Spaces:
Runtime error
Runtime error
File size: 35,547 Bytes
db5855f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Typo Detector with OpenVINO™\n",
"\n",
"Typo detection in AI is a process of identifying and correcting typographical errors in text data using machine learning algorithms. The goal of typo detection is to improve the accuracy, readability, and usability of text by identifying and indicating mistakes made during the writing process. To detect typos, AI-based typo detectors use various techniques, such as natural language processing (NLP), machine learning (ML), and deep learning (DL).\n",
"\n",
"A typo detector takes a sentence as an input and identify all typographical errors such as misspellings and homophone errors.\n",
"\n",
"This tutorial provides how to use the [Typo Detector](https://huggingface.co/m3hrdadfi/typo-detector-distilbert-en) from the [Hugging Face Transformers](https://huggingface.co/docs/transformers/index) library in the OpenVINO environment to perform the above task.\n",
"\n",
"The model detects typos in a given text with a high accuracy, performances of which are listed below,\n",
"- Precision score of 0.9923\n",
"- Recall score of 0.9859\n",
"- f1-score of 0.9891\n",
"\n",
"[Source for above metrics](https://huggingface.co/m3hrdadfi/typo-detector-distilbert-en)\n",
"\n",
"These metrics indicate that the model can correctly identify a high proportion of both correct and incorrect text, minimizing both false positives and false negatives.\n",
"\n",
"The model has been pretrained on the [NeuSpell](https://github.com/neuspell/neuspell) dataset.\n",
"\n",
"<br />\n",
"\n",
"<img src=https://user-images.githubusercontent.com/80534358/224564463-ee686386-f846-4b2b-91af-7163586014b7.png>\n",
"\n",
"\n",
"\n",
"#### Table of contents:\n",
"\n",
"- [Imports](#Imports)\n",
"- [Methods](#Methods)\n",
" - [1. Using the Hugging Face Optimum library](#1.-Using-the-Hugging-Face-Optimum-library)\n",
" - [2. Converting the model to OpenVINO IR](#2.-Converting-the-model-to-OpenVINO-IR)\n",
" - [Select inference device](#Select-inference-device)\n",
" - [1. Hugging Face Optimum Intel library](#1.-Hugging-Face-Optimum-Intel-library)\n",
" - [Load the model](#Load-the-model)\n",
" - [Load the tokenizer](#Load-the-tokenizer)\n",
" - [2. Converting the model to OpenVINO IR](#2.-Converting-the-model-to-OpenVINO-IR)\n",
" - [Load the Pytorch model](#Load-the-Pytorch-model)\n",
" - [Converting to OpenVINO IR](#Converting-to-OpenVINO-IR)\n",
" - [Inference](#Inference)\n",
" - [Helper Functions](#Helper-Functions)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install -q \"diffusers>=0.17.1\" \"openvino>=2023.1.0\" \"nncf>=2.5.0\" \"gradio>=4.19\" \"onnx>=1.11.0\" \"transformers>=4.39.0\" \"torch>=2.1\" --extra-index-url https://download.pytorch.org/whl/cpu\n",
"%pip install -q \"git+https://github.com/huggingface/optimum-intel.git\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Imports\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-09-13 09:19:18.035922: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
"2023-09-13 09:19:18.070661: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
"2023-09-13 09:19:18.678010: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n"
]
}
],
"source": [
"from transformers import (\n",
" AutoConfig,\n",
" AutoTokenizer,\n",
" AutoModelForTokenClassification,\n",
" pipeline,\n",
")\n",
"from pathlib import Path\n",
"import numpy as np\n",
"import re\n",
"from typing import List, Dict\n",
"import time"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Methods\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"The notebook provides two methods to run the inference of typo detector with OpenVINO runtime, so that you can experience both calling the API of Optimum with OpenVINO Runtime included, and loading models in other frameworks, converting them to OpenVINO IR format, and running inference with OpenVINO Runtime.\n",
"\n",
"##### 1. Using the [Hugging Face Optimum](https://huggingface.co/docs/optimum/index) library\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"The Hugging Face Optimum API is a high-level API that allows us to convert models from the Hugging Face Transformers library to the OpenVINO™ IR format. Compiled models in OpenVINO IR format can be loaded using Optimum. Optimum allows the use of optimization on targeted hardware.\n",
"\n",
"##### 2. Converting the model to OpenVINO IR\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"The Pytorch model is converted to [OpenVINO IR format](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html). This method provides much more insight to how to set up a pipeline from model loading to model converting, compiling and running inference with OpenVINO, so that you could conveniently use OpenVINO to optimize and accelerate inference for other deep-learning models. The optimization of targeted hardware is also used here.\n",
"\n",
"\n",
"The following table summarizes the major differences between the two methods\n",
"\n",
"</br>\n",
"\n",
"| Method 1 | Method 2 |\n",
"| ------------------------------------------------------------------- | ------------------------------------------------------------------ |\n",
"| Load models from Optimum, an extension of transformers | Load model from transformers |\n",
"| Load the model in OpenVINO IR format on the fly | Convert to OpenVINO IR |\n",
"| Load the compiled model by default | Compile the OpenVINO IR and run inference with OpenVINO Runtime |\n",
"| Pipeline is created to run inference with OpenVINO Runtime | Manually run inference. |\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Select inference device\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"select device from dropdown list for running inference using OpenVINO"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c97c547d095f47d09a012fc772293613",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Dropdown(description='Device:', index=2, options=('CPU', 'GPU', 'AUTO'), value='AUTO')"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import ipywidgets as widgets\n",
"import openvino as ov\n",
"\n",
"core = ov.Core()\n",
"\n",
"device = widgets.Dropdown(\n",
" options=core.available_devices + [\"AUTO\"],\n",
" value=\"AUTO\",\n",
" description=\"Device:\",\n",
" disabled=False,\n",
")\n",
"\n",
"device"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1. Hugging Face Optimum Intel library\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"For this method, we need to install the `Hugging Face Optimum Intel library` accelerated by OpenVINO integration.\n",
"\n",
"Optimum Intel can be used to load optimized models from the [Hugging Face Hub](https://huggingface.co/docs/optimum/intel/hf.co/models) and create pipelines to run an inference with OpenVINO Runtime using Hugging Face APIs. The Optimum Inference models are API compatible with Hugging Face Transformers models. This means we need just replace `AutoModelForXxx` class with the corresponding `OVModelForXxx` class."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Import required model class"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:nncf:NNCF initialized successfully. Supported frameworks detected: torch, tensorflow, onnx, openvino\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda'\n",
"/home/ea/work/ov_venv/lib/python3.8/site-packages/transformers/deepspeed.py:23: FutureWarning: transformers.deepspeed module is deprecated and will be removed in a future version. Please import deepspeed modules directly from transformers.integrations\n",
" warnings.warn(\n"
]
}
],
"source": [
"from optimum.intel.openvino import OVModelForTokenClassification"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Load the model\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"From the `OVModelForTokenCLassification` class we will import the relevant pre-trained model. To load a Transformers model and convert it to the OpenVINO format on-the-fly, we set `export=True` when loading your model."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Compiling the model...\n",
"Set CACHE_DIR to optimum_model/model_cache\n"
]
}
],
"source": [
"# The pretrained model we are using\n",
"model_id = \"m3hrdadfi/typo-detector-distilbert-en\"\n",
"\n",
"model_dir = Path(\"optimum_model\")\n",
"\n",
"# Save the model to the path if not existing\n",
"if model_dir.exists():\n",
" model = OVModelForTokenClassification.from_pretrained(model_dir, device=device.value)\n",
"else:\n",
" model = OVModelForTokenClassification.from_pretrained(model_id, export=True, device=device.value)\n",
" model.save_pretrained(model_dir)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Load the tokenizer\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Text Preprocessing cleans the text-based input data so it can be fed into the model. Tokenization splits paragraphs and sentences into smaller units that can be more easily assigned meaning. It involves cleaning the data and assigning tokens or IDs to the words, so they are represented in a vector space where similar words have similar vectors. This helps the model understand the context of a sentence. We're making use of an [AutoTokenizer](https://huggingface.co/docs/transformers/main_classes/tokenizer) from Hugging Face, which is essentially a pretrained tokenizer."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"tokenizer = AutoTokenizer.from_pretrained(model_id)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then we use the inference pipeline for `token-classification` task. You can find more information about usage Hugging Face inference pipelines in this [tutorial](https://huggingface.co/docs/transformers/pipeline_tutorial)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"nlp = pipeline(\n",
" \"token-classification\",\n",
" model=model,\n",
" tokenizer=tokenizer,\n",
" aggregation_strategy=\"average\",\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Function to find typos in a sentence and write them to the terminal"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"def show_typos(sentence: str):\n",
" \"\"\"\n",
" Detect typos from the given sentence.\n",
" Writes both the original input and typo-tagged version to the terminal.\n",
"\n",
" Arguments:\n",
" sentence -- Sentence to be evaluated (string)\n",
" \"\"\"\n",
"\n",
" typos = [sentence[r[\"start\"] : r[\"end\"]] for r in nlp(sentence)]\n",
"\n",
" detected = sentence\n",
" for typo in typos:\n",
" detected = detected.replace(typo, f\"<i>{typo}</i>\")\n",
"\n",
" print(\"[Input]: \", sentence)\n",
" print(\"[Detected]: \", detected)\n",
" print(\"-\" * 130)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's run a demo using the Hugging Face Optimum API."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[Input]: He had also stgruggled with addiction during his time in Congress .\n",
"[Detected]: He had also <i>stgruggled</i> with addiction during his time in Congress .\n",
"----------------------------------------------------------------------------------------------------------------------------------\n",
"[Input]: The review thoroughla assessed all aspects of JLENS SuR and CPG esign maturit and confidence .\n",
"[Detected]: The review <i>thoroughla</i> assessed all aspects of JLENS SuR and CPG <i>esign maturit</i> and confidence .\n",
"----------------------------------------------------------------------------------------------------------------------------------\n",
"[Input]: Letterma also apologized two his staff for the satyation .\n",
"[Detected]: <i>Letterma</i> also apologized <i>two</i> his staff for the <i>satyation</i> .\n",
"----------------------------------------------------------------------------------------------------------------------------------\n",
"[Input]: Vincent Jay had earlier won France 's first gold in gthe 10km biathlon sprint .\n",
"[Detected]: Vincent Jay had earlier won France 's first gold in <i>gthe</i> 10km biathlon sprint .\n",
"----------------------------------------------------------------------------------------------------------------------------------\n",
"[Input]: It is left to the directors to figure out hpw to bring the stry across to tye audience .\n",
"[Detected]: It is left to the directors to figure out <i>hpw</i> to bring the <i>stry</i> across to <i>tye</i> audience .\n",
"----------------------------------------------------------------------------------------------------------------------------------\n",
"[Input]: I wnet to the park yestreday to play foorball with my fiends, but it statred to rain very hevaily and we had to stop.\n",
"[Detected]: I <i>wnet</i> to the park <i>yestreday</i> to play <i>foorball</i> with my <i>fiends</i>, but it <i>statred</i> to rain very <i>hevaily</i> and we had to stop.\n",
"----------------------------------------------------------------------------------------------------------------------------------\n",
"[Input]: My faorite restuarant servs the best spahgetti in the town, but they are always so buzy that you have to make a resrvation in advnace.\n",
"[Detected]: My <i>faorite restuarant servs</i> the best <i>spahgetti</i> in the town, but they are always so <i>buzy</i> that you have to make a <i>resrvation</i> in <i>advnace</i>.\n",
"----------------------------------------------------------------------------------------------------------------------------------\n",
"[Input]: I was goig to watch a mvoie on Netflx last night, but the straming was so slow that I decided to cancled my subscrpition.\n",
"[Detected]: I was <i>goig</i> to watch a <i>mvoie</i> on <i>Netflx</i> last night, but the <i>straming</i> was so slow that I decided to <i>cancled</i> my <i>subscrpition</i>.\n",
"----------------------------------------------------------------------------------------------------------------------------------\n",
"[Input]: My freind and I went campign in the forest last weekend and saw a beutiful sunst that was so amzing it took our breth away.\n",
"[Detected]: My <i>freind</i> and I went <i>campign</i> in the forest last weekend and saw a <i>beutiful sunst</i> that was so <i>amzing</i> it took our <i>breth</i> away.\n",
"----------------------------------------------------------------------------------------------------------------------------------\n",
"[Input]: I have been stuying for my math exam all week, but I'm stil not very confidet that I will pass it, because there are so many formuals to remeber.\n",
"[Detected]: I have been <i>stuying</i> for my math exam all week, but I'm <i>stil</i> not very <i>confidet</i> that I will pass it, because there are so many formuals to <i>remeber</i>.\n",
"----------------------------------------------------------------------------------------------------------------------------------\n",
"Time elapsed: 0.17897582054138184\n"
]
}
],
"source": [
"sentences = [\n",
" \"He had also stgruggled with addiction during his time in Congress .\",\n",
" \"The review thoroughla assessed all aspects of JLENS SuR and CPG esign maturit and confidence .\",\n",
" \"Letterma also apologized two his staff for the satyation .\",\n",
" \"Vincent Jay had earlier won France 's first gold in gthe 10km biathlon sprint .\",\n",
" \"It is left to the directors to figure out hpw to bring the stry across to tye audience .\",\n",
" \"I wnet to the park yestreday to play foorball with my fiends, but it statred to rain very hevaily and we had to stop.\",\n",
" \"My faorite restuarant servs the best spahgetti in the town, but they are always so buzy that you have to make a resrvation in advnace.\",\n",
" \"I was goig to watch a mvoie on Netflx last night, but the straming was so slow that I decided to cancled my subscrpition.\",\n",
" \"My freind and I went campign in the forest last weekend and saw a beutiful sunst that was so amzing it took our breth away.\",\n",
" \"I have been stuying for my math exam all week, but I'm stil not very confidet that I will pass it, because there are so many formuals to remeber.\",\n",
"]\n",
"\n",
"start = time.time()\n",
"\n",
"for sentence in sentences:\n",
" show_typos(sentence)\n",
"\n",
"print(f\"Time elapsed: {time.time() - start}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2. Converting the model to OpenVINO IR\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Load the Pytorch model\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Use the `AutoModelForTokenClassification` class to load the pretrained pytorch model."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"model_id = \"m3hrdadfi/typo-detector-distilbert-en\"\n",
"model_dir = Path(\"pytorch_model\")\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
"config = AutoConfig.from_pretrained(model_id)\n",
"\n",
"# Save the model to the path if not existing\n",
"if model_dir.exists():\n",
" model = AutoModelForTokenClassification.from_pretrained(model_dir)\n",
"else:\n",
" model = AutoModelForTokenClassification.from_pretrained(model_id, config=config)\n",
" model.save_pretrained(model_dir)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Converting to OpenVINO IR\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"WARNING:tensorflow:Please fix your imports. Module tensorflow.python.training.tracking.base has been moved to tensorflow.python.trackable.base. The old module will be deleted in version 2.11.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[ WARNING ] Please fix your imports. Module %s has been moved to %s. The old module will be deleted in version %s.\n",
"/home/ea/work/ov_venv/lib/python3.8/site-packages/nncf/torch/dynamic_graph/wrappers.py:74: TracerWarning: torch.tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect.\n",
" op1 = operator(*args, **kwargs)\n"
]
}
],
"source": [
"ov_model_path = Path(model_dir) / \"typo_detect.xml\"\n",
"\n",
"dummy_model_input = tokenizer(\"This is a sample\", return_tensors=\"pt\")\n",
"ov_model = ov.convert_model(model, example_input=dict(dummy_model_input))\n",
"ov.save_model(ov_model, ov_model_path)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Inference\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"OpenVINO™ Runtime Python API is used to compile the model in OpenVINO IR format. The Core class from the `openvino` module is imported first. This class provides access to the OpenVINO Runtime API. The `core` object, which is an instance of the `Core` class, represents the API and it is used to compile the model. The output layer is extracted from the compiled model as it is needed for inference. "
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"compiled_model = core.compile_model(ov_model, device.value)\n",
"output_layer = compiled_model.output(0)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Helper Functions\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"def token_to_words(tokens: List[str]) -> Dict[str, int]:\n",
" \"\"\"\n",
" Maps the list of tokens to words in the original text.\n",
" Built on the feature that tokens starting with '##' is attached to the previous token as tokens derived from the same word.\n",
"\n",
" Arguments:\n",
" tokens -- List of tokens\n",
"\n",
" Returns:\n",
" map_to_words -- Dictionary mapping tokens to words in original text\n",
" \"\"\"\n",
"\n",
" word_count = -1\n",
" map_to_words = {}\n",
" for token in tokens:\n",
" if token.startswith(\"##\"):\n",
" map_to_words[token] = word_count\n",
" continue\n",
" word_count += 1\n",
" map_to_words[token] = word_count\n",
" return map_to_words"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"def infer(input_text: str) -> Dict[np.ndarray, np.ndarray]:\n",
" \"\"\"\n",
" Creating a generic inference function to read the input and infer the result\n",
"\n",
" Arguments:\n",
" input_text -- The text to be infered (String)\n",
"\n",
" Returns:\n",
" result -- Resulting list from inference\n",
" \"\"\"\n",
"\n",
" tokens = tokenizer(\n",
" input_text,\n",
" return_tensors=\"np\",\n",
" )\n",
" inputs = dict(tokens)\n",
" result = compiled_model(inputs)[output_layer]\n",
" return result"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"def get_typo_indexes(\n",
" result: Dict[np.ndarray, np.ndarray],\n",
" map_to_words: Dict[str, int],\n",
" tokens: List[str],\n",
") -> List[int]:\n",
" \"\"\"\n",
" Given results from the inference and tokens-map-to-words, identifies the indexes of the words with typos.\n",
"\n",
" Arguments:\n",
" result -- Result from inference (tensor)\n",
" map_to_words -- Dictionary mapping tokens to words (Dictionary)\n",
"\n",
" Results:\n",
" wrong_words -- List of indexes of words with typos\n",
" \"\"\"\n",
"\n",
" wrong_words = []\n",
" c = 0\n",
" result_list = result[0][1:-1]\n",
" for i in result_list:\n",
" prob = np.argmax(i)\n",
" if prob == 1:\n",
" if map_to_words[tokens[c]] not in wrong_words:\n",
" wrong_words.append(map_to_words[tokens[c]])\n",
" c += 1\n",
" return wrong_words"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"def sentence_split(sentence: str) -> List[str]:\n",
" \"\"\"\n",
" Split the sentence into words and characters\n",
"\n",
" Arguments:\n",
" sentence - Sentence to be split (string)\n",
"\n",
" Returns:\n",
" splitted -- List of words and characters\n",
" \"\"\"\n",
"\n",
" splitted = re.split(\"([',. ])\", sentence)\n",
" splitted = [x for x in splitted if x != \" \" and x != \"\"]\n",
" return splitted"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"def show_typos(sentence: str):\n",
" \"\"\"\n",
" Detect typos from the given sentence.\n",
" Writes both the original input and typo-tagged version to the terminal.\n",
"\n",
" Arguments:\n",
" sentence -- Sentence to be evaluated (string)\n",
" \"\"\"\n",
"\n",
" tokens = tokenizer.tokenize(sentence)\n",
" map_to_words = token_to_words(tokens)\n",
" result = infer(sentence)\n",
" typo_indexes = get_typo_indexes(result, map_to_words, tokens)\n",
"\n",
" sentence_words = sentence_split(sentence)\n",
"\n",
" typos = [sentence_words[i] for i in typo_indexes]\n",
"\n",
" detected = sentence\n",
" for typo in typos:\n",
" detected = detected.replace(typo, f\"<i>{typo}</i>\")\n",
"\n",
" print(\" [Input]: \", sentence)\n",
" print(\"[Detected]: \", detected)\n",
" print(\"-\" * 130)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's run a demo using the converted OpenVINO IR model."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" [Input]: He had also stgruggled with addiction during his time in Congress .\n",
"[Detected]: He had also <i>stgruggled</i> with addiction during his time in Congress .\n",
"----------------------------------------------------------------------------------------------------------------------------------\n",
" [Input]: The review thoroughla assessed all aspects of JLENS SuR and CPG esign maturit and confidence .\n",
"[Detected]: The review <i>thoroughla</i> assessed all aspects of JLENS SuR and CPG <i>esign</i> <i>maturit</i> and confidence .\n",
"----------------------------------------------------------------------------------------------------------------------------------\n",
" [Input]: Letterma also apologized two his staff for the satyation .\n",
"[Detected]: <i>Letterma</i> also apologized <i>two</i> his staff for the <i>satyation</i> .\n",
"----------------------------------------------------------------------------------------------------------------------------------\n",
" [Input]: Vincent Jay had earlier won France 's first gold in gthe 10km biathlon sprint .\n",
"[Detected]: Vincent Jay had earlier won France 's first gold in <i>gthe</i> 10km biathlon sprint .\n",
"----------------------------------------------------------------------------------------------------------------------------------\n",
" [Input]: It is left to the directors to figure out hpw to bring the stry across to tye audience .\n",
"[Detected]: It is left to the directors to figure out <i>hpw</i> to bring the <i>stry</i> across to <i>tye</i> audience .\n",
"----------------------------------------------------------------------------------------------------------------------------------\n",
" [Input]: I wnet to the park yestreday to play foorball with my fiends, but it statred to rain very hevaily and we had to stop.\n",
"[Detected]: I <i>wnet</i> to the park <i>yestreday</i> to play <i>foorball</i> with my <i>fiends</i>, but it <i>statred</i> to rain very <i>hevaily</i> and we had to stop.\n",
"----------------------------------------------------------------------------------------------------------------------------------\n",
" [Input]: My faorite restuarant servs the best spahgetti in the town, but they are always so buzy that you have to make a resrvation in advnace.\n",
"[Detected]: My <i>faorite</i> <i>restuarant</i> <i>servs</i> the best <i>spahgetti</i> in the town, but they are always so <i>buzy</i> that you have to make a <i>resrvation</i> in <i>advnace</i>.\n",
"----------------------------------------------------------------------------------------------------------------------------------\n",
" [Input]: I was goig to watch a mvoie on Netflx last night, but the straming was so slow that I decided to cancled my subscrpition.\n",
"[Detected]: I was <i>goig</i> to watch a <i>mvoie</i> on <i>Netflx</i> last night, but the <i>straming</i> was so slow that I decided to <i>cancled</i> my <i>subscrpition</i>.\n",
"----------------------------------------------------------------------------------------------------------------------------------\n",
" [Input]: My freind and I went campign in the forest last weekend and saw a beutiful sunst that was so amzing it took our breth away.\n",
"[Detected]: My <i>freind</i> and I went <i>campign</i> in the forest last weekend and saw a <i>beutiful</i> <i>sunst</i> that was so <i>amzing</i> it took our <i>breth</i> away.\n",
"----------------------------------------------------------------------------------------------------------------------------------\n",
" [Input]: I have been stuying for my math exam all week, but I'm stil not very confidet that I will pass it, because there are so many formuals to remeber.\n",
"[Detected]: I have been <i>stuying</i> for my math exam all week, but I'm <i>stil</i> not very <i>confidet</i> that I will pass it, because there are so many formuals to <i>remeber</i>.\n",
"----------------------------------------------------------------------------------------------------------------------------------\n",
"Time elapsed: 0.08928751945495605\n"
]
}
],
"source": [
"sentences = [\n",
" \"He had also stgruggled with addiction during his time in Congress .\",\n",
" \"The review thoroughla assessed all aspects of JLENS SuR and CPG esign maturit and confidence .\",\n",
" \"Letterma also apologized two his staff for the satyation .\",\n",
" \"Vincent Jay had earlier won France 's first gold in gthe 10km biathlon sprint .\",\n",
" \"It is left to the directors to figure out hpw to bring the stry across to tye audience .\",\n",
" \"I wnet to the park yestreday to play foorball with my fiends, but it statred to rain very hevaily and we had to stop.\",\n",
" \"My faorite restuarant servs the best spahgetti in the town, but they are always so buzy that you have to make a resrvation in advnace.\",\n",
" \"I was goig to watch a mvoie on Netflx last night, but the straming was so slow that I decided to cancled my subscrpition.\",\n",
" \"My freind and I went campign in the forest last weekend and saw a beutiful sunst that was so amzing it took our breth away.\",\n",
" \"I have been stuying for my math exam all week, but I'm stil not very confidet that I will pass it, because there are so many formuals to remeber.\",\n",
"]\n",
"\n",
"start = time.time()\n",
"\n",
"for sentence in sentences:\n",
" show_typos(sentence)\n",
"\n",
"print(f\"Time elapsed: {time.time() - start}\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
},
"openvino_notebooks": {
"imageUrl": "https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/typo-detector/typo-detector.png?raw=true",
"tags": {
"categories": [
"Model Demos"
],
"libraries": [],
"other": [],
"tasks": [
"Token Classification"
]
}
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|