in model.get_ops():\n",
" if op.get_type_name() == \"MatMul\":\n",
" constant_node_0 = get_operation_const_op(op, const_port_id=0)\n",
" constant_node_1 = get_operation_const_op(op, const_port_id=1)\n",
" if constant_node_0 or constant_node_1:\n",
" ops_with_weights.append(op.get_friendly_name())\n",
" if op.get_type_name() == \"Gather\" and is_embedding(op):\n",
" ops_with_weights.append(op.get_friendly_name())\n",
"\n",
" return ops_with_weights\n",
"\n",
"UNET_INT8_OV_PATH = sd2_1_model_dir / 'unet_optimized.xml'\n",
"if not UNET_INT8_OV_PATH.exists():\n",
" calibration_dataset_size = 300\n",
" set_seed(1)\n",
" unet_calibration_data = collect_calibration_data(ov_pipe,\n",
" calibration_dataset_size=calibration_dataset_size,\n",
" num_inference_steps=50)\n",
"\n",
" unet = core.read_model(UNET_OV_PATH)\n",
" \n",
" # Collect operations which weights will be compressed\n",
" unet_ignored_scope = collect_ops_with_weights(unet)\n",
" \n",
" # Compress model weights\n",
" compressed_unet = nncf.compress_weights(unet, ignored_scope=nncf.IgnoredScope(types=['Convolution']))\n",
" \n",
" # Quantize both weights and activations of Convolution layers\n",
" quantized_unet = nncf.quantize(\n",
" model=compressed_unet,\n",
" calibration_dataset=nncf.Dataset(unet_calibration_data),\n",
" subset_size=calibration_dataset_size,\n",
" model_type=nncf.ModelType.TRANSFORMER,\n",
" ignored_scope=nncf.IgnoredScope(names=unet_ignored_scope),\n",
" advanced_parameters=nncf.AdvancedQuantizationParameters(smooth_quant_alpha=-1)\n",
" )\n",
" \n",
" ov.save_model(quantized_unet, UNET_INT8_OV_PATH)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "b5d398a5a7b87506",
"metadata": {
"ExecuteTime": {
"end_time": "2024-02-13T14:32:27.192039Z",
"start_time": "2024-02-13T14:32:23.567293Z"
}
},
"outputs": [],
"source": [
"%%skip not $to_quantize.value\n",
"\n",
"int8_unet_model = core.compile_model(UNET_INT8_OV_PATH, device.value)\n",
"int8_ov_pipe = OVStableDiffusionPipeline(\n",
" tokenizer=tokenizer,\n",
" text_encoder=text_enc,\n",
" unet=int8_unet_model,\n",
" vae_encoder=vae_encoder,\n",
" vae_decoder=vae_decoder,\n",
" scheduler=scheduler\n",
")"
]
},
{
"cell_type": "markdown",
"id": "73151859000e9305",
"metadata": {},
"source": [
"### Compare UNet file size"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "4cf380af026bfaac",
"metadata": {
"ExecuteTime": {
"end_time": "2024-02-13T14:32:27.198596Z",
"start_time": "2024-02-13T14:32:27.195616Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"FP16 model size: 1691232.51 KB\n",
"INT8 model size: 846918.58 KB\n",
"Model compression rate: 1.997\n"
]
}
],
"source": [
"%%skip not $to_quantize.value\n",
"\n",
"fp16_ir_model_size = UNET_OV_PATH.with_suffix(\".bin\").stat().st_size / 1024\n",
"quantized_model_size = UNET_INT8_OV_PATH.with_suffix(\".bin\").stat().st_size / 1024\n",
"\n",
"print(f\"FP16 model size: {fp16_ir_model_size:.2f} KB\")\n",
"print(f\"INT8 model size: {quantized_model_size:.2f} KB\")\n",
"print(f\"Model compression rate: {fp16_ir_model_size / quantized_model_size:.3f}\")"
]
},
{
"cell_type": "markdown",
"id": "637babca1053f709",
"metadata": {},
"source": [
"### Compare inference time of the FP16 and INT8 pipelines\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"To measure the inference performance of the `FP16` and `INT8` pipelines, we use median inference time on calibration subset.\n",
"\n",
"> **NOTE**: For the most accurate performance estimation, it is recommended to run `benchmark_app` in a terminal/command prompt after closing other applications."
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "b653073baccacaa1",
"metadata": {
"ExecuteTime": {
"end_time": "2024-02-13T14:32:29.452397Z",
"start_time": "2024-02-13T14:32:29.449204Z"
}
},
"outputs": [],
"source": [
"%%skip not $to_quantize.value\n",
"\n",
"import time\n",
"\n",
"def calculate_inference_time(pipeline, validation_data):\n",
" inference_time = []\n",
" pipeline.set_progress_bar_config(disable=True)\n",
" for prompt in validation_data:\n",
" start = time.perf_counter()\n",
" _ = pipeline(prompt, num_inference_steps=10, seed=0)\n",
" end = time.perf_counter()\n",
" delta = end - start\n",
" inference_time.append(delta)\n",
" return np.median(inference_time)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "cd270c546efe7b33",
"metadata": {
"ExecuteTime": {
"end_time": "2024-02-13T14:44:53.370640Z",
"start_time": "2024-02-13T14:32:30.218862Z"
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/nsavel/venvs/ov_notebooks_tmp/lib/python3.8/site-packages/datasets/load.py:1429: FutureWarning: The repository for conceptual_captions contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at https://hf.co/datasets/conceptual_captions\n",
"You can avoid this message in future by passing the argument `trust_remote_code=True`.\n",
"Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`.\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Performance speed-up: 1.232\n"
]
}
],
"source": [
"%%skip not $to_quantize.value\n",
"\n",
"validation_size = 10\n",
"validation_dataset = datasets.load_dataset(\"conceptual_captions\", split=\"train\", streaming=True).take(validation_size)\n",
"validation_data = [batch[\"caption\"] for batch in validation_dataset]\n",
"\n",
"fp_latency = calculate_inference_time(ov_pipe, validation_data)\n",
"int8_latency = calculate_inference_time(int8_ov_pipe, validation_data)\n",
"print(f\"Performance speed-up: {fp_latency / int8_latency:.3f}\")"
]
},
{
"cell_type": "markdown",
"id": "3b7f93ec1bd55a2f",
"metadata": {},
"source": [
"## Run Text-to-Image generation\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Now, you can define a text prompts for image generation and run inference pipeline.\n",
"Optionally, you can also change the random generator seed for latent state initialization and number of steps.\n",
"\n",
"> **Note**: Consider increasing `steps` to get more precise results. A suggested value is `50`, but it will take longer time to process."
]
},
{
"cell_type": "markdown",
"id": "cd89fdab77ca1f8c",
"metadata": {},
"source": [
"Please select below whether you would like to use the quantized model to launch the interactive demo."
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "edd734469b49f2f8",
"metadata": {
"ExecuteTime": {
"end_time": "2024-02-13T14:44:53.376186Z",
"start_time": "2024-02-13T14:44:53.371802Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2bb8194dc4f24c1087fc33e4efe5e5e9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Checkbox(value=True, description='Use quantized model')"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"quantized_model_present = int8_ov_pipe is not None\n",
"\n",
"use_quantized_model = widgets.Checkbox(\n",
" value=True if quantized_model_present else False,\n",
" description=\"Use quantized model\",\n",
" disabled=not quantized_model_present,\n",
")\n",
"\n",
"use_quantized_model"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f1136e88de27fec2",
"metadata": {
"ExecuteTime": {
"end_time": "2024-02-13T14:44:55.067276Z",
"start_time": "2024-02-13T14:44:53.376929Z"
}
},
"outputs": [],
"source": [
"import gradio as gr\n",
"\n",
"\n",
"pipeline = int8_ov_pipe if use_quantized_model.value else ov_pipe\n",
"\n",
"\n",
"def generate(prompt, negative_prompt, seed, num_steps, _=gr.Progress(track_tqdm=True)):\n",
" result = pipeline(\n",
" prompt,\n",
" negative_prompt=negative_prompt,\n",
" num_inference_steps=num_steps,\n",
" seed=seed,\n",
" )\n",
" return result[\"sample\"][0]\n",
"\n",
"\n",
"gr.close_all()\n",
"demo = gr.Interface(\n",
" generate,\n",
" [\n",
" gr.Textbox(\n",
" \"valley in the Alps at sunset, epic vista, beautiful landscape, 4k, 8k\",\n",
" label=\"Prompt\",\n",
" ),\n",
" gr.Textbox(\n",
" \"frames, borderline, text, charachter, duplicate, error, out of frame, watermark, low quality, ugly, deformed, blur\",\n",
" label=\"Negative prompt\",\n",
" ),\n",
" gr.Slider(value=42, label=\"Seed\", maximum=10000000),\n",
" gr.Slider(value=25, label=\"Steps\", minimum=1, maximum=50),\n",
" ],\n",
" \"image\",\n",
")\n",
"\n",
"try:\n",
" demo.queue().launch()\n",
"except Exception:\n",
" demo.queue().launch(share=True)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
},
"openvino_notebooks": {
"imageUrl": "https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/stable-diffusion-v2/stable-diffusion-v2-optimum-demo.png?raw=true",
"tags": {
"categories": [
"Model Demos",
"AI Trends"
],
"libraries": [],
"other": [
"Stable Diffusion"
],
"tasks": [
"Text-to-Image"
]
}
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|