Spaces:
Runtime error
Runtime error
File size: 14,536 Bytes
db5855f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "c5f666768988bb7e",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"# Classification with ConvNeXt and OpenVINO\n",
"The [`torchvision.models`](https://pytorch.org/vision/stable/models.html) subpackage contains definitions of models for addressing different tasks, including: image classification, pixelwise semantic segmentation, object detection, instance segmentation, person keypoint detection, video classification, and optical flow. Throughout this notebook we will show how to use one of them.\n",
"\n",
"The ConvNeXt model is based on the [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) paper. The outcome of this exploration is a family of pure ConvNet models dubbed ConvNeXt. Constructed entirely from standard ConvNet modules, ConvNeXts compete favorably with Transformers in terms of accuracy and scalability, achieving 87.8% ImageNet top-1 accuracy and outperforming Swin Transformers on COCO detection and ADE20K segmentation, while maintaining the simplicity and efficiency of standard ConvNets.\n",
"The `torchvision.models` subpackage [contains](https://pytorch.org/vision/main/models/convnext.html) several pretrained ConvNeXt model. In this tutorial we will use ConvNeXt Tiny model.\n",
"\n",
"\n",
"#### Table of contents:\n",
"\n",
"- [Prerequisites](#Prerequisites)\n",
"- [Get a test image](#Get-a-test-image)\n",
"- [Get a pretrained model](#Get-a-pretrained-model)\n",
"- [Define a preprocessing and prepare an input data](#Define-a-preprocessing-and-prepare-an-input-data)\n",
"- [Use the original model to run an inference](#Use-the-original-model-to-run-an-inference)\n",
"- [Convert the model to OpenVINO Intermediate representation format](#Convert-the-model-to-OpenVINO-Intermediate-representation-format)\n",
"- [Use the OpenVINO IR model to run an inference](#Use-the-OpenVINO-IR-model-to-run-an-inference)\n",
"\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "1c2d1a64285edce7",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"## Prerequisites\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3fa963993b1a5e68",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"%pip install -q --extra-index-url https://download.pytorch.org/whl/cpu torch torchvision\n",
"%pip install -q \"openvino>=2023.1.0\""
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "5043e3dd3be9ad6a",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"## Get a test image\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"First of all lets get a test image from an open dataset. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7aaf480dc5faad52",
"metadata": {
"collapsed": false,
"is_executing": true,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"import requests\n",
"\n",
"from torchvision.io import read_image\n",
"import torchvision.transforms as transforms\n",
"\n",
"\n",
"img_path = \"cats_image.jpeg\"\n",
"r = requests.get(\"https://huggingface.co/datasets/huggingface/cats-image/resolve/main/cats_image.jpeg\")\n",
"\n",
"with open(img_path, \"wb\") as f:\n",
" f.write(r.content)\n",
"image = read_image(img_path)\n",
"display(transforms.ToPILImage()(image))"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "bc57f34a2836b2f7",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"## Get a pretrained model\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"Torchvision provides a mechanism of [listing and retrieving available models](https://pytorch.org/vision/stable/models.html#listing-and-retrieving-available-models). "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ad1a577e49d0cb79",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"import torchvision.models as models\n",
"\n",
"# List available models\n",
"all_models = models.list_models()\n",
"# List of models by type. Classification models are in the parent module.\n",
"classification_models = models.list_models(module=models)\n",
"\n",
"print(classification_models)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "12887cf8f1f5bdfc",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"We will use `convnext_tiny`. To get a pretrained model just use `models.get_model(\"convnext_tiny\", weights='DEFAULT')` or a specific method of `torchvision.models` for this model using [default weights](https://pytorch.org/vision/stable/models/generated/torchvision.models.convnext_tiny.html#torchvision.models.ConvNeXt_Tiny_Weights) that is equivalent to `ConvNeXt_Tiny_Weights.IMAGENET1K_V1`. If you don't specify `weight` or specify `weights=None` it will be a random initialization. To get all available weights for the model you can call `weights_enum = models.get_model_weights(\"convnext_tiny\")`, but there is only one for this model. You can find more information how to initialize pre-trained models [here](https://pytorch.org/vision/stable/models.html#initializing-pre-trained-models)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4ff104177ab55761",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"model = models.convnext_tiny(weights=models.ConvNeXt_Tiny_Weights.DEFAULT)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "b591169d664ba0a3",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"## Define a preprocessing and prepare an input data\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"You can use `torchvision.transforms` to make a preprocessing or use[preprocessing transforms from the model wight](https://pytorch.org/vision/stable/models.html#using-the-pre-trained-models)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7c5ba4260cb1e66",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"import torch\n",
"\n",
"\n",
"preprocess = models.ConvNeXt_Tiny_Weights.DEFAULT.transforms()\n",
"\n",
"input_data = preprocess(image)\n",
"input_data = torch.stack([input_data], dim=0)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "203262ff4538e315",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"## Use the original model to run an inference\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "221e6a6140c9a9c9",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"outputs = model(input_data)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "76c099a1da7e44d4",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"And print results"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dc09c6ee2c791ed0",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"# download class number to class label mapping\n",
"imagenet_classes_file_path = \"imagenet_2012.txt\"\n",
"r = requests.get(\n",
" url=\"https://storage.openvinotoolkit.org/repositories/openvino_notebooks/data/data/datasets/imagenet/imagenet_2012.txt\",\n",
")\n",
"\n",
"with open(imagenet_classes_file_path, \"w\") as f:\n",
" f.write(r.text)\n",
"\n",
"imagenet_classes = open(imagenet_classes_file_path).read().splitlines()\n",
"\n",
"\n",
"def print_results(outputs: torch.Tensor):\n",
" _, predicted_class = outputs.max(1)\n",
" predicted_probability = torch.softmax(outputs, dim=1)[0, predicted_class].item()\n",
"\n",
" print(f\"Predicted Class: {predicted_class.item()}\")\n",
" print(f\"Predicted Label: {imagenet_classes[predicted_class.item()]}\")\n",
" print(f\"Predicted Probability: {predicted_probability}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "757fcd966112c54",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"print_results(outputs)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "36af21a44d028ebe",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"## Convert the model to OpenVINO Intermediate representation format\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"OpenVINO supports PyTorch through conversion to OpenVINO Intermediate Representation (IR) format. To take the advantage of OpenVINO optimization tools and features, the model should be converted using the OpenVINO Converter tool (OVC). The `openvino.convert_model` function provides Python API for OVC usage. The function returns the instance of the OpenVINO Model class, which is ready for use in the Python interface. However, it can also be saved on disk using `openvino.save_model` for future execution."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "459eda7435de45d8",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"from pathlib import Path\n",
"\n",
"import openvino as ov\n",
"\n",
"\n",
"ov_model_xml_path = Path(\"models/ov_convnext_model.xml\")\n",
"\n",
"if not ov_model_xml_path.exists():\n",
" ov_model_xml_path.parent.mkdir(parents=True, exist_ok=True)\n",
" converted_model = ov.convert_model(model, example_input=torch.randn(1, 3, 224, 224))\n",
" # add transform to OpenVINO preprocessing converting\n",
" ov.save_model(converted_model, ov_model_xml_path)\n",
"else:\n",
" print(f\"IR model {ov_model_xml_path} already exists.\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "314101e94e7a7f7d",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"When the `openvino.save_model` function is used, an OpenVINO model is serialized in the file system as two files with `.xml` and `.bin` extensions. This pair of files is called OpenVINO Intermediate Representation format (OpenVINO IR, or just IR) and useful for efficient model deployment. OpenVINO IR can be loaded into another application for inference using the `openvino.Core.read_model` function. "
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "990b1af0c54941c6",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"Select device from dropdown list for running inference using OpenVINO"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2496704b7dda49c8",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"import ipywidgets as widgets\n",
"\n",
"core = ov.Core()\n",
"device = widgets.Dropdown(\n",
" options=core.available_devices + [\"AUTO\"],\n",
" value=\"AUTO\",\n",
" description=\"Device:\",\n",
" disabled=False,\n",
")\n",
"\n",
"device"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "68430816abf7f5b3",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"core = ov.Core()\n",
"\n",
"compiled_model = core.compile_model(ov_model_xml_path, device_name=device.value)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "d84cf4a8e4b24011",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"source": [
"## Use the OpenVINO IR model to run an inference\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4b7f7686f8220bfc",
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"outputs = compiled_model(input_data)[0]\n",
"print_results(torch.from_numpy(outputs))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
},
"openvino_notebooks": {
"imageUrl": "",
"tags": {
"categories": [
"Convert"
],
"libraries": [],
"other": [],
"tasks": [
"Image Classification"
]
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|