File size: 43,748 Bytes
db5855f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
{
 "cells": [
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Text Prediction with OpenVINO™\n",
    "\n",
    "This notebook shows text prediction with OpenVINO. This notebook can work in two different modes, Text Generation and Conversation, which the user can select via selecting the model in the Model Selection Section. We use three models [GPT-2](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf), [GPT-Neo](https://zenodo.org/record/5297715#.ZAmpsXZBztU), and [PersonaGPT](https://arxiv.org/abs/2110.12949v1), which are a part of the Generative Pre-trained Transformer (GPT) family. GPT-2 and GPT-Neo can be used for text generation, whereas PersonaGPT is trained for the downstream task of conversation.\n",
    "\n",
    "GPT-2 and GPT-Neo are pre-trained on a large corpus of English text using unsupervised training. They both display a broad set of capabilities, including the ability to generate conditional synthetic text samples of unprecedented quality, where we prime the model with an input and have it generate a lengthy continuation.\n",
    "\n",
    "More details about the models are provided on their HuggingFace cards:\n",
    "\n",
    "* [GPT-2](https://huggingface.co/gpt2)\n",
    "* [GPT-Neo](https://huggingface.co/EleutherAI/gpt-neo-125M)\n",
    "\n",
    "PersonaGPT is an open-domain conversational agent that can decode  _personalized_ and _controlled_ responses based on user input. It is built on the pretrained [DialoGPT-medium](https://github.com/microsoft/DialoGPT) model, following the [GPT-2](https://github.com/openai/gpt-2) architecture. \n",
    "PersonaGPT is fine-tuned on the [Persona-Chat](https://arxiv.org/pdf/1801.07243) dataset. The model is available from [HuggingFace](https://huggingface.co/af1tang/personaGPT). PersonaGPT displays a broad set of capabilities, including the ability to take on personas, where we prime the model with few facts and have it generate based upon that, it can also be used for creating a chatbot on a knowledge base.\n",
    "\n",
    "The following image illustrates the complete demo pipeline used for text generation:\n",
    "\n",
    "![image2](https://user-images.githubusercontent.com/91228207/163990722-d2713ede-921e-4594-8b00-8b5c1a4d73b5.jpeg)\n",
    "\n",
    "This is a demonstration in which the user can type the beginning of the text and the network will generate a further. This procedure can be repeated as many times as the user desires.\n",
    "\n",
    "For Text Generation, The model input is tokenized text, which serves as the initial condition for text generation. Then, logits from the models' inference results are obtained, and the token with the highest probability is selected using the top-k sampling strategy and joined to the input sequence. This procedure repeats until the end of the sequence token is received or the specified maximum length is reached. After that, tokenized IDs are decoded to text.\n",
    "\n",
    "The following image illustrates the demo pipeline for conversation:\n",
    "\n",
    "![image2](https://user-images.githubusercontent.com/95569637/226101538-e204aebd-a34f-4c8b-b90c-5363ba41c080.jpeg)\n",
    "\n",
    "For Conversation, User Input is tokenized with `eos_token` concatenated in the end. Then, the text gets generated as detailed above. The Generated response is added to the history with the `eos_token` at the end. Additional user input is added to the history, and the sequence is passed back into the model.\n",
    "\n",
    "\n",
    "#### Table of contents:\n",
    "\n",
    "- [Model Selection](#Model-Selection)\n",
    "- [Load Model](#Load-Model)\n",
    "- [Convert Pytorch Model to OpenVINO IR](#Convert-Pytorch-Model-to-OpenVINO-IR)\n",
    "    - [Load the model](#Load-the-model)\n",
    "        - [Select inference device](#Select-inference-device)\n",
    "- [Pre-Processing](#Pre-Processing)\n",
    "- [Define tokenization](#Define-tokenization)\n",
    "    - [Define Softmax layer](#Define-Softmax-layer)\n",
    "    - [Set the minimum sequence length](#Set-the-minimum-sequence-length)\n",
    "    - [Top-K sampling](#Top-K-sampling)\n",
    "    - [Main Processing Function](#Main-Processing-Function)\n",
    "- [Inference with GPT-Neo/GPT-2](#Inference-with-GPT-Neo/GPT-2)\n",
    "- [Conversation with PersonaGPT using OpenVINO](#Conversation-with-PersonaGPT-using-OpenVINO)\n",
    "- [Converse Function](#Converse-Function)\n",
    "- [Conversation Class](#Conversation-Class)\n",
    "- [Conversation with PersonaGPT](#Conversation-with-PersonaGPT)\n",
    "\n"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Model Selection\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "Select the Model to be used for text generation, GPT-2 and GPT-Neo are used for text generation whereas PersonaGPT is used for Conversation."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "%pip install -q \"openvino>=2023.1.0\"\n",
    "%pip install -q \"gradio>=4.19\"\n",
    "%pip install -q --extra-index-url https://download.pytorch.org/whl/cpu transformers \"torch>=2.1\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "91b87541aae4431db8d2974edbb8de04",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "VBox(children=(Select(description='Select Model:', options=('PersonaGPT (Converastional)', 'GPT-2', 'GPT-Neo')…"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import ipywidgets as widgets\n",
    "\n",
    "style = {\"description_width\": \"initial\"}\n",
    "model_name = widgets.Select(\n",
    "    options=[\"PersonaGPT (Converastional)\", \"GPT-2\", \"GPT-Neo\"],\n",
    "    value=\"PersonaGPT (Converastional)\",\n",
    "    description=\"Select Model:\",\n",
    "    disabled=False,\n",
    ")\n",
    "\n",
    "widgets.VBox([model_name])"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Load Model\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "Download the Selected Model and Tokenizer from HuggingFace"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/ea/work/ov_venv/lib/python3.8/site-packages/torch/cuda/__init__.py:138: UserWarning: CUDA initialization: The NVIDIA driver on your system is too old (found version 11080). Please update your GPU driver by downloading and installing a new version from the URL: http://www.nvidia.com/Download/index.aspx Alternatively, go to: https://pytorch.org to install a PyTorch version that has been compiled with your version of the CUDA driver. (Triggered internally at ../c10/cuda/CUDAFunctions.cpp:108.)\n",
      "  return torch._C._cuda_getDeviceCount() > 0\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "398f68d549c84c5c934198857ee945fd",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading (…)/main/tokenizer.json:   0%|          | 0.00/1.36M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n"
     ]
    }
   ],
   "source": [
    "from transformers import (\n",
    "    GPTNeoForCausalLM,\n",
    "    GPT2TokenizerFast,\n",
    "    GPT2Tokenizer,\n",
    "    GPT2LMHeadModel,\n",
    ")\n",
    "\n",
    "if model_name.value == \"PersonaGPT (Converastional)\":\n",
    "    pt_model = GPT2LMHeadModel.from_pretrained(\"af1tang/personaGPT\")\n",
    "    tokenizer = GPT2Tokenizer.from_pretrained(\"af1tang/personaGPT\")\n",
    "elif model_name.value == \"GPT-2\":\n",
    "    pt_model = GPT2LMHeadModel.from_pretrained(\"gpt2\")\n",
    "    tokenizer = GPT2Tokenizer.from_pretrained(\"gpt2\")\n",
    "elif model_name.value == \"GPT-Neo\":\n",
    "    pt_model = GPTNeoForCausalLM.from_pretrained(\"EleutherAI/gpt-neo-125M\")\n",
    "    tokenizer = GPT2TokenizerFast.from_pretrained(\"EleutherAI/gpt-neo-125M\")"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Convert Pytorch Model to OpenVINO IR\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "For starting work with GPT-Neo model using OpenVINO, a model should be converted to OpenVINO Intermediate Representation (IR) format. HuggingFace provides a GPT-Neo model in PyTorch format, which is supported in OpenVINO via Model Conversion API.\n",
    "The `ov.convert_model` Python function of [model conversion API](https://docs.openvino.ai/2024/openvino-workflow/model-preparation.html) can be used for converting the model. The function returns instance of OpenVINO Model class, which is ready to use in Python interface. The Model can also be save on device in OpenVINO IR format for future execution using `ov.save_model`. In our case dynamic input shapes with a possible shape range (from 1 token to a maximum length defined in our processing function) are specified for optimization of memory consumption."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/ea/work/ov_venv/lib/python3.8/site-packages/transformers/models/gpt2/modeling_gpt2.py:807: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
      "  if batch_size <= 0:\n",
      "/home/ea/work/ov_venv/lib/python3.8/site-packages/torch/jit/_trace.py:1093: TracerWarning: Output nr 1. of the traced function does not match the corresponding output of the Python function. Detailed error:\n",
      "Tensor-likes are not close!\n",
      "\n",
      "Mismatched elements: 22 / 502630 (0.0%)\n",
      "Greatest absolute difference: 1.3828277587890625e-05 at index (0, 8, 3733) (up to 1e-05 allowed)\n",
      "Greatest relative difference: 0.00605766900896535 at index (0, 8, 40445) (up to 1e-05 allowed)\n",
      "  _check_trace(\n"
     ]
    }
   ],
   "source": [
    "from pathlib import Path\n",
    "import torch\n",
    "\n",
    "import openvino as ov\n",
    "\n",
    "# define path for saving openvino model\n",
    "model_path = Path(\"model/text_generator.xml\")\n",
    "\n",
    "example_input = {\n",
    "    \"input_ids\": torch.ones((1, 10), dtype=torch.long),\n",
    "    \"attention_mask\": torch.ones((1, 10), dtype=torch.long),\n",
    "}\n",
    "pt_model.config.torchscript = True\n",
    "\n",
    "# convert model to openvino\n",
    "if model_name.value == \"PersonaGPT (Converastional)\":\n",
    "    ov_model = ov.convert_model(\n",
    "        pt_model,\n",
    "        example_input=example_input,\n",
    "        input=[\n",
    "            (\"input_ids\", [1, -1], ov.Type.i64),\n",
    "            (\"attention_mask\", [1, -1], ov.Type.i64),\n",
    "        ],\n",
    "    )\n",
    "else:\n",
    "    ov_model = ov.convert_model(\n",
    "        pt_model,\n",
    "        example_input=example_input,\n",
    "        input=[\n",
    "            (\"input_ids\", [1, ov.Dimension(1, 128)], ov.Type.i64),\n",
    "            (\"attention_mask\", [1, ov.Dimension(1, 128)], ov.Type.i64),\n",
    "        ],\n",
    "    )\n",
    "\n",
    "# serialize openvino model\n",
    "ov.save_model(ov_model, str(model_path))"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Load the model\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "We start by building an OpenVINO Core object. Then we read the network architecture and model weights from the `.xml` and `.bin` files, respectively. Finally, we compile the model for the desired device."
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Select inference device\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "select device from dropdown list for running inference using OpenVINO"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "19970c2e603148749d10894807aacda6",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Dropdown(description='Device:', index=2, options=('CPU', 'GPU', 'AUTO'), value='AUTO')"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import ipywidgets as widgets\n",
    "\n",
    "# initialize openvino core\n",
    "core = ov.Core()\n",
    "\n",
    "device = widgets.Dropdown(\n",
    "    options=core.available_devices + [\"AUTO\"],\n",
    "    value=\"AUTO\",\n",
    "    description=\"Device:\",\n",
    "    disabled=False,\n",
    ")\n",
    "\n",
    "device"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "# read the model and corresponding weights from file\n",
    "model = core.read_model(model_path)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "# compile the model for CPU devices\n",
    "compiled_model = core.compile_model(model=model, device_name=device.value)\n",
    "\n",
    "# get output tensors\n",
    "output_key = compiled_model.output(0)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Input keys are the names of the input nodes and output keys contain names of the output nodes of the network. In the case of GPT-Neo, we have `batch size` and `sequence length` as inputs and `batch size`, `sequence length` and `vocab size` as outputs."
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Pre-Processing\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "NLP models often take a list of tokens as a standard input. A token is a word or a part of a word mapped to an integer. To provide the proper input, we use a vocabulary file to handle the mapping. So first let's load the vocabulary file."
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Define tokenization\n",
    "[back to top ⬆️](#Table-of-contents:)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "from typing import List, Tuple\n",
    "\n",
    "\n",
    "# this function converts text to tokens\n",
    "def tokenize(text: str) -> Tuple[List[int], List[int]]:\n",
    "    \"\"\"\n",

    "    tokenize input text using GPT2 tokenizer\n",

    "\n",

    "    Parameters:\n",

    "      text, str - input text\n",

    "    Returns:\n",

    "      input_ids - np.array with input token ids\n",

    "      attention_mask - np.array with 0 in place, where should be padding and 1 for places where original tokens are located, represents attention mask for model\n",

    "    \"\"\"\n",
    "\n",
    "    inputs = tokenizer(text, return_tensors=\"np\")\n",
    "    return inputs[\"input_ids\"], inputs[\"attention_mask\"]"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "`eos_token` is special token, which means that generation is finished. We store the index of this token in order to use this index as padding at later stage."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "2023-10-30 09:20:47.662787: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
      "2023-10-30 09:20:47.754627: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
      "To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
      "2023-10-30 09:20:49.414811: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n"
     ]
    }
   ],
   "source": [
    "eos_token_id = tokenizer.eos_token_id\n",
    "eos_token = tokenizer.decode(eos_token_id)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Define Softmax layer\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "A softmax function is used to convert top-k logits into a probability distribution. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "\n",
    "\n",
    "def softmax(x: np.array) -> np.array:\n",
    "    e_x = np.exp(x - np.max(x, axis=-1, keepdims=True))\n",
    "    summation = e_x.sum(axis=-1, keepdims=True)\n",
    "    return e_x / summation"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Set the minimum sequence length\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "If the minimum sequence length is not reached, the following code will reduce the probability of the `eos` token occurring. This continues the process of generating the next words."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "def process_logits(cur_length: int, scores: np.array, eos_token_id: int, min_length: int = 0) -> np.array:\n",
    "    \"\"\"\n",

    "    Reduce probability for padded indices.\n",

    "\n",

    "    Parameters:\n",

    "      cur_length: Current length of input sequence.\n",

    "      scores: Model output logits.\n",

    "      eos_token_id: Index of end of string token in model vocab.\n",

    "      min_length: Minimum length for applying postprocessing.\n",

    "\n",

    "    Returns:\n",

    "      Processed logits with reduced probability for padded indices.\n",

    "    \"\"\"\n",
    "    if cur_length < min_length:\n",
    "        scores[:, eos_token_id] = -float(\"inf\")\n",
    "    return scores"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Top-K sampling\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "In Top-K sampling, we filter the K most likely next words and redistribute the probability mass among only those K next words. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_top_k_logits(scores: np.array, top_k: int) -> np.array:\n",
    "    \"\"\"\n",

    "    Perform top-k sampling on the logits scores.\n",

    "\n",

    "    Parameters:\n",

    "      scores: np.array, model output logits.\n",

    "      top_k: int, number of elements with the highest probability to select.\n",

    "\n",

    "    Returns:\n",

    "      np.array, shape (batch_size, sequence_length, vocab_size),\n",

    "        filtered logits scores where only the top-k elements with the highest\n",

    "        probability are kept and the rest are replaced with -inf\n",

    "    \"\"\"\n",
    "    filter_value = -float(\"inf\")\n",
    "    top_k = min(max(top_k, 1), scores.shape[-1])\n",
    "    top_k_scores = -np.sort(-scores)[:, :top_k]\n",
    "    indices_to_remove = scores < np.min(top_k_scores)\n",
    "    filtred_scores = np.ma.array(scores, mask=indices_to_remove, fill_value=filter_value).filled()\n",
    "    return filtred_scores"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Main Processing Function\n",
    "[back to top ⬆️](#Table-of-contents:)\n",
    "\n",
    "Generating the predicted sequence."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "def generate_sequence(\n",
    "    input_ids: List[int],\n",
    "    attention_mask: List[int],\n",
    "    max_sequence_length: int = 128,\n",
    "    eos_token_id: int = eos_token_id,\n",
    "    dynamic_shapes: bool = True,\n",
    ") -> List[int]:\n",
    "    \"\"\"\n",

    "    Generates a sequence of tokens using a pre-trained language model.\n",

    "\n",

    "    Parameters:\n",

    "      input_ids: np.array, tokenized input ids for model\n",

    "      attention_mask: np.array, attention mask for model\n",

    "      max_sequence_length: int, maximum sequence length for stopping iteration\n",

    "      eos_token_id: int, index of the end-of-sequence token in the model's vocabulary\n",

    "      dynamic_shapes: bool, whether to use dynamic shapes for inference or pad model input to max_sequence_length\n",

    "\n",

    "    Returns:\n",

    "      np.array, the predicted sequence of token ids\n",

    "    \"\"\"\n",

    "    while True:\n",

    "        cur_input_len = len(input_ids[0])\n",

    "        if not dynamic_shapes:\n",

    "            pad_len = max_sequence_length - cur_input_len\n",

    "            model_input_ids = np.concatenate((input_ids, [[eos_token_id] * pad_len]), axis=-1)\n",

    "            model_input_attention_mask = np.concatenate((attention_mask, [[0] * pad_len]), axis=-1)\n",

    "        else:\n",

    "            model_input_ids = input_ids\n",

    "            model_input_attention_mask = attention_mask\n",

    "        outputs = compiled_model({\"input_ids\": model_input_ids, \"attention_mask\": model_input_attention_mask})[output_key]\n",

    "        next_token_logits = outputs[:, cur_input_len - 1, :]\n",

    "        # pre-process distribution\n",

    "        next_token_scores = process_logits(cur_input_len, next_token_logits, eos_token_id)\n",

    "        top_k = 20\n",

    "        next_token_scores = get_top_k_logits(next_token_scores, top_k)\n",

    "        # get next token id\n",

    "        probs = softmax(next_token_scores)\n",

    "        next_tokens = np.random.choice(probs.shape[-1], 1, p=probs[0], replace=True)\n",

    "        # break the loop if max length or end of text token is reached\n",

    "        if cur_input_len == max_sequence_length or next_tokens[0] == eos_token_id:\n",

    "            break\n",

    "        else:\n",

    "            input_ids = np.concatenate((input_ids, [next_tokens]), axis=-1)\n",

    "            attention_mask = np.concatenate((attention_mask, [[1] * len(next_tokens)]), axis=-1)\n",

    "    return input_ids"

   ]

  },

  {

   "attachments": {},

   "cell_type": "markdown",

   "metadata": {},

   "source": [

    "## Inference with GPT-Neo/GPT-2\n",

    "[back to top ⬆️](#Table-of-contents:)\n",

    "\n",

    "The `text` variable below is the input used to generate a predicted sequence."

   ]

  },

  {

   "cell_type": "code",

   "execution_count": 14,

   "metadata": {},

   "outputs": [

    {

     "name": "stdout",

     "output_type": "stream",

     "text": [

      "Selected Model is PersonaGPT. Please select GPT-Neo or GPT-2 in the first cell to generate text sequences\n"

     ]

    }

   ],

   "source": [

    "import time\n",

    "\n",

    "if not model_name.value == \"PersonaGPT (Converastional)\":\n",

    "    text = \"Deep learning is a type of machine learning that uses neural networks\"\n",

    "    input_ids, attention_mask = tokenize(text)\n",

    "\n",

    "    start = time.perf_counter()\n",

    "    output_ids = generate_sequence(input_ids, attention_mask)\n",

    "    end = time.perf_counter()\n",

    "    output_text = \" \"\n",

    "    # Convert IDs to words and make the sentence from it\n",

    "    for i in output_ids[0]:\n",

    "        output_text += tokenizer.batch_decode([i])[0]\n",

    "    print(f\"Generation took {end - start:.3f} s\")\n",

    "    print(f\"Input Text:  {text}\")\n",

    "    print()\n",

    "    print(f\"{model_name.value}: {output_text}\")\n",

    "else:\n",

    "    print(\"Selected Model is PersonaGPT. Please select GPT-Neo or GPT-2 in the first cell to generate text sequences\")"

   ]

  },

  {

   "attachments": {},

   "cell_type": "markdown",

   "metadata": {},

   "source": [

    "# Conversation with PersonaGPT using OpenVINO\n",

    "[back to top ⬆️](#Table-of-contents:)\n",

    "\n",

    "User Input is tokenized with `eos_token` concatenated in the end. Model input is tokenized text, which serves as initial condition for generation, then logits from model inference result should be obtained and token with the highest probability is selected using top-k sampling strategy and joined to input sequence. The procedure repeats until end of sequence token will be received or specified maximum length is reached. After that, decoding token ids to text using tokenized should be applied.\n",

    "\n",

    "The Generated response is added to the history with the `eos_token` at the end. Further User Input is added to it and again passed into the model."

   ]

  },

  {

   "attachments": {},

   "cell_type": "markdown",

   "metadata": {},

   "source": [

    "## Converse Function\n",

    "[back to top ⬆️](#Table-of-contents:)\n",

    "\n",

    "Wrapper on generate sequence function to support conversation"

   ]

  },

  {

   "cell_type": "code",

   "execution_count": 15,

   "metadata": {},

   "outputs": [],

   "source": [

    "def converse(\n",

    "    input: str,\n",

    "    history: List[int],\n",

    "    eos_token: str = eos_token,\n",

    "    eos_token_id: int = eos_token_id,\n",

    ") -> Tuple[str, List[int]]:\n",

    "    \"\"\"\n",

    "    Converse with the Model.\n",

    "\n",

    "    Parameters:\n",

    "      input: Text input given by the User\n",

    "      history: Chat History, ids of tokens of chat occured so far\n",

    "      eos_token: end of sequence string\n",

    "      eos_token_id: end of sequence index from vocab\n",

    "    Returns:\n",

    "      response: Text Response generated by the model\n",

    "      history: Chat History, Ids of the tokens of chat occured so far,including the tokens of generated response\n",

    "    \"\"\"\n",

    "\n",

    "    # Get Input Ids of the User Input\n",

    "    new_user_input_ids, _ = tokenize(input + eos_token)\n",

    "\n",

    "    # append the new user input tokens to the chat history, if history exists\n",

    "    if len(history) == 0:\n",

    "        bot_input_ids = new_user_input_ids\n",

    "    else:\n",

    "        bot_input_ids = np.concatenate([history, new_user_input_ids[0]])\n",

    "        bot_input_ids = np.expand_dims(bot_input_ids, axis=0)\n",

    "\n",

    "    # Create Attention Mask\n",

    "    bot_attention_mask = np.ones_like(bot_input_ids)\n",

    "\n",

    "    # Generate Response from the model\n",

    "    history = generate_sequence(bot_input_ids, bot_attention_mask, max_sequence_length=1000)\n",

    "\n",

    "    # Add the eos_token to mark end of sequence\n",

    "    history = np.append(history[0], eos_token_id)\n",

    "\n",

    "    # convert the tokens to text, and then split the responses into lines and retrieve the response from the Model\n",

    "    response = \"\".join(tokenizer.batch_decode(history)).split(eos_token)[-2]\n",

    "    return response, history"

   ]

  },

  {

   "attachments": {},

   "cell_type": "markdown",

   "metadata": {},

   "source": [

    "## Conversation Class\n",

    "[back to top ⬆️](#Table-of-contents:)\n"

   ]

  },

  {

   "cell_type": "code",

   "execution_count": 16,

   "metadata": {},

   "outputs": [],

   "source": [

    "class Conversation:\n",

    "    def __init__(self):\n",

    "        # Initialize Empty History\n",

    "        self.history = []\n",

    "        self.messages = []\n",

    "\n",

    "    def chat(self, input_text):\n",

    "        \"\"\"\n",

    "        Wrapper Over Converse Function.\n",

    "        Parameters:\n",

    "            input_text: Text input given by the User\n",

    "        Returns:\n",

    "            response: Text Response generated by the model\n",

    "        \"\"\"\n",

    "        response, self.history = converse(input_text, self.history)\n",

    "        self.messages.append(f\"Person: {input_text}\")\n",

    "        self.messages.append(f\"PersonaGPT: {response}\")\n",

    "        return response"

   ]

  },

  {

   "attachments": {},

   "cell_type": "markdown",

   "metadata": {},

   "source": [

    "## Conversation with PersonaGPT\n",

    "[back to top ⬆️](#Table-of-contents:)\n",

    "\n",

    "This notebook provides two styles of inference, Plain and Interactive. The style of inference can be selected in the next cell."

   ]

  },

  {

   "cell_type": "code",

   "execution_count": 17,

   "metadata": {},

   "outputs": [

    {

     "data": {

      "application/vnd.jupyter.widget-view+json": {

       "model_id": "f399ebf7e6be4a2fae0cd328e055f73c",

       "version_major": 2,

       "version_minor": 0

      },

      "text/plain": [

       "VBox(children=(Select(description='Inference Style:', options=('Plain', 'Interactive'), value='Plain'),))"

      ]

     },

     "execution_count": 17,

     "metadata": {},

     "output_type": "execute_result"

    }

   ],

   "source": [

    "style = {\"description_width\": \"initial\"}\n",

    "interactive_mode = widgets.Select(\n",

    "    options=[\"Plain\", \"Interactive\"],\n",

    "    value=\"Plain\",\n",

    "    description=\"Inference Style:\",\n",

    "    disabled=False,\n",

    ")\n",

    "\n",

    "widgets.VBox([interactive_mode])"

   ]

  },

  {

   "cell_type": "code",

   "execution_count": 18,

   "metadata": {},

   "outputs": [

    {

     "name": "stdout",

     "output_type": "stream",

     "text": [

      "Person: Hi,How are you?\n",

      "PersonaGPT: good, just got done with my shift at the coffee shop\n",

      "Person: What are you doing?\n",

      "PersonaGPT: oh, just getting ready to go out to my friends house to party\n",

      "Person: I like to dance,do you?\n",

      "PersonaGPT: i am not much of an activity person, more of a party person.\n",

      "Person: Can you recommend me some books?\n",

      "PersonaGPT: i like the holy grail. what about you?\n",

      "Person: Hi,How are you?\n",

      "PersonaGPT: good, just got done with my shift at the coffee shop\n",

      "Person: What are you doing?\n",

      "PersonaGPT: just got done with my shift at the coffee shop\n",

      "Person: I like to dance,do you?\n",

      "PersonaGPT: i like to dance as well.\n",

      "Person: Can you recommend me some books?\n",

      "PersonaGPT: the holy grail is a great read.\n",

      "Person: Hi,How are you?\n",

      "PersonaGPT: i am doing well. do you have any hobbies?\n",

      "Person: What are you doing?\n",

      "PersonaGPT: i just got done with my shift at the coffee shop.\n"

     ]

    }

   ],

   "source": [

    "import gradio as gr\n",

    "\n",

    "if model_name.value == \"PersonaGPT (Converastional)\":\n",

    "    if interactive_mode.value == \"Plain\":\n",

    "        conversation = Conversation()\n",

    "        user_prompt = None\n",

    "        pre_written_prompts = [\n",

    "            \"Hi,How are you?\",\n",

    "            \"What are you doing?\",\n",

    "            \"I like to dance,do you?\",\n",

    "            \"Can you recommend me some books?\",\n",

    "        ]\n",

    "        # Number of responses generated by model\n",

    "        n_prompts = 10\n",

    "        for i in range(n_prompts):\n",

    "            # Uncomment for taking User Input\n",

    "            # user_prompt = input()\n",

    "            if not user_prompt:\n",

    "                user_prompt = pre_written_prompts[i % len(pre_written_prompts)]\n",

    "            conversation.chat(user_prompt)\n",

    "            print(conversation.messages[-2])\n",

    "            print(conversation.messages[-1])\n",

    "            user_prompt = None\n",

    "    else:\n",

    "\n",

    "        def add_text(history, text):\n",

    "            history = history + [(text, None)]\n",

    "            return history, \"\"\n",

    "\n",

    "        conversation = Conversation()\n",

    "\n",

    "        def bot(history):\n",

    "            conversation.chat(history[-1][0])\n",

    "            response = conversation.messages[-1]\n",

    "            history[-1][1] = response\n",

    "            return history\n",

    "\n",

    "        with gr.Blocks() as demo:\n",

    "            chatbot = gr.Chatbot([], elem_id=\"chatbot\")\n",

    "\n",

    "            with gr.Row():\n",

    "                with gr.Column():\n",

    "                    txt = gr.Textbox(\n",

    "                        show_label=False,\n",

    "                        placeholder=\"Enter text and press enter, or upload an image\",\n",

    "                        container=False,\n",

    "                    )\n",

    "\n",

    "            txt.submit(add_text, [chatbot, txt], [chatbot, txt]).then(bot, chatbot, chatbot)\n",

    "        try:\n",

    "            demo.launch(debug=True)\n",

    "        except Exception:\n",

    "            demo.launch(debug=True, share=True)\n",

    "        # if you are launching remotely, specify server_name and server_port\n",

    "        # demo.launch(server_name='your server name', server_port='server port in int')\n",

    "        # Read more in the docs: https://gradio.app/docs/\n",

    "else:\n",

    "    print(\"Selected Model is not PersonaGPT, Please select PersonaGPT in the first cell to have a conversation\")"

   ]

  }

 ],

 "metadata": {

  "kernelspec": {

   "display_name": "Python 3",

   "language": "python",

   "name": "python3"

  },

  "language_info": {

   "codemirror_mode": {

    "name": "ipython",

    "version": 3

   },

   "file_extension": ".py",

   "mimetype": "text/x-python",

   "name": "python",

   "nbconvert_exporter": "python",

   "pygments_lexer": "ipython3",

   "version": "3.8.10"

  },

  "openvino_notebooks": {

   "imageUrl": "https://user-images.githubusercontent.com/95569637/229706278-2aa6a60d-02f4-45e2-9541-97529df8359d.png",

   "tags": {

    "categories": [

     "Model Demos"

    ],

    "libraries": [],

    "other": [],

    "tasks": [

     "Conversational",

     "Text Generation"

    ]

   }

  },

  "vscode": {

   "interpreter": {

    "hash": "a9b3b68eddeff8457de47f167459c4b20b0e6a6bfb00512a2de4d11c79c0e0f1"

   }

  },

  "widgets": {

   "application/vnd.jupyter.widget-state+json": {

    "state": {

     "0141f8b162644ef89ec051fef141b2f5": {

      "model_module": "@jupyter-widgets/controls",

      "model_module_version": "2.0.0",

      "model_name": "HTMLModel",

      "state": {

       "layout": "IPY_MODEL_bd54b4b27dca4663b5978490a5f93f6e",

       "style": "IPY_MODEL_32839db40c5c48229a374382679cefde",

       "value": "Downloading (…)/main/tokenizer.json: 100%"

      }

     },

     "063b5b5701904f8da1e982c5ddd0132f": {

      "model_module": "@jupyter-widgets/controls",

      "model_module_version": "2.0.0",

      "model_name": "DescriptionStyleModel",

      "state": {

       "description_width": ""

      }

     },

     "06bbf15e9ce545bfbe648415254a651d": {

      "model_module": "@jupyter-widgets/controls",

      "model_module_version": "2.0.0",

      "model_name": "DescriptionStyleModel",

      "state": {

       "description_width": ""

      }

     },

     "19970c2e603148749d10894807aacda6": {

      "model_module": "@jupyter-widgets/controls",

      "model_module_version": "2.0.0",

      "model_name": "DropdownModel",

      "state": {

       "_options_labels": [

        "CPU",

        "GPU",

        "AUTO"

       ],

       "description": "Device:",

       "index": 2,

       "layout": "IPY_MODEL_c9c2e3c17d0c4960b932a8b73277a5a5",

       "style": "IPY_MODEL_faf3088d462e4a4f84e1c0b380d4e42a"

      }

     },

     "32839db40c5c48229a374382679cefde": {

      "model_module": "@jupyter-widgets/controls",

      "model_module_version": "2.0.0",

      "model_name": "HTMLStyleModel",

      "state": {

       "description_width": "",

       "font_size": null,

       "text_color": null

      }

     },

     "398f68d549c84c5c934198857ee945fd": {

      "model_module": "@jupyter-widgets/controls",

      "model_module_version": "2.0.0",

      "model_name": "HBoxModel",

      "state": {

       "children": [

        "IPY_MODEL_0141f8b162644ef89ec051fef141b2f5",

        "IPY_MODEL_8eb0272361754c2295b65fe42e6268ae",

        "IPY_MODEL_638ae6dcdcd6406f9d0249de83ff90d1"

       ],

       "layout": "IPY_MODEL_a682f7e92ead49e2a65450174a475fed"

      }

     },

     "5774584ade0d4950a82cd7476e7793a6": {

      "model_module": "@jupyter-widgets/base",

      "model_module_version": "2.0.0",

      "model_name": "LayoutModel",

      "state": {}

     },

     "638ae6dcdcd6406f9d0249de83ff90d1": {

      "model_module": "@jupyter-widgets/controls",

      "model_module_version": "2.0.0",

      "model_name": "HTMLModel",

      "state": {

       "layout": "IPY_MODEL_754a0535c16543f2a4a705abcd605f8d",

       "style": "IPY_MODEL_c75c8b63c0c046268c1e26e8a93ac134",

       "value": " 1.36M/1.36M [00:00&lt;00:00, 1.83MB/s]"

      }

     },

     "70147a627c2645a99ff7cf6ee8607a7c": {

      "model_module": "@jupyter-widgets/controls",

      "model_module_version": "2.0.0",

      "model_name": "SelectModel",

      "state": {

       "_options_labels": [

        "PersonaGPT (Converastional)",

        "GPT-2",

        "GPT-Neo"

       ],

       "description": "Select Model:",

       "index": 0,

       "layout": "IPY_MODEL_83bac2ae3e5544b9acf8945240b80551",

       "style": "IPY_MODEL_06bbf15e9ce545bfbe648415254a651d"

      }

     },

     "754a0535c16543f2a4a705abcd605f8d": {

      "model_module": "@jupyter-widgets/base",

      "model_module_version": "2.0.0",

      "model_name": "LayoutModel",

      "state": {}

     },

     "83bac2ae3e5544b9acf8945240b80551": {

      "model_module": "@jupyter-widgets/base",

      "model_module_version": "2.0.0",

      "model_name": "LayoutModel",

      "state": {}

     },

     "8eb0272361754c2295b65fe42e6268ae": {

      "model_module": "@jupyter-widgets/controls",

      "model_module_version": "2.0.0",

      "model_name": "FloatProgressModel",

      "state": {

       "bar_style": "success",

       "layout": "IPY_MODEL_fa7baf4549d8439db857963411de3050",

       "max": 1355972,

       "style": "IPY_MODEL_dda9f9de898e4c6e9e3ce26c683fb28b",

       "value": 1355972

      }

     },

     "91b87541aae4431db8d2974edbb8de04": {

      "model_module": "@jupyter-widgets/controls",

      "model_module_version": "2.0.0",

      "model_name": "VBoxModel",

      "state": {

       "children": [

        "IPY_MODEL_70147a627c2645a99ff7cf6ee8607a7c"

       ],

       "layout": "IPY_MODEL_f113a8303b02441790e7b60c63f36dc6"

      }

     },

     "a682f7e92ead49e2a65450174a475fed": {

      "model_module": "@jupyter-widgets/base",

      "model_module_version": "2.0.0",

      "model_name": "LayoutModel",

      "state": {}

     },

     "bd54b4b27dca4663b5978490a5f93f6e": {

      "model_module": "@jupyter-widgets/base",

      "model_module_version": "2.0.0",

      "model_name": "LayoutModel",

      "state": {}

     },

     "c75c8b63c0c046268c1e26e8a93ac134": {

      "model_module": "@jupyter-widgets/controls",

      "model_module_version": "2.0.0",

      "model_name": "HTMLStyleModel",

      "state": {

       "description_width": "",

       "font_size": null,

       "text_color": null

      }

     },

     "c9c2e3c17d0c4960b932a8b73277a5a5": {

      "model_module": "@jupyter-widgets/base",

      "model_module_version": "2.0.0",

      "model_name": "LayoutModel",

      "state": {}

     },

     "d014151baa144679b3b3c3a21ce96388": {

      "model_module": "@jupyter-widgets/controls",

      "model_module_version": "2.0.0",

      "model_name": "SelectModel",

      "state": {

       "_options_labels": [

        "Plain",

        "Interactive"

       ],

       "description": "Inference Style:",

       "index": 0,

       "layout": "IPY_MODEL_e9794eb673564df2a8635f113e7f7c53",

       "style": "IPY_MODEL_063b5b5701904f8da1e982c5ddd0132f"

      }

     },

     "dda9f9de898e4c6e9e3ce26c683fb28b": {

      "model_module": "@jupyter-widgets/controls",

      "model_module_version": "2.0.0",

      "model_name": "ProgressStyleModel",

      "state": {

       "description_width": ""

      }

     },

     "e9794eb673564df2a8635f113e7f7c53": {

      "model_module": "@jupyter-widgets/base",

      "model_module_version": "2.0.0",

      "model_name": "LayoutModel",

      "state": {}

     },

     "f113a8303b02441790e7b60c63f36dc6": {

      "model_module": "@jupyter-widgets/base",

      "model_module_version": "2.0.0",

      "model_name": "LayoutModel",

      "state": {}

     },

     "f399ebf7e6be4a2fae0cd328e055f73c": {

      "model_module": "@jupyter-widgets/controls",

      "model_module_version": "2.0.0",

      "model_name": "VBoxModel",

      "state": {

       "children": [

        "IPY_MODEL_d014151baa144679b3b3c3a21ce96388"

       ],

       "layout": "IPY_MODEL_5774584ade0d4950a82cd7476e7793a6"

      }

     },

     "fa7baf4549d8439db857963411de3050": {

      "model_module": "@jupyter-widgets/base",

      "model_module_version": "2.0.0",

      "model_name": "LayoutModel",

      "state": {}

     },

     "faf3088d462e4a4f84e1c0b380d4e42a": {

      "model_module": "@jupyter-widgets/controls",

      "model_module_version": "2.0.0",

      "model_name": "DescriptionStyleModel",

      "state": {

       "description_width": ""

      }

     }

    },

    "version_major": 2,

    "version_minor": 0

   }

  }

 },

 "nbformat": 4,

 "nbformat_minor": 4

}