Spaces:
Runtime error
Runtime error
File size: 89,072 Bytes
db5855f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "c3afa009-cc7a-436b-be99-8f1f403af84a",
"metadata": {},
"source": [
"# Image to Video Generation with Stable Video Diffusion\n",
"\n",
"Stable Video Diffusion (SVD) Image-to-Video is a diffusion model that takes in a still image as a conditioning frame, and generates a video from it. In this tutorial we consider how to convert and run Stable Video Diffusion using OpenVINO.\n",
"We will use [stable-video-diffusion-img2video-xt](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt) model as example. Additionally, to speedup video generation process we apply [AnimateLCM](https://arxiv.org/abs/2402.00769) LoRA weights and run optimization with [NNCF](https://github.com/openvinotoolkit/nncf/).\n",
"\n",
"## Table of contents:\n",
"\n",
"- [Prerequisites](#Prerequisites)\n",
"- [Download PyTorch Model](#Download-PyTorch-Model)\n",
"- [Convert Model to OpenVINO Intermediate Representation](#Convert-Model-to-OpenVINO-Intermediate-Representation)\n",
" - [Image Encoder](#Image-Encoder)\n",
" - [U-net](#U-net)\n",
" - [VAE Encoder and Decoder](#VAE-Encoder-and-Decoder)\n",
"- [Prepare Inference Pipeline](#Prepare-Inference-Pipeline)\n",
"- [Run Video Generation](#Run-Video-Generation)\n",
" - [Select Inference Device](#Select-Inference-Device)\n",
"- [Quantization](#Quantization)\n",
" - [Prepare calibration dataset](#Prepare-calibration-dataset)\n",
" - [Run Hybrid Model Quantization](#Run-Hybrid-Model-Quantization)\n",
" - [Run Weight Compression](#Run-Weight-Compression)\n",
" - [Compare model file sizes](#Compare-model-file-sizes)\n",
" - [Compare inference time of the FP16 and INT8 pipelines](#Compare-inference-time-of-the-FP16-and-INT8-pipelines)\n",
"- [Interactive Demo](#Interactive-Demo)\n",
"\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "117deb8f-bae0-4623-98b6-a2409d6eb0cc",
"metadata": {},
"source": [
"## Prerequisites\n",
"[back to top ⬆️](#Table-of-contents:)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "21709ff7-a138-4256-9d2c-ba789a897162",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install -q \"torch>=2.1\" \"diffusers>=0.25\" \"peft==0.6.2\" \"transformers\" \"openvino>=2024.1.0\" Pillow opencv-python tqdm \"gradio>=4.19\" safetensors --extra-index-url https://download.pytorch.org/whl/cpu\n",
"%pip install -q datasets \"nncf>=2.10.0\""
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "972423c0-b6a0-45cd-a652-71c367eeb010",
"metadata": {},
"source": [
"## Download PyTorch Model\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"The code below load Stable Video Diffusion XT model using [Diffusers](https://huggingface.co/docs/diffusers/index) library and apply Consistency Distilled AnimateLCM weights. "
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "6e29229d-821d-4367-8f91-ad8375a38895",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"from pathlib import Path\n",
"from diffusers import StableVideoDiffusionPipeline\n",
"from diffusers.utils import load_image, export_to_video\n",
"from diffusers.models.attention_processor import AttnProcessor\n",
"from safetensors import safe_open\n",
"import gc\n",
"import requests\n",
"\n",
"lcm_scheduler_url = \"https://huggingface.co/spaces/wangfuyun/AnimateLCM-SVD/raw/main/lcm_scheduler.py\"\n",
"\n",
"r = requests.get(lcm_scheduler_url)\n",
"\n",
"with open(\"lcm_scheduler.py\", \"w\") as f:\n",
" f.write(r.text)\n",
"\n",
"from lcm_scheduler import AnimateLCMSVDStochasticIterativeScheduler\n",
"from huggingface_hub import hf_hub_download\n",
"\n",
"MODEL_DIR = Path(\"model\")\n",
"\n",
"IMAGE_ENCODER_PATH = MODEL_DIR / \"image_encoder.xml\"\n",
"VAE_ENCODER_PATH = MODEL_DIR / \"vae_encoder.xml\"\n",
"VAE_DECODER_PATH = MODEL_DIR / \"vae_decoder.xml\"\n",
"UNET_PATH = MODEL_DIR / \"unet.xml\"\n",
"\n",
"\n",
"load_pt_pipeline = not (VAE_ENCODER_PATH.exists() and VAE_DECODER_PATH.exists() and UNET_PATH.exists() and IMAGE_ENCODER_PATH.exists())\n",
"\n",
"unet, vae, image_encoder = None, None, None\n",
"if load_pt_pipeline:\n",
" noise_scheduler = AnimateLCMSVDStochasticIterativeScheduler(\n",
" num_train_timesteps=40,\n",
" sigma_min=0.002,\n",
" sigma_max=700.0,\n",
" sigma_data=1.0,\n",
" s_noise=1.0,\n",
" rho=7,\n",
" clip_denoised=False,\n",
" )\n",
" pipe = StableVideoDiffusionPipeline.from_pretrained(\n",
" \"stabilityai/stable-video-diffusion-img2vid-xt\",\n",
" variant=\"fp16\",\n",
" scheduler=noise_scheduler,\n",
" )\n",
" pipe.unet.set_attn_processor(AttnProcessor())\n",
" hf_hub_download(\n",
" repo_id=\"wangfuyun/AnimateLCM-SVD-xt\",\n",
" filename=\"AnimateLCM-SVD-xt.safetensors\",\n",
" local_dir=\"./checkpoints\",\n",
" )\n",
" state_dict = {}\n",
" LCM_LORA_PATH = Path(\n",
" \"checkpoints/AnimateLCM-SVD-xt.safetensors\",\n",
" )\n",
" with safe_open(LCM_LORA_PATH, framework=\"pt\", device=\"cpu\") as f:\n",
" for key in f.keys():\n",
" state_dict[key] = f.get_tensor(key)\n",
" missing, unexpected = pipe.unet.load_state_dict(state_dict, strict=True)\n",
"\n",
" pipe.scheduler.save_pretrained(MODEL_DIR / \"scheduler\")\n",
" pipe.feature_extractor.save_pretrained(MODEL_DIR / \"feature_extractor\")\n",
" unet = pipe.unet\n",
" unet.eval()\n",
" vae = pipe.vae\n",
" vae.eval()\n",
" image_encoder = pipe.image_encoder\n",
" image_encoder.eval()\n",
" del pipe\n",
" gc.collect()\n",
"\n",
"# Load the conditioning image\n",
"image = load_image(\"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/svd/rocket.png?download=true\")\n",
"image = image.resize((512, 256))"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "92eb1bd8-d933-4e44-8167-6690ff11dfbc",
"metadata": {},
"source": [
"## Convert Model to OpenVINO Intermediate Representation\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"OpenVINO supports PyTorch models via conversion into Intermediate Representation (IR) format. We need to provide a model object, input data for model tracing to `ov.convert_model` function to obtain OpenVINO `ov.Model` object instance. Model can be saved on disk for next deployment using `ov.save_model` function.\n",
"\n",
"Stable Video Diffusion consists of 3 parts:\n",
"\n",
"* **Image Encoder** for extraction embeddings from the input image.\n",
"* **U-Net** for step-by-step denoising video clip.\n",
"* **VAE** for encoding input image into latent space and decoding generated video.\n",
"\n",
"Let's convert each part.\n",
"\n",
"### Image Encoder\n",
"[back to top ⬆️](#Table-of-contents:)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "60e89c71-4cf6-4e87-b788-8fa5265bca71",
"metadata": {},
"outputs": [],
"source": [
"import openvino as ov\n",
"\n",
"\n",
"def cleanup_torchscript_cache():\n",
" \"\"\"\n",
" Helper for removing cached model representation\n",
" \"\"\"\n",
" torch._C._jit_clear_class_registry()\n",
" torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()\n",
" torch.jit._state._clear_class_state()\n",
"\n",
"\n",
"if not IMAGE_ENCODER_PATH.exists():\n",
" with torch.no_grad():\n",
" ov_model = ov.convert_model(\n",
" image_encoder,\n",
" example_input=torch.zeros((1, 3, 224, 224)),\n",
" input=[-1, 3, 224, 224],\n",
" )\n",
" ov.save_model(ov_model, IMAGE_ENCODER_PATH)\n",
" del ov_model\n",
" cleanup_torchscript_cache()\n",
" print(f\"Image Encoder successfully converted to IR and saved to {IMAGE_ENCODER_PATH}\")\n",
"del image_encoder\n",
"gc.collect();"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "a81d2949-343a-40ee-a279-92186f7eb624",
"metadata": {},
"source": [
"### U-net\n",
"[back to top ⬆️](#Table-of-contents:)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "ffe83a70-125b-4ceb-9c14-184ff882b28e",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"import openvino as ov\n",
"\n",
"if not UNET_PATH.exists():\n",
" unet_inputs = {\n",
" \"sample\": torch.ones([2, 2, 8, 32, 32]),\n",
" \"timestep\": torch.tensor(1.256),\n",
" \"encoder_hidden_states\": torch.zeros([2, 1, 1024]),\n",
" \"added_time_ids\": torch.ones([2, 3]),\n",
" }\n",
" with torch.no_grad():\n",
" ov_model = ov.convert_model(unet, example_input=unet_inputs)\n",
" ov.save_model(ov_model, UNET_PATH)\n",
" del ov_model\n",
" cleanup_torchscript_cache()\n",
" print(f\"UNet successfully converted to IR and saved to {UNET_PATH}\")\n",
"\n",
"del unet\n",
"gc.collect();"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "568e5f42-1ccc-48d4-ba47-d4fcd1fad865",
"metadata": {},
"source": [
"### VAE Encoder and Decoder\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"As discussed above VAE model used for encoding initial image and decoding generated video. Encoding and Decoding happen on different pipeline stages, so for convenient usage we separate VAE on 2 parts: Encoder and Decoder."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "996339ea-c674-4581-baf3-cb6a0443c74c",
"metadata": {},
"outputs": [],
"source": [
"class VAEEncoderWrapper(torch.nn.Module):\n",
" def __init__(self, vae):\n",
" super().__init__()\n",
" self.vae = vae\n",
"\n",
" def forward(self, image):\n",
" return self.vae.encode(x=image)[\"latent_dist\"].sample()\n",
"\n",
"\n",
"class VAEDecoderWrapper(torch.nn.Module):\n",
" def __init__(self, vae):\n",
" super().__init__()\n",
" self.vae = vae\n",
"\n",
" def forward(self, latents, num_frames: int):\n",
" return self.vae.decode(latents, num_frames=num_frames)\n",
"\n",
"\n",
"if not VAE_ENCODER_PATH.exists():\n",
" vae_encoder = VAEEncoderWrapper(vae)\n",
" with torch.no_grad():\n",
" ov_model = ov.convert_model(vae_encoder, example_input=torch.zeros((1, 3, 576, 1024)))\n",
" ov.save_model(ov_model, VAE_ENCODER_PATH)\n",
" cleanup_torchscript_cache()\n",
" print(f\"VAE Encoder successfully converted to IR and saved to {VAE_ENCODER_PATH}\")\n",
" del vae_encoder\n",
" gc.collect()\n",
"\n",
"if not VAE_DECODER_PATH.exists():\n",
" vae_decoder = VAEDecoderWrapper(vae)\n",
" with torch.no_grad():\n",
" ov_model = ov.convert_model(vae_decoder, example_input=(torch.zeros((8, 4, 72, 128)), torch.tensor(8)))\n",
" ov.save_model(ov_model, VAE_DECODER_PATH)\n",
" cleanup_torchscript_cache()\n",
" print(f\"VAE Decoder successfully converted to IR and saved to {VAE_ENCODER_PATH}\")\n",
" del vae_decoder\n",
" gc.collect()\n",
"\n",
"del vae\n",
"gc.collect();"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "48ecf8f3-ffc4-4b97-ac7d-d3ea9bb3fd75",
"metadata": {},
"source": [
"## Prepare Inference Pipeline\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"The code bellow implements `OVStableVideoDiffusionPipeline` class for running video generation using OpenVINO. The pipeline accepts input image and returns the sequence of generated frames\n",
"The diagram below represents a simplified pipeline workflow.\n",
"\n",
"\n",
"\n",
"The pipeline is very similar to [Stable Diffusion Image to Image Generation pipeline](../stable-diffusion-text-to-image/stable-diffusion-text-to-image.ipynb) with the only difference that Image Encoder is used instead of Text Encoder. Model takes input image and random seed as initial prompt. Then image encoded into embeddings space using Image Encoder and into latent space using VAE Encoder and passed as input to U-Net model. Next, the U-Net iteratively *denoises* the random latent video representations while being conditioned on the image embeddings. The output of the U-Net, being the noise residual, is used to compute a denoised latent image representation via a scheduler algorithm for next iteration in generation cycle. This process repeats the given number of times and, finally, VAE decoder converts denoised latents into sequence of video frames."
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "1b073909-aa5c-4252-bff4-0a7e34a6c983",
"metadata": {},
"outputs": [],
"source": [
"from diffusers.pipelines.pipeline_utils import DiffusionPipeline\n",
"import PIL.Image\n",
"from diffusers.image_processor import VaeImageProcessor\n",
"from diffusers.utils.torch_utils import randn_tensor\n",
"from typing import Callable, Dict, List, Optional, Union\n",
"from diffusers.pipelines.stable_video_diffusion import (\n",
" StableVideoDiffusionPipelineOutput,\n",
")\n",
"\n",
"\n",
"def _append_dims(x, target_dims):\n",
" \"\"\"Appends dimensions to the end of a tensor until it has target_dims dimensions.\"\"\"\n",
" dims_to_append = target_dims - x.ndim\n",
" if dims_to_append < 0:\n",
" raise ValueError(f\"input has {x.ndim} dims but target_dims is {target_dims}, which is less\")\n",
" return x[(...,) + (None,) * dims_to_append]\n",
"\n",
"\n",
"def tensor2vid(video: torch.Tensor, processor, output_type=\"np\"):\n",
" # Based on:\n",
" # https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/pipelines/multi_modal/text_to_video_synthesis_pipeline.py#L78\n",
"\n",
" batch_size, channels, num_frames, height, width = video.shape\n",
" outputs = []\n",
" for batch_idx in range(batch_size):\n",
" batch_vid = video[batch_idx].permute(1, 0, 2, 3)\n",
" batch_output = processor.postprocess(batch_vid, output_type)\n",
"\n",
" outputs.append(batch_output)\n",
"\n",
" return outputs\n",
"\n",
"\n",
"class OVStableVideoDiffusionPipeline(DiffusionPipeline):\n",
" r\"\"\"\n",
" Pipeline to generate video from an input image using Stable Video Diffusion.\n",
"\n",
" This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods\n",
" implemented for all pipelines (downloading, saving, running on a particular device, etc.).\n",
"\n",
" Args:\n",
" vae ([`AutoencoderKL`]):\n",
" Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.\n",
" image_encoder ([`~transformers.CLIPVisionModelWithProjection`]):\n",
" Frozen CLIP image-encoder ([laion/CLIP-ViT-H-14-laion2B-s32B-b79K](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K)).\n",
" unet ([`UNetSpatioTemporalConditionModel`]):\n",
" A `UNetSpatioTemporalConditionModel` to denoise the encoded image latents.\n",
" scheduler ([`EulerDiscreteScheduler`]):\n",
" A scheduler to be used in combination with `unet` to denoise the encoded image latents.\n",
" feature_extractor ([`~transformers.CLIPImageProcessor`]):\n",
" A `CLIPImageProcessor` to extract features from generated images.\n",
" \"\"\"\n",
"\n",
" def __init__(\n",
" self,\n",
" vae_encoder,\n",
" image_encoder,\n",
" unet,\n",
" vae_decoder,\n",
" scheduler,\n",
" feature_extractor,\n",
" ):\n",
" super().__init__()\n",
" self.vae_encoder = vae_encoder\n",
" self.vae_decoder = vae_decoder\n",
" self.image_encoder = image_encoder\n",
" self.register_to_config(unet=unet)\n",
" self.scheduler = scheduler\n",
" self.feature_extractor = feature_extractor\n",
" self.vae_scale_factor = 2 ** (4 - 1)\n",
" self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)\n",
"\n",
" def _encode_image(self, image, device, num_videos_per_prompt, do_classifier_free_guidance):\n",
" dtype = torch.float32\n",
"\n",
" if not isinstance(image, torch.Tensor):\n",
" image = self.image_processor.pil_to_numpy(image)\n",
" image = self.image_processor.numpy_to_pt(image)\n",
"\n",
" # We normalize the image before resizing to match with the original implementation.\n",
" # Then we unnormalize it after resizing.\n",
" image = image * 2.0 - 1.0\n",
" image = _resize_with_antialiasing(image, (224, 224))\n",
" image = (image + 1.0) / 2.0\n",
"\n",
" # Normalize the image with for CLIP input\n",
" image = self.feature_extractor(\n",
" images=image,\n",
" do_normalize=True,\n",
" do_center_crop=False,\n",
" do_resize=False,\n",
" do_rescale=False,\n",
" return_tensors=\"pt\",\n",
" ).pixel_values\n",
"\n",
" image = image.to(device=device, dtype=dtype)\n",
" image_embeddings = torch.from_numpy(self.image_encoder(image)[0])\n",
" image_embeddings = image_embeddings.unsqueeze(1)\n",
"\n",
" # duplicate image embeddings for each generation per prompt, using mps friendly method\n",
" bs_embed, seq_len, _ = image_embeddings.shape\n",
" image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1)\n",
" image_embeddings = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)\n",
"\n",
" if do_classifier_free_guidance:\n",
" negative_image_embeddings = torch.zeros_like(image_embeddings)\n",
"\n",
" # For classifier free guidance, we need to do two forward passes.\n",
" # Here we concatenate the unconditional and text embeddings into a single batch\n",
" # to avoid doing two forward passes\n",
" image_embeddings = torch.cat([negative_image_embeddings, image_embeddings])\n",
" return image_embeddings\n",
"\n",
" def _encode_vae_image(\n",
" self,\n",
" image: torch.Tensor,\n",
" device,\n",
" num_videos_per_prompt,\n",
" do_classifier_free_guidance,\n",
" ):\n",
" image_latents = torch.from_numpy(self.vae_encoder(image)[0])\n",
"\n",
" if do_classifier_free_guidance:\n",
" negative_image_latents = torch.zeros_like(image_latents)\n",
"\n",
" # For classifier free guidance, we need to do two forward passes.\n",
" # Here we concatenate the unconditional and text embeddings into a single batch\n",
" # to avoid doing two forward passes\n",
" image_latents = torch.cat([negative_image_latents, image_latents])\n",
"\n",
" # duplicate image_latents for each generation per prompt, using mps friendly method\n",
" image_latents = image_latents.repeat(num_videos_per_prompt, 1, 1, 1)\n",
"\n",
" return image_latents\n",
"\n",
" def _get_add_time_ids(\n",
" self,\n",
" fps,\n",
" motion_bucket_id,\n",
" noise_aug_strength,\n",
" dtype,\n",
" batch_size,\n",
" num_videos_per_prompt,\n",
" do_classifier_free_guidance,\n",
" ):\n",
" add_time_ids = [fps, motion_bucket_id, noise_aug_strength]\n",
"\n",
" passed_add_embed_dim = 256 * len(add_time_ids)\n",
" expected_add_embed_dim = 3 * 256\n",
"\n",
" if expected_add_embed_dim != passed_add_embed_dim:\n",
" raise ValueError(\n",
" f\"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`.\"\n",
" )\n",
"\n",
" add_time_ids = torch.tensor([add_time_ids], dtype=dtype)\n",
" add_time_ids = add_time_ids.repeat(batch_size * num_videos_per_prompt, 1)\n",
"\n",
" if do_classifier_free_guidance:\n",
" add_time_ids = torch.cat([add_time_ids, add_time_ids])\n",
"\n",
" return add_time_ids\n",
"\n",
" def decode_latents(self, latents, num_frames, decode_chunk_size=14):\n",
" # [batch, frames, channels, height, width] -> [batch*frames, channels, height, width]\n",
" latents = latents.flatten(0, 1)\n",
"\n",
" latents = 1 / 0.18215 * latents\n",
"\n",
" # decode decode_chunk_size frames at a time to avoid OOM\n",
" frames = []\n",
" for i in range(0, latents.shape[0], decode_chunk_size):\n",
" frame = torch.from_numpy(self.vae_decoder([latents[i : i + decode_chunk_size], num_frames])[0])\n",
" frames.append(frame)\n",
" frames = torch.cat(frames, dim=0)\n",
"\n",
" # [batch*frames, channels, height, width] -> [batch, channels, frames, height, width]\n",
" frames = frames.reshape(-1, num_frames, *frames.shape[1:]).permute(0, 2, 1, 3, 4)\n",
"\n",
" # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16\n",
" frames = frames.float()\n",
" return frames\n",
"\n",
" def check_inputs(self, image, height, width):\n",
" if not isinstance(image, torch.Tensor) and not isinstance(image, PIL.Image.Image) and not isinstance(image, list):\n",
" raise ValueError(\"`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is\" f\" {type(image)}\")\n",
"\n",
" if height % 8 != 0 or width % 8 != 0:\n",
" raise ValueError(f\"`height` and `width` have to be divisible by 8 but are {height} and {width}.\")\n",
"\n",
" def prepare_latents(\n",
" self,\n",
" batch_size,\n",
" num_frames,\n",
" num_channels_latents,\n",
" height,\n",
" width,\n",
" dtype,\n",
" device,\n",
" generator,\n",
" latents=None,\n",
" ):\n",
" shape = (\n",
" batch_size,\n",
" num_frames,\n",
" num_channels_latents // 2,\n",
" height // self.vae_scale_factor,\n",
" width // self.vae_scale_factor,\n",
" )\n",
" if isinstance(generator, list) and len(generator) != batch_size:\n",
" raise ValueError(\n",
" f\"You have passed a list of generators of length {len(generator)}, but requested an effective batch\"\n",
" f\" size of {batch_size}. Make sure the batch size matches the length of the generators.\"\n",
" )\n",
"\n",
" if latents is None:\n",
" latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)\n",
" else:\n",
" latents = latents.to(device)\n",
"\n",
" # scale the initial noise by the standard deviation required by the scheduler\n",
" latents = latents * self.scheduler.init_noise_sigma\n",
" return latents\n",
"\n",
" @torch.no_grad()\n",
" def __call__(\n",
" self,\n",
" image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor],\n",
" height: int = 320,\n",
" width: int = 512,\n",
" num_frames: Optional[int] = 8,\n",
" num_inference_steps: int = 4,\n",
" min_guidance_scale: float = 1.0,\n",
" max_guidance_scale: float = 1.2,\n",
" fps: int = 7,\n",
" motion_bucket_id: int = 80,\n",
" noise_aug_strength: int = 0.01,\n",
" decode_chunk_size: Optional[int] = None,\n",
" num_videos_per_prompt: Optional[int] = 1,\n",
" generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,\n",
" latents: Optional[torch.FloatTensor] = None,\n",
" output_type: Optional[str] = \"pil\",\n",
" callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,\n",
" callback_on_step_end_tensor_inputs: List[str] = [\"latents\"],\n",
" return_dict: bool = True,\n",
" ):\n",
" r\"\"\"\n",
" The call function to the pipeline for generation.\n",
"\n",
" Args:discussed\n",
" image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):\n",
" Image or images to guide image generation. If you provide a tensor, it needs to be compatible with\n",
" [`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json).\n",
" height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):\n",
" The height in pixels of the generated image.\n",
" width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):\n",
" The width in pixels of the generated image.\n",
" num_frames (`int`, *optional*):\n",
" The number of video frames to generate. Defaults to 14 for `stable-video-diffusion-img2vid` and to 25 for `stable-video-diffusion-img2vid-xt`\n",
" num_inference_steps (`int`, *optional*, defaults to 25):\n",
"\n",
"\n",
" The number of denoising steps. More denoising steps usually lead to a higher quality image at the\n",
" expense of slower inference. This parameter is modulated by `strength`.\n",
" min_guidance_scale (`float`, *optional*, defaults to 1.0):\n",
" The minimum guidance scale. Used for the classifier free guidance with first frame.\n",
" max_guidance_scale (`float`, *optional*, defaults to 3.0):\n",
" The maximum guidance scale. Used for the classifier free guidance with last frame.\n",
" fps (`int`, *optional*, defaults to 7):\n",
" Frames per second. The rate at which the generated images shall be exported to a video after generation.\n",
" Note that Stable Diffusion Video's UNet was micro-conditioned on fps-1 during training.\n",
" motion_bucket_id (`int`, *optional*, defaults to 127):\n",
" The motion bucket ID. Used as conditioning for the generation. The higher the number the more motion will be in the video.\n",
" noise_aug_strength (`int`, *optional*, defaults to 0.02):\n",
" The amount of noise added to the init image, the higher it is the less the video will look like the init image. Increase it for more motion.\n",
" decode_chunk_size (`int`, *optional*):\n",
" The number of frames to decode at a time. The higher the chunk size, the higher the temporal consistency\n",
" between frames, but also the higher the memory consumption. By default, the decoder will decode all frames at once\n",
" for maximal quality. Reduce `decode_chunk_size` to reduce memory usage.\n",
" num_videos_per_prompt (`int`, *optional*, defaults to 1):\n",
" The number of images to generate per prompt.\n",
" generator (`torch.Generator` or `List[torch.Generator]`, *optional*):\n",
" A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make\n",
" generation deterministic.\n",
" latents (`torch.FloatTensor`, *optional*):\n",
" Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image\n",
" generation. Can be used to tweak the same generation with different prompts. If not provided, a latents\n",
" tensor is generated by sampling using the supplied random `generator`.\n",
" output_type (`str`, *optional*, defaults to `\"pil\"`):\n",
" The output format of the generated image. Choose between `PIL.Image` or `np.array`.\n",
" callback_on_step_end (`Callable`, *optional*):\n",
" A function that calls at the end of each denoising steps during the inference. The function is called\n",
" with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,\n",
" callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by\n",
" `callback_on_step_end_tensor_inputs`.\n",
" callback_on_step_end_tensor_inputs (`List`, *optional*):\n",
" The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list\n",
" will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the\n",
" `._callback_tensor_inputs` attribute of your pipeline class.\n",
" return_dict (`bool`, *optional*, defaults to `True`):\n",
" Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a\n",
" plain tuple.\n",
"\n",
" Returns:\n",
" [`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] or `tuple`:\n",
" If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] is returned,\n",
" otherwise a `tuple` is returned where the first element is a list of list with the generated frames.\n",
"\n",
" Examples:\n",
"\n",
" ```py\n",
" from diffusers import StableVideoDiffusionPipeline\n",
" from diffusers.utils import load_image, export_to_video\n",
"\n",
" pipe = StableVideoDiffusionPipeline.from_pretrained(\"stabilityai/stable-video-diffusion-img2vid-xt\", torch_dtype=torch.float16, variant=\"fp16\")\n",
" pipe.to(\"cuda\")\n",
"\n",
" image = load_image(\"https://lh3.googleusercontent.com/y-iFOHfLTwkuQSUegpwDdgKmOjRSTvPxat63dQLB25xkTs4lhIbRUFeNBWZzYf370g=s1200\")\n",
" image = image.resize((1024, 576))\n",
"\n",
" frames = pipe(image, num_frames=25, decode_chunk_size=8).frames[0]\n",
" export_to_video(frames, \"generated.mp4\", fps=7)\n",
" ```\n",
" \"\"\"\n",
" # 0. Default height and width to unet\n",
" height = height or 96 * self.vae_scale_factor\n",
" width = width or 96 * self.vae_scale_factor\n",
"\n",
" num_frames = num_frames if num_frames is not None else 25\n",
" decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else num_frames\n",
"\n",
" # 1. Check inputs. Raise error if not correct\n",
" self.check_inputs(image, height, width)\n",
"\n",
" # 2. Define call parameters\n",
" if isinstance(image, PIL.Image.Image):\n",
" batch_size = 1\n",
" elif isinstance(image, list):\n",
" batch_size = len(image)\n",
" else:\n",
" batch_size = image.shape[0]\n",
" device = torch.device(\"cpu\")\n",
"\n",
" # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)\n",
" # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`\n",
" # corresponds to doing no classifier free guidance.\n",
" do_classifier_free_guidance = max_guidance_scale > 1.0\n",
"\n",
" # 3. Encode input image\n",
" image_embeddings = self._encode_image(image, device, num_videos_per_prompt, do_classifier_free_guidance)\n",
"\n",
" # NOTE: Stable Diffusion Video was conditioned on fps - 1, which\n",
" # is why it is reduced here.\n",
" # See: https://github.com/Stability-AI/generative-models/blob/ed0997173f98eaf8f4edf7ba5fe8f15c6b877fd3/scripts/sampling/simple_video_sample.py#L188\n",
" fps = fps - 1\n",
"\n",
" # 4. Encode input image using VAE\n",
" image = self.image_processor.preprocess(image, height=height, width=width)\n",
" noise = randn_tensor(image.shape, generator=generator, device=image.device, dtype=image.dtype)\n",
" image = image + noise_aug_strength * noise\n",
"\n",
" image_latents = self._encode_vae_image(image, device, num_videos_per_prompt, do_classifier_free_guidance)\n",
" image_latents = image_latents.to(image_embeddings.dtype)\n",
"\n",
" # Repeat the image latents for each frame so we can concatenate them with the noise\n",
" # image_latents [batch, channels, height, width] ->[batch, num_frames, channels, height, width]\n",
" image_latents = image_latents.unsqueeze(1).repeat(1, num_frames, 1, 1, 1)\n",
"\n",
" # 5. Get Added Time IDs\n",
" added_time_ids = self._get_add_time_ids(\n",
" fps,\n",
" motion_bucket_id,\n",
" noise_aug_strength,\n",
" image_embeddings.dtype,\n",
" batch_size,\n",
" num_videos_per_prompt,\n",
" do_classifier_free_guidance,\n",
" )\n",
" added_time_ids = added_time_ids\n",
"\n",
" # 4. Prepare timesteps\n",
" self.scheduler.set_timesteps(num_inference_steps, device=device)\n",
" timesteps = self.scheduler.timesteps\n",
" # 5. Prepare latent variables\n",
" num_channels_latents = 8\n",
" latents = self.prepare_latents(\n",
" batch_size * num_videos_per_prompt,\n",
" num_frames,\n",
" num_channels_latents,\n",
" height,\n",
" width,\n",
" image_embeddings.dtype,\n",
" device,\n",
" generator,\n",
" latents,\n",
" )\n",
"\n",
" # 7. Prepare guidance scale\n",
" guidance_scale = torch.linspace(min_guidance_scale, max_guidance_scale, num_frames).unsqueeze(0)\n",
" guidance_scale = guidance_scale.to(device, latents.dtype)\n",
" guidance_scale = guidance_scale.repeat(batch_size * num_videos_per_prompt, 1)\n",
" guidance_scale = _append_dims(guidance_scale, latents.ndim)\n",
"\n",
" # 8. Denoising loop\n",
" num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order\n",
" num_timesteps = len(timesteps)\n",
" with self.progress_bar(total=num_inference_steps) as progress_bar:\n",
" for i, t in enumerate(timesteps):\n",
" # expand the latents if we are doing classifier free guidance\n",
" latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents\n",
" latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)\n",
"\n",
" # Concatenate image_latents over channels dimention\n",
" latent_model_input = torch.cat([latent_model_input, image_latents], dim=2)\n",
" # predict the noise residual\n",
" noise_pred = torch.from_numpy(\n",
" self.unet(\n",
" [\n",
" latent_model_input,\n",
" t,\n",
" image_embeddings,\n",
" added_time_ids,\n",
" ]\n",
" )[0]\n",
" )\n",
" # perform guidance\n",
" if do_classifier_free_guidance:\n",
" noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)\n",
" noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)\n",
"\n",
" # compute the previous noisy sample x_t -> x_t-1\n",
" latents = self.scheduler.step(noise_pred, t, latents).prev_sample\n",
"\n",
" if callback_on_step_end is not None:\n",
" callback_kwargs = {}\n",
" for k in callback_on_step_end_tensor_inputs:\n",
" callback_kwargs[k] = locals()[k]\n",
" callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)\n",
"\n",
" latents = callback_outputs.pop(\"latents\", latents)\n",
"\n",
" if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):\n",
" progress_bar.update()\n",
"\n",
" if not output_type == \"latent\":\n",
" frames = self.decode_latents(latents, num_frames, decode_chunk_size)\n",
" frames = tensor2vid(frames, self.image_processor, output_type=output_type)\n",
" else:\n",
" frames = latents\n",
"\n",
" if not return_dict:\n",
" return frames\n",
"\n",
" return StableVideoDiffusionPipelineOutput(frames=frames)\n",
"\n",
"\n",
"# resizing utils\n",
"def _resize_with_antialiasing(input, size, interpolation=\"bicubic\", align_corners=True):\n",
" h, w = input.shape[-2:]\n",
" factors = (h / size[0], w / size[1])\n",
"\n",
" # First, we have to determine sigma\n",
" # Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171\n",
" sigmas = (\n",
" max((factors[0] - 1.0) / 2.0, 0.001),\n",
" max((factors[1] - 1.0) / 2.0, 0.001),\n",
" )\n",
" # Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma\n",
" # https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206\n",
" # But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now\n",
" ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3))\n",
"\n",
" # Make sure it is odd\n",
" if (ks[0] % 2) == 0:\n",
" ks = ks[0] + 1, ks[1]\n",
"\n",
" if (ks[1] % 2) == 0:\n",
"\n",
" ks = ks[0], ks[1] + 1\n",
"\n",
" input = _gaussian_blur2d(input, ks, sigmas)\n",
"\n",
" output = torch.nn.functional.interpolate(input, size=size, mode=interpolation, align_corners=align_corners)\n",
" return output\n",
"\n",
"\n",
"def _compute_padding(kernel_size):\n",
" \"\"\"Compute padding tuple.\"\"\"\n",
" # 4 or 6 ints: (padding_left, padding_right,padding_top,padding_bottom)\n",
" # https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad\n",
" if len(kernel_size) < 2:\n",
" raise AssertionError(kernel_size)\n",
" computed = [k - 1 for k in kernel_size]\n",
"\n",
" # for even kernels we need to do asymmetric padding :(\n",
" out_padding = 2 * len(kernel_size) * [0]\n",
"\n",
" for i in range(len(kernel_size)):\n",
" computed_tmp = computed[-(i + 1)]\n",
"\n",
" pad_front = computed_tmp // 2\n",
" pad_rear = computed_tmp - pad_front\n",
"\n",
" out_padding[2 * i + 0] = pad_front\n",
" out_padding[2 * i + 1] = pad_rear\n",
"\n",
" return out_padding\n",
"\n",
"\n",
"def _filter2d(input, kernel):\n",
" # prepare kernel\n",
" b, c, h, w = input.shape\n",
" tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype)\n",
"\n",
" tmp_kernel = tmp_kernel.expand(-1, c, -1, -1)\n",
"\n",
" height, width = tmp_kernel.shape[-2:]\n",
"\n",
" padding_shape: list[int] = _compute_padding([height, width])\n",
" input = torch.nn.functional.pad(input, padding_shape, mode=\"reflect\")\n",
"\n",
" # kernel and input tensor reshape to align element-wise or batch-wise params\n",
" tmp_kernel = tmp_kernel.reshape(-1, 1, height, width)\n",
" input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1))\n",
"\n",
" # convolve the tensor with the kernel.\n",
" output = torch.nn.functional.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1)\n",
"\n",
" out = output.view(b, c, h, w)\n",
" return out\n",
"\n",
"\n",
"def _gaussian(window_size: int, sigma):\n",
" if isinstance(sigma, float):\n",
" sigma = torch.tensor([[sigma]])\n",
"\n",
" batch_size = sigma.shape[0]\n",
"\n",
" x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1)\n",
"\n",
" if window_size % 2 == 0:\n",
"\n",
" x = x + 0.5\n",
"\n",
" gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0)))\n",
"\n",
" return gauss / gauss.sum(-1, keepdim=True)\n",
"\n",
"\n",
"def _gaussian_blur2d(input, kernel_size, sigma):\n",
" if isinstance(sigma, tuple):\n",
" sigma = torch.tensor([sigma], dtype=input.dtype)\n",
" else:\n",
" sigma = sigma.to(dtype=input.dtype)\n",
"\n",
" ky, kx = int(kernel_size[0]), int(kernel_size[1])\n",
" bs = sigma.shape[0]\n",
" kernel_x = _gaussian(kx, sigma[:, 1].view(bs, 1))\n",
" kernel_y = _gaussian(ky, sigma[:, 0].view(bs, 1))\n",
" out_x = _filter2d(input, kernel_x[..., None, :])\n",
" out = _filter2d(out_x, kernel_y[..., None])\n",
"\n",
" return out"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "72845107-4b68-4f36-9ffb-9a9c31cca63c",
"metadata": {},
"source": [
"## Run Video Generation\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"### Select Inference Device\n",
"[back to top ⬆️](#Table-of-contents:)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "8a9c9ba7-8234-44ac-bbb3-708e3bea5640",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b3a026ee8cad4ce7bdbf9c155dc4d9e7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Dropdown(description='Device:', index=4, options=('CPU', 'GPU.0', 'GPU.1', 'GPU.2', 'AUTO'), value='AUTO')"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import ipywidgets as widgets\n",
"\n",
"core = ov.Core()\n",
"\n",
"device = widgets.Dropdown(\n",
" options=core.available_devices + [\"AUTO\"],\n",
" value=\"AUTO\",\n",
" description=\"Device:\",\n",
" disabled=False,\n",
")\n",
"\n",
"device"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "bbaf9418-bbff-4275-b43b-b1c14cc92aca",
"metadata": {},
"outputs": [],
"source": [
"from transformers import CLIPImageProcessor\n",
"\n",
"\n",
"vae_encoder = core.compile_model(VAE_ENCODER_PATH, device.value)\n",
"image_encoder = core.compile_model(IMAGE_ENCODER_PATH, device.value)\n",
"unet = core.compile_model(UNET_PATH, device.value)\n",
"vae_decoder = core.compile_model(VAE_DECODER_PATH, device.value)\n",
"scheduler = AnimateLCMSVDStochasticIterativeScheduler.from_pretrained(MODEL_DIR / \"scheduler\")\n",
"feature_extractor = CLIPImageProcessor.from_pretrained(MODEL_DIR / \"feature_extractor\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "3ba0d612-2ba4-4297-94cb-9ca54f5c14a3",
"metadata": {},
"source": [
"Now, let's see model in action.\n",
"> Please, note, video generation is memory and time consuming process. For reducing memory consumption, we decreased input video resolution to 576x320 and number of generated frames that may affect quality of generated video. You can change these settings manually providing `height`, `width` and `num_frames` parameters into pipeline. "
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "0c722800-7800-4a81-8a39-369dd182237e",
"metadata": {},
"outputs": [],
"source": [
"ov_pipe = OVStableVideoDiffusionPipeline(vae_encoder, image_encoder, unet, vae_decoder, scheduler, feature_extractor)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "02b62761-35d4-46be-a7eb-bdc8774de7cd",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "96d6580418db44f6a36967f7b8c50b9a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"denoise currently\n",
"tensor(128.5637)\n",
"denoise currently\n",
"tensor(13.6784)\n",
"denoise currently\n",
"tensor(0.4969)\n",
"denoise currently\n",
"tensor(0.)\n"
]
}
],
"source": [
"frames = ov_pipe(\n",
" image,\n",
" num_inference_steps=4,\n",
" motion_bucket_id=60,\n",
" num_frames=8,\n",
" height=320,\n",
" width=512,\n",
" generator=torch.manual_seed(12342),\n",
").frames[0]"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "5e55dee5-fbb9-4616-a4d1-14f411093bb2",
"metadata": {},
"outputs": [],
"source": [
"out_path = Path(\"generated.mp4\")\n",
"\n",
"export_to_video(frames, str(out_path), fps=7)\n",
"frames[0].save(\n",
" \"generated.gif\",\n",
" save_all=True,\n",
" append_images=frames[1:],\n",
" optimize=False,\n",
" duration=120,\n",
" loop=0,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "abf5294e-d76a-496d-a5d1-0b3f7e5eafc3",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<img src=\"generated.gif\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from IPython.display import HTML\n",
"\n",
"HTML('<img src=\"generated.gif\">')"
]
},
{
"cell_type": "markdown",
"id": "c042cf53",
"metadata": {},
"source": [
"## Quantization\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"[NNCF](https://github.com/openvinotoolkit/nncf/) enables post-training quantization by adding quantization layers into model graph and then using a subset of the training dataset to initialize the parameters of these additional quantization layers. Quantized operations are executed in `INT8` instead of `FP32`/`FP16` making model inference faster.\n",
"\n",
"According to `OVStableVideoDiffusionPipeline` structure, the diffusion model takes up significant portion of the overall pipeline execution time. Now we will show you how to optimize the UNet part using [NNCF](https://github.com/openvinotoolkit/nncf/) to reduce computation cost and speed up the pipeline. Quantizing the rest of the pipeline does not significantly improve inference performance but can lead to a substantial degradation of accuracy. That's why we use only weight compression for the `vae encoder` and `vae decoder` to reduce the memory footprint.\n",
"\n",
"For the UNet model we apply quantization in hybrid mode which means that we quantize: (1) weights of MatMul and Embedding layers and (2) activations of other layers. The steps are the following:\n",
"\n",
"1. Create a calibration dataset for quantization.\n",
"2. Collect operations with weights.\n",
"3. Run `nncf.compress_model()` to compress only the model weights.\n",
"4. Run `nncf.quantize()` on the compressed model with weighted operations ignored by providing `ignored_scope` parameter.\n",
"5. Save the `INT8` model using `openvino.save_model()` function.\n",
"\n",
"\n",
"Please select below whether you would like to run quantization to improve model inference speed.\n",
"\n",
"> **NOTE**: Quantization is time and memory consuming operation. Running quantization code below may take some time."
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "cb033895",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "81a05f76b1eb4e7f8f199f39b4bdb9f7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Checkbox(value=True, description='Quantization')"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"to_quantize = widgets.Checkbox(\n",
" value=True,\n",
" description=\"Quantization\",\n",
" disabled=False,\n",
")\n",
"\n",
"to_quantize"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a44c3174",
"metadata": {},
"outputs": [],
"source": [
"# Fetch `skip_kernel_extension` module\n",
"import requests\n",
"\n",
"r = requests.get(\n",
" url=\"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/skip_kernel_extension.py\",\n",
")\n",
"open(\"skip_kernel_extension.py\", \"w\").write(r.text)\n",
"\n",
"ov_int8_pipeline = None\n",
"OV_INT8_UNET_PATH = MODEL_DIR / \"unet_int8.xml\"\n",
"OV_INT8_VAE_ENCODER_PATH = MODEL_DIR / \"vae_encoder_int8.xml\"\n",
"OV_INT8_VAE_DECODER_PATH = MODEL_DIR / \"vae_decoder_int8.xml\"\n",
"\n",
"%load_ext skip_kernel_extension"
]
},
{
"cell_type": "markdown",
"id": "a0bfb34e",
"metadata": {},
"source": [
"### Prepare calibration dataset\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"We use a portion of [`fusing/instructpix2pix-1000-samples`](https://huggingface.co/datasets/fusing/instructpix2pix-1000-samples) dataset from Hugging Face as calibration data.\n",
"To collect intermediate model inputs for UNet optimization we should customize `CompiledModel`."
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "3f6093ed",
"metadata": {},
"outputs": [],
"source": [
"%%skip not $to_quantize.value\n",
"\n",
"import datasets\n",
"import numpy as np\n",
"from tqdm.notebook import tqdm\n",
"from IPython.utils import io\n",
"\n",
"\n",
"class CompiledModelDecorator(ov.CompiledModel):\n",
" def __init__(self, compiled_model: ov.CompiledModel, data_cache: List[Any] = None, keep_prob: float = 0.5):\n",
" super().__init__(compiled_model)\n",
" self.data_cache = data_cache if data_cache is not None else []\n",
" self.keep_prob = keep_prob\n",
"\n",
" def __call__(self, *args, **kwargs):\n",
" if np.random.rand() <= self.keep_prob:\n",
" self.data_cache.append(*args)\n",
" return super().__call__(*args, **kwargs)\n",
"\n",
"\n",
"def collect_calibration_data(ov_pipe, calibration_dataset_size: int, num_inference_steps: int = 50) -> List[Dict]:\n",
" original_unet = ov_pipe.unet\n",
" calibration_data = []\n",
" ov_pipe.unet = CompiledModelDecorator(original_unet, calibration_data, keep_prob=1)\n",
"\n",
" dataset = datasets.load_dataset(\"fusing/instructpix2pix-1000-samples\", split=\"train\", streaming=False).shuffle(seed=42)\n",
" # Run inference for data collection\n",
" pbar = tqdm(total=calibration_dataset_size)\n",
" for batch in dataset:\n",
" image = batch[\"input_image\"]\n",
"\n",
" with io.capture_output() as captured:\n",
" ov_pipe(\n",
" image,\n",
" num_inference_steps=4,\n",
" motion_bucket_id=60,\n",
" num_frames=8,\n",
" height=256,\n",
" width=256,\n",
" generator=torch.manual_seed(12342),\n",
" )\n",
" pbar.update(len(calibration_data) - pbar.n)\n",
" if len(calibration_data) >= calibration_dataset_size:\n",
" break\n",
"\n",
" ov_pipe.unet = original_unet\n",
" return calibration_data[:calibration_dataset_size]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bfdee6ad",
"metadata": {
"test_replace": {
"subset_size = 200": "subset_size = 4"
}
},
"outputs": [],
"source": [
"%%skip not $to_quantize.value\n",
"\n",
"if not OV_INT8_UNET_PATH.exists():\n",
" subset_size = 200\n",
" calibration_data = collect_calibration_data(ov_pipe, calibration_dataset_size=subset_size)"
]
},
{
"cell_type": "markdown",
"id": "a054e0fa",
"metadata": {},
"source": [
"### Run Hybrid Model Quantization\n",
"[back to top ⬆️](#Table-of-contents:)"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "2a7434b0",
"metadata": {},
"outputs": [],
"source": [
"%%skip not $to_quantize.value\n",
"\n",
"from collections import deque\n",
"\n",
"def get_operation_const_op(operation, const_port_id: int):\n",
" node = operation.input_value(const_port_id).get_node()\n",
" queue = deque([node])\n",
" constant_node = None\n",
" allowed_propagation_types_list = [\"Convert\", \"FakeQuantize\", \"Reshape\"]\n",
"\n",
" while len(queue) != 0:\n",
" curr_node = queue.popleft()\n",
" if curr_node.get_type_name() == \"Constant\":\n",
" constant_node = curr_node\n",
" break\n",
" if len(curr_node.inputs()) == 0:\n",
" break\n",
" if curr_node.get_type_name() in allowed_propagation_types_list:\n",
" queue.append(curr_node.input_value(0).get_node())\n",
"\n",
" return constant_node\n",
"\n",
"\n",
"def is_embedding(node) -> bool:\n",
" allowed_types_list = [\"f16\", \"f32\", \"f64\"]\n",
" const_port_id = 0\n",
" input_tensor = node.input_value(const_port_id)\n",
" if input_tensor.get_element_type().get_type_name() in allowed_types_list:\n",
" const_node = get_operation_const_op(node, const_port_id)\n",
" if const_node is not None:\n",
" return True\n",
"\n",
" return False\n",
"\n",
"\n",
"def collect_ops_with_weights(model):\n",
" ops_with_weights = []\n",
" for op in model.get_ops():\n",
" if op.get_type_name() == \"MatMul\":\n",
" constant_node_0 = get_operation_const_op(op, const_port_id=0)\n",
" constant_node_1 = get_operation_const_op(op, const_port_id=1)\n",
" if constant_node_0 or constant_node_1:\n",
" ops_with_weights.append(op.get_friendly_name())\n",
" if op.get_type_name() == \"Gather\" and is_embedding(op):\n",
" ops_with_weights.append(op.get_friendly_name())\n",
"\n",
" return ops_with_weights"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1ef9c787",
"metadata": {},
"outputs": [],
"source": [
"%%skip not $to_quantize.value\n",
"\n",
"import nncf\n",
"import logging\n",
"from nncf.quantization.advanced_parameters import AdvancedSmoothQuantParameters\n",
"\n",
"nncf.set_log_level(logging.ERROR)\n",
"\n",
"if not OV_INT8_UNET_PATH.exists():\n",
" diffusion_model = core.read_model(UNET_PATH)\n",
" unet_ignored_scope = collect_ops_with_weights(diffusion_model)\n",
" compressed_diffusion_model = nncf.compress_weights(diffusion_model, ignored_scope=nncf.IgnoredScope(types=['Convolution']))\n",
" quantized_diffusion_model = nncf.quantize(\n",
" model=diffusion_model,\n",
" calibration_dataset=nncf.Dataset(calibration_data),\n",
" subset_size=subset_size,\n",
" model_type=nncf.ModelType.TRANSFORMER,\n",
" # We additionally ignore the first convolution to improve the quality of generations\n",
" ignored_scope=nncf.IgnoredScope(names=unet_ignored_scope + [\"__module.conv_in/aten::_convolution/Convolution\"]),\n",
" advanced_parameters=nncf.AdvancedQuantizationParameters(smooth_quant_alphas=AdvancedSmoothQuantParameters(matmul=-1))\n",
" )\n",
" ov.save_model(quantized_diffusion_model, OV_INT8_UNET_PATH)"
]
},
{
"cell_type": "markdown",
"id": "17705d82",
"metadata": {},
"source": [
"### Run Weight Compression\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Quantizing of the `vae encoder` and `vae decoder` does not significantly improve inference performance but can lead to a substantial degradation of accuracy. Only weight compression will be applied for footprint reduction."
]
},
{
"cell_type": "code",
"execution_count": 52,
"id": "f9f4a468",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:nncf:Statistics of the bitwidth distribution:\n",
"┍━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┑\n",
"│ Num bits (N) │ % all parameters (layers) │ % ratio-defining parameters (layers) │\n",
"┝━━━━━━━━━━━━━━━━┿━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┿━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┥\n",
"│ 8 │ 98% (29 / 32) │ 0% (0 / 3) │\n",
"├────────────────┼─────────────────────────────┼────────────────────────────────────────┤\n",
"│ 4 │ 2% (3 / 32) │ 100% (3 / 3) │\n",
"┕━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┙\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "25122a77cddd48acbf3d12eee8a59cf1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
"</pre>\n"
],
"text/plain": [
"\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:nncf:Statistics of the bitwidth distribution:\n",
"┍━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┑\n",
"│ Num bits (N) │ % all parameters (layers) │ % ratio-defining parameters (layers) │\n",
"┝━━━━━━━━━━━━━━━━┿━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┿━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┥\n",
"│ 8 │ 99% (65 / 68) │ 0% (0 / 3) │\n",
"├────────────────┼─────────────────────────────┼────────────────────────────────────────┤\n",
"│ 4 │ 1% (3 / 68) │ 100% (3 / 3) │\n",
"┕━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┙\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "00594c7aaf7c4ffaaaac4b09e32899fc",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
"</pre>\n"
],
"text/plain": [
"\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%%skip not $to_quantize.value\n",
"\n",
"nncf.set_log_level(logging.INFO)\n",
"\n",
"if not OV_INT8_VAE_ENCODER_PATH.exists():\n",
" text_encoder_model = core.read_model(VAE_ENCODER_PATH)\n",
" compressed_text_encoder_model = nncf.compress_weights(text_encoder_model, mode=nncf.CompressWeightsMode.INT4_SYM, group_size=64)\n",
" ov.save_model(compressed_text_encoder_model, OV_INT8_VAE_ENCODER_PATH)\n",
"\n",
"if not OV_INT8_VAE_DECODER_PATH.exists():\n",
" decoder_model = core.read_model(VAE_DECODER_PATH)\n",
" compressed_decoder_model = nncf.compress_weights(decoder_model, mode=nncf.CompressWeightsMode.INT4_SYM, group_size=64)\n",
" ov.save_model(compressed_decoder_model, OV_INT8_VAE_DECODER_PATH)"
]
},
{
"cell_type": "markdown",
"id": "9026878f",
"metadata": {},
"source": [
"Let's compare the video generated by the original and optimized pipelines."
]
},
{
"cell_type": "code",
"execution_count": 54,
"id": "b3156d0b",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "df6f355996444314a0d8619df1edfb3b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/ltalamanova/env_ci/lib/python3.8/site-packages/diffusers/configuration_utils.py:139: FutureWarning: Accessing config attribute `unet` directly via 'OVStableVideoDiffusionPipeline' object attribute is deprecated. Please access 'unet' over 'OVStableVideoDiffusionPipeline's config object instead, e.g. 'scheduler.config.unet'.\n",
" deprecate(\"direct config name access\", \"1.0.0\", deprecation_message, standard_warn=False)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"denoise currently\n",
"tensor(128.5637)\n",
"denoise currently\n",
"tensor(13.6784)\n",
"denoise currently\n",
"tensor(0.4969)\n",
"denoise currently\n",
"tensor(0.)\n"
]
}
],
"source": [
"%%skip not $to_quantize.value\n",
"\n",
"ov_int8_vae_encoder = core.compile_model(OV_INT8_VAE_ENCODER_PATH, device.value)\n",
"ov_int8_unet = core.compile_model(OV_INT8_UNET_PATH, device.value)\n",
"ov_int8_decoder = core.compile_model(OV_INT8_VAE_DECODER_PATH, device.value)\n",
"\n",
"ov_int8_pipeline = OVStableVideoDiffusionPipeline(\n",
" ov_int8_vae_encoder, image_encoder, ov_int8_unet, ov_int8_decoder, scheduler, feature_extractor\n",
")\n",
"\n",
"int8_frames = ov_int8_pipeline(\n",
" image,\n",
" num_inference_steps=4,\n",
" motion_bucket_id=60,\n",
" num_frames=8,\n",
" height=320,\n",
" width=512,\n",
" generator=torch.manual_seed(12342),\n",
").frames[0]"
]
},
{
"cell_type": "code",
"execution_count": 55,
"id": "902036a4",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<img src=\"generated_int8.gif\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": 55,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"int8_out_path = Path(\"generated_int8.mp4\")\n",
"\n",
"export_to_video(frames, str(out_path), fps=7)\n",
"int8_frames[0].save(\n",
" \"generated_int8.gif\",\n",
" save_all=True,\n",
" append_images=int8_frames[1:],\n",
" optimize=False,\n",
" duration=120,\n",
" loop=0,\n",
")\n",
"HTML('<img src=\"generated_int8.gif\">')"
]
},
{
"cell_type": "markdown",
"id": "b223a0a7",
"metadata": {},
"source": [
"### Compare model file sizes\n",
"\n",
"[back to top ⬆️](#Table-of-contents:)"
]
},
{
"cell_type": "code",
"execution_count": 57,
"id": "7099c21b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"vae_encoder compression rate: 2.018\n",
"unet compression rate: 1.996\n",
"vae_decoder compression rate: 2.007\n"
]
}
],
"source": [
"%%skip not $to_quantize.value\n",
"\n",
"fp16_model_paths = [VAE_ENCODER_PATH, UNET_PATH, VAE_DECODER_PATH]\n",
"int8_model_paths = [OV_INT8_VAE_ENCODER_PATH, OV_INT8_UNET_PATH, OV_INT8_VAE_DECODER_PATH]\n",
"\n",
"for fp16_path, int8_path in zip(fp16_model_paths, int8_model_paths):\n",
" fp16_ir_model_size = fp16_path.with_suffix(\".bin\").stat().st_size\n",
" int8_model_size = int8_path.with_suffix(\".bin\").stat().st_size\n",
" print(f\"{fp16_path.stem} compression rate: {fp16_ir_model_size / int8_model_size:.3f}\")"
]
},
{
"cell_type": "markdown",
"id": "65cec1b7",
"metadata": {},
"source": [
"### Compare inference time of the FP16 and INT8 pipelines\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"To measure the inference performance of the `FP16` and `INT8` pipelines, we use median inference time on calibration subset.\n",
"\n",
"> **NOTE**: For the most accurate performance estimation, it is recommended to run `benchmark_app` in a terminal/command prompt after closing other applications."
]
},
{
"cell_type": "code",
"execution_count": 58,
"id": "80d1b146",
"metadata": {},
"outputs": [],
"source": [
"%%skip not $to_quantize.value\n",
"\n",
"import time\n",
"\n",
"def calculate_inference_time(pipeline, validation_data):\n",
" inference_time = []\n",
" for prompt in validation_data:\n",
" start = time.perf_counter()\n",
" with io.capture_output() as captured:\n",
" _ = pipeline(\n",
" image,\n",
" num_inference_steps=4,\n",
" motion_bucket_id=60,\n",
" num_frames=8,\n",
" height=320,\n",
" width=512,\n",
" generator=torch.manual_seed(12342),\n",
" )\n",
" end = time.perf_counter()\n",
" delta = end - start\n",
" inference_time.append(delta)\n",
" return np.median(inference_time)"
]
},
{
"cell_type": "code",
"execution_count": 59,
"id": "438d896c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Performance speed-up: 1.243\n"
]
}
],
"source": [
"%%skip not $to_quantize.value\n",
"\n",
"validation_size = 3\n",
"validation_dataset = datasets.load_dataset(\"fusing/instructpix2pix-1000-samples\", split=\"train\", streaming=True).shuffle(seed=42).take(validation_size)\n",
"validation_data = [data[\"input_image\"] for data in validation_dataset]\n",
"\n",
"fp_latency = calculate_inference_time(ov_pipe, validation_data)\n",
"int8_latency = calculate_inference_time(ov_int8_pipeline, validation_data)\n",
"print(f\"Performance speed-up: {fp_latency / int8_latency:.3f}\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "f85c9cf6-8b88-462f-86bf-d5df450d82c2",
"metadata": {},
"source": [
"## Interactive Demo\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Please select below whether you would like to use the quantized model to launch the interactive demo."
]
},
{
"cell_type": "code",
"execution_count": 60,
"id": "840decf8",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6db1d459b7a04e98b473f23175a3bb2c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Checkbox(value=True, description='Use quantized model')"
]
},
"execution_count": 60,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"quantized_model_present = ov_int8_pipeline is not None\n",
"\n",
"use_quantized_model = widgets.Checkbox(\n",
" value=quantized_model_present,\n",
" description=\"Use quantized model\",\n",
" disabled=not quantized_model_present,\n",
")\n",
"\n",
"use_quantized_model"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e1fe35f3-4f07-4ebd-9a1e-ae0431450c07",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import gradio as gr\n",
"import random\n",
"\n",
"max_64_bit_int = 2**63 - 1\n",
"pipeline = ov_int8_pipeline if use_quantized_model.value else ov_pipe\n",
"\n",
"example_images_urls = [\n",
" \"https://huggingface.co/spaces/wangfuyun/AnimateLCM-SVD/resolve/main/test_imgs/ship-7833921_1280.jpg?download=true\",\n",
" \"https://huggingface.co/spaces/wangfuyun/AnimateLCM-SVD/resolve/main/test_imgs/ai-generated-8476858_1280.png?download=true\",\n",
" \"https://huggingface.co/spaces/wangfuyun/AnimateLCM-SVD/resolve/main/test_imgs/ai-generated-8481641_1280.jpg?download=true\",\n",
" \"https://huggingface.co/spaces/wangfuyun/AnimateLCM-SVD/resolve/main/test_imgs/dog-7396912_1280.jpg?download=true\",\n",
" \"https://huggingface.co/spaces/wangfuyun/AnimateLCM-SVD/resolve/main/test_imgs/cupcakes-380178_1280.jpg?download=true\",\n",
"]\n",
"\n",
"example_images_dir = Path(\"example_images\")\n",
"example_images_dir.mkdir(exist_ok=True)\n",
"example_imgs = []\n",
"\n",
"for image_id, url in enumerate(example_images_urls):\n",
" img = load_image(url)\n",
" image_path = example_images_dir / f\"{image_id}.png\"\n",
" img.save(image_path)\n",
" example_imgs.append([image_path])\n",
"\n",
"\n",
"def sample(\n",
" image: PIL.Image,\n",
" seed: Optional[int] = 42,\n",
" randomize_seed: bool = True,\n",
" motion_bucket_id: int = 127,\n",
" fps_id: int = 6,\n",
" num_inference_steps: int = 15,\n",
" num_frames: int = 4,\n",
" max_guidance_scale=1.0,\n",
" min_guidance_scale=1.0,\n",
" decoding_t: int = 8, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.\n",
" output_folder: str = \"outputs\",\n",
" progress=gr.Progress(track_tqdm=True),\n",
"):\n",
" if image.mode == \"RGBA\":\n",
" image = image.convert(\"RGB\")\n",
"\n",
" if randomize_seed:\n",
" seed = random.randint(0, max_64_bit_int)\n",
" generator = torch.manual_seed(seed)\n",
"\n",
" output_folder = Path(output_folder)\n",
" output_folder.mkdir(exist_ok=True)\n",
" base_count = len(list(output_folder.glob(\"*.mp4\")))\n",
" video_path = output_folder / f\"{base_count:06d}.mp4\"\n",
"\n",
" frames = pipeline(\n",
" image,\n",
" decode_chunk_size=decoding_t,\n",
" generator=generator,\n",
" motion_bucket_id=motion_bucket_id,\n",
" noise_aug_strength=0.1,\n",
" num_frames=num_frames,\n",
" num_inference_steps=num_inference_steps,\n",
" max_guidance_scale=max_guidance_scale,\n",
" min_guidance_scale=min_guidance_scale,\n",
" ).frames[0]\n",
" export_to_video(frames, str(video_path), fps=fps_id)\n",
"\n",
" return video_path, seed\n",
"\n",
"\n",
"def resize_image(image, output_size=(512, 320)):\n",
" # Calculate aspect ratios\n",
" target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size\n",
" image_aspect = image.width / image.height # Aspect ratio of the original image\n",
"\n",
" # Resize then crop if the original image is larger\n",
" if image_aspect > target_aspect:\n",
" # Resize the image to match the target height, maintaining aspect ratio\n",
" new_height = output_size[1]\n",
" new_width = int(new_height * image_aspect)\n",
" resized_image = image.resize((new_width, new_height), PIL.Image.LANCZOS)\n",
" # Calculate coordinates for cropping\n",
" left = (new_width - output_size[0]) / 2\n",
" top = 0\n",
" right = (new_width + output_size[0]) / 2\n",
" bottom = output_size[1]\n",
" else:\n",
" # Resize the image to match the target width, maintaining aspect ratio\n",
" new_width = output_size[0]\n",
" new_height = int(new_width / image_aspect)\n",
" resized_image = image.resize((new_width, new_height), PIL.Image.LANCZOS)\n",
" # Calculate coordinates for cropping\n",
" left = 0\n",
" top = (new_height - output_size[1]) / 2\n",
" right = output_size[0]\n",
" bottom = (new_height + output_size[1]) / 2\n",
"\n",
" # Crop the image\n",
" cropped_image = resized_image.crop((left, top, right, bottom))\n",
" return cropped_image\n",
"\n",
"\n",
"with gr.Blocks() as demo:\n",
" gr.Markdown(\n",
" \"\"\"# Stable Video Diffusion: Image to Video Generation with OpenVINO.\n",
" \"\"\"\n",
" )\n",
" with gr.Row():\n",
" with gr.Column():\n",
" image_in = gr.Image(label=\"Upload your image\", type=\"pil\")\n",
" generate_btn = gr.Button(\"Generate\")\n",
" video = gr.Video()\n",
" with gr.Accordion(\"Advanced options\", open=False):\n",
" seed = gr.Slider(\n",
" label=\"Seed\",\n",
" value=42,\n",
" randomize=True,\n",
" minimum=0,\n",
" maximum=max_64_bit_int,\n",
" step=1,\n",
" )\n",
" randomize_seed = gr.Checkbox(label=\"Randomize seed\", value=True)\n",
" motion_bucket_id = gr.Slider(\n",
" label=\"Motion bucket id\",\n",
" info=\"Controls how much motion to add/remove from the image\",\n",
" value=127,\n",
" minimum=1,\n",
" maximum=255,\n",
" )\n",
" fps_id = gr.Slider(\n",
" label=\"Frames per second\",\n",
" info=\"The length of your video in seconds will be num_frames / fps\",\n",
" value=6,\n",
" minimum=5,\n",
" maximum=30,\n",
" step=1,\n",
" )\n",
" num_frames = gr.Slider(label=\"Number of Frames\", value=8, minimum=2, maximum=25, step=1)\n",
" num_steps = gr.Slider(label=\"Number of generation steps\", value=4, minimum=1, maximum=8, step=1)\n",
" max_guidance_scale = gr.Slider(\n",
" label=\"Max guidance scale\",\n",
" info=\"classifier-free guidance strength\",\n",
" value=1.2,\n",
" minimum=1,\n",
" maximum=2,\n",
" )\n",
" min_guidance_scale = gr.Slider(\n",
" label=\"Min guidance scale\",\n",
" info=\"classifier-free guidance strength\",\n",
" value=1,\n",
" minimum=1,\n",
" maximum=1.5,\n",
" )\n",
" examples = gr.Examples(\n",
" examples=example_imgs,\n",
" inputs=[image_in],\n",
" outputs=[video, seed],\n",
" )\n",
"\n",
" image_in.upload(fn=resize_image, inputs=image_in, outputs=image_in)\n",
" generate_btn.click(\n",
" fn=sample,\n",
" inputs=[\n",
" image_in,\n",
" seed,\n",
" randomize_seed,\n",
" motion_bucket_id,\n",
" fps_id,\n",
" num_steps,\n",
" num_frames,\n",
" max_guidance_scale,\n",
" min_guidance_scale,\n",
" ],\n",
" outputs=[video, seed],\n",
" api_name=\"video\",\n",
" )\n",
"\n",
"\n",
"try:\n",
" demo.queue().launch(debug=True)\n",
"except Exception:\n",
" demo.queue().launch(debug=True, share=True)\n",
"# if you are launching remotely, specify server_name and server_port\n",
"# demo.launch(server_name='your server name', server_port='server port in int')\n",
"# Read more in the docs: https://gradio.app/docs/"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
},
"openvino_notebooks": {
"imageUrl": "https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/ae8a77b2-b5c9-45c5-a103-6e46c686739f",
"tags": {
"categories": [
"Model Demos",
"AI Trends"
],
"libraries": [],
"other": [],
"tasks": [
"Image-to-Video"
]
}
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
"0bdd9345da2247c3a441414c86e1382a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
"state": {
"layout": "IPY_MODEL_498134252036464aaf83057db4c54f85",
"style": "IPY_MODEL_1e204e15e5324ed0acac6bf86b64e1a6",
"value": "100%"
}
},
"1e204e15e5324ed0acac6bf86b64e1a6": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
"state": {
"description_width": "",
"font_size": null,
"text_color": null
}
},
"240f52aed13246c089b238d45043f41c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {}
},
"24fb38d8b6484895bfc517616d53c602": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {}
},
"32199ccd03d44e3f95206d89a4f83076": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {}
},
"498134252036464aaf83057db4c54f85": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {}
},
"531dd5ed15d041889f98bbb5bd4ca9c9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "ProgressStyleModel",
"state": {
"description_width": ""
}
},
"5c156b007fc5442a8ab4d3e5819420f2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
"state": {
"layout": "IPY_MODEL_24fb38d8b6484895bfc517616d53c602",
"style": "IPY_MODEL_74a59d97a5ab428fbd9935694d489967",
"value": " 4/4 [00:47<00:00, 11.53s/it]"
}
},
"74a59d97a5ab428fbd9935694d489967": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
"state": {
"description_width": "",
"font_size": null,
"text_color": null
}
},
"9a7f2447f844430d898e0aa2f41a5482": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "DescriptionStyleModel",
"state": {
"description_width": ""
}
},
"e0d3b977bd3a4847b253ab82add501af": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HBoxModel",
"state": {
"children": [
"IPY_MODEL_0bdd9345da2247c3a441414c86e1382a",
"IPY_MODEL_f393046ecfd14d47bdbc7276622c2e61",
"IPY_MODEL_5c156b007fc5442a8ab4d3e5819420f2"
],
"layout": "IPY_MODEL_32199ccd03d44e3f95206d89a4f83076"
}
},
"e2bdcfa8e15248289fa439cd3e97ebf1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "DropdownModel",
"state": {
"_options_labels": [
"CPU",
"GPU.0",
"GPU.1",
"AUTO"
],
"description": "Device:",
"index": 3,
"layout": "IPY_MODEL_f8519f3046d143879336ae6a70dc184e",
"style": "IPY_MODEL_9a7f2447f844430d898e0aa2f41a5482"
}
},
"f393046ecfd14d47bdbc7276622c2e61": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "FloatProgressModel",
"state": {
"bar_style": "success",
"layout": "IPY_MODEL_240f52aed13246c089b238d45043f41c",
"max": 4,
"style": "IPY_MODEL_531dd5ed15d041889f98bbb5bd4ca9c9",
"value": 4
}
},
"f8519f3046d143879336ae6a70dc184e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {}
}
},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|