Spaces:
Runtime error
Runtime error
File size: 24,270 Bytes
db5855f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "7607ce35-db52-4e1c-add7-8abed748de6a",
"metadata": {},
"source": [
"# Super Resolution with PaddleGAN and OpenVINO™\n",
"\n",
"This notebook demonstrates converting the RealSR (real-world super-resolution) model from [PaddlePaddle/PaddleGAN](https://github.com/PaddlePaddle/PaddleGAN) to OpenVINO Intermediate Representation (OpenVINO IR) format, and shows inference results on both the PaddleGAN and OpenVINO IR models.\n",
"\n",
"For more information about the various PaddleGAN superresolution models, refer to the [PaddleGAN documentation](https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/en_US/tutorials/single_image_super_resolution.md). For more information about RealSR, see the [research paper](https://openaccess.thecvf.com/content_CVPRW_2020/papers/w31/Ji_Real-World_Super-Resolution_via_Kernel_Estimation_and_Noise_Injection_CVPRW_2020_paper.pdf) from CVPR 2020.\n",
"\n",
"This notebook works best with small images (up to 800x600 resolution).\n",
"\n",
"\n",
"#### Table of contents:\n",
"\n",
"- [Imports](#Imports)\n",
"- [Settings](#Settings)\n",
"- [Inference on PaddlePaddle Model](#Inference-on-PaddlePaddle-Model)\n",
" - [Investigate PaddleGAN Model](#Investigate-PaddleGAN-Model)\n",
" - [Do Inference](#Do-Inference)\n",
"- [Convert PaddleGAN Model to ONNX and OpenVINO IR](#Convert-PaddleGAN-Model-to-ONNX-and-OpenVINO-IR)\n",
" - [Convert PaddlePaddle Model to ONNX](#Convert-PaddlePaddle-Model-to-ONNX)\n",
" - [Convert ONNX Model to OpenVINO IR with Model Conversion Python API](#Convert-ONNX-Model-to-OpenVINO-IR-with-Model-Conversion-Python-API)\n",
"- [Do Inference on OpenVINO IR Model](#Do-Inference-on-OpenVINO-IR-Model)\n",
" - [Select inference device](#Select-inference-device)\n",
" - [Show an Animated GIF](#Show-an-Animated-GIF)\n",
" - [Create a Comparison Video](#Create-a-Comparison-Video)\n",
" - [Download the video](#Download-the-video)\n",
"\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "b4a9e69d-27cc-421a-b526-7cc31cbb06bd",
"metadata": {},
"source": [
"## Imports\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "b286aabe-5d1f-42fb-84fa-8d5c7f9a7eae",
"metadata": {},
"outputs": [],
"source": [
"import platform\n",
"\n",
"%pip install -q \"openvino>=2023.1.0\"\n",
"\n",
"%pip install -q \"paddlepaddle>=2.5.1\" \"paddle2onnx>=0.6\"\n",
"\n",
"%pip install -q \"imageio==2.9.0\" \"imageio\" \"numba>=0.53.1\" \"easydict\" \"munch\" \"natsort\" Pillow tqdm\n",
"%pip install -q \"git+https://github.com/PaddlePaddle/PaddleGAN.git\" --no-deps\n",
"%pip install -q \"scikit-image>=0.19.2\"\n",
"\n",
"if platform.system() != \"Windows\":\n",
" %pip install -q \"matplotlib>=3.4\"\n",
"else:\n",
" %pip install -q \"matplotlib>=3.4,<3.7\""
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "e41056f1",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import time\n",
"import warnings\n",
"from pathlib import Path\n",
"\n",
"import cv2\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import openvino as ov\n",
"import paddle\n",
"from IPython.display import HTML, FileLink, ProgressBar, clear_output, display\n",
"from IPython.display import Image as DisplayImage\n",
"from PIL import Image\n",
"from paddle.static import InputSpec\n",
"from ppgan.apps import RealSRPredictor\n",
"\n",
"# Fetch `notebook_utils` module\n",
"import requests\n",
"\n",
"r = requests.get(\n",
" url=\"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py\",\n",
")\n",
"\n",
"open(\"notebook_utils.py\", \"w\").write(r.text)\n",
"from notebook_utils import NotebookAlert, download_file"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "b8aaf4da-a840-4c07-bd4c-b703fa5c58fa",
"metadata": {},
"source": [
"## Settings\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "764178fb-c9b2-4005-8dc8-84018b12c439",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# The filenames of the downloaded and converted models.\n",
"MODEL_NAME = \"paddlegan_sr\"\n",
"MODEL_DIR = Path(\"model\")\n",
"OUTPUT_DIR = Path(\"output\")\n",
"OUTPUT_DIR.mkdir(exist_ok=True)\n",
"\n",
"model_path = MODEL_DIR / MODEL_NAME\n",
"ir_path = model_path.with_suffix(\".xml\")\n",
"onnx_path = model_path.with_suffix(\".onnx\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "0e51e484-6d4d-4ce1-a757-de8790ee6669",
"metadata": {},
"source": [
"## Inference on PaddlePaddle Model\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"### Investigate PaddleGAN Model\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"The [PaddleGAN documentation](https://github.com/PaddlePaddle/PaddleGAN) explains how to run the model with `sr.run()` method. Find out what that function does, and check other relevant functions that are called from that function. Adding `??` to the methods shows the docstring and source code."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "151fd351",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Running this cell will download the model weights if they have not been downloaded before.\n",
"# This may take a while.\n",
"sr = RealSRPredictor()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "b6ece28c-9f84-4f91-9c7b-48376ddb1e9b",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"??sr.run"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "d78cc588-fb6f-43b3-a97a-bef8ae92b011",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"??sr.run_image"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "f701eaca-781b-4ae5-86b1-76465448f811",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"??sr.norm"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "4a8cc86a-6e13-432f-9b1b-ca0a5588973c",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"??sr.denorm"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "2f3417c1-5cac-4d88-bd37-15982525ebb4",
"metadata": {},
"source": [
"The run checks whether the input is an image or a video. For an image, it loads the image as an `RGB` image, normalizes it, and converts it to a Paddle tensor. It is propagated to the network by calling the `self.model()` method and then *\"denormalized\"*. The normalization function simply divides all image values by 255. This converts an image with integer values in the range of 0 to 255 to an image with floating point values in the range of 0 to 1. The denormalization function transforms the output from the (C,H,W) network shape to (H,W,C) image shape. It then clips the image values between 0 and 255, and converts the image to a standard `RGB` image with integer values in the range of 0 to 255.\n",
"\n",
"To get more information about how the model looks like, use the `sr.model??` command. "
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "289f5d1e-ffa7-4729-a68e-873289043585",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# sr.model??"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "cf962925-7176-4f25-bf7a-59cf86433aa8",
"metadata": {},
"source": [
"### Do Inference\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"To show inference on the PaddlePaddle model, set `PADDLEGAN_INFERENCE` to `True` in the cell below. Keep in mind that performing inference may take some time."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "74f3eda1",
"metadata": {},
"outputs": [],
"source": [
"# Load the image from openvino storage\n",
"IMAGE_PATH = download_file(\n",
" \"https://storage.openvinotoolkit.org/repositories/openvino_notebooks/data/data/image/coco_tulips.jpg\",\n",
" directory=\"data\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "95f6554f-62ec-4e7d-aeb8-c43e09e219b7",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Set PADDLEGAN_INFERENCE to True to show inference on the PaddlePaddle model.\n",
"# This may take a long time, especially for larger images.\n",
"#\n",
"PADDLEGAN_INFERENCE = False\n",
"if PADDLEGAN_INFERENCE:\n",
" # Load the input image and convert to a tensor with the input shape.\n",
" image = cv2.cvtColor(cv2.imread(str(IMAGE_PATH)), cv2.COLOR_BGR2RGB)\n",
" input_image = image.transpose(2, 0, 1)[None, :, :, :] / 255\n",
" input_tensor = paddle.to_tensor(input_image.astype(np.float32))\n",
" if max(image.shape) > 400:\n",
" NotebookAlert(\n",
" f\"This image has {image.shape} shape. Doing inference will be slow \"\n",
" \"and the notebook may stop responding. Set PADDLEGAN_INFERENCE to False \"\n",
" \"to skip doing inference on the PaddlePaddle model.\",\n",
" \"warning\",\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "f49d0770-d885-4e78-addf-1fc51022540f",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"if PADDLEGAN_INFERENCE:\n",
" # Do inference and measure how long it takes.\n",
" print(f\"Start superresolution inference for {IMAGE_PATH.name} with shape {image.shape}...\")\n",
" start_time = time.perf_counter()\n",
" sr.model.eval()\n",
" with paddle.no_grad():\n",
" result = sr.model(input_tensor)\n",
" end_time = time.perf_counter()\n",
" duration = end_time - start_time\n",
" result_image = (result.numpy().squeeze() * 255).clip(0, 255).astype(\"uint8\").transpose((1, 2, 0))\n",
" print(f\"Superresolution image shape: {result_image.shape}\")\n",
" print(f\"Inference duration: {duration:.2f} seconds\")\n",
" plt.imshow(result_image);"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "adb6be9f",
"metadata": {},
"source": [
"## Convert PaddleGAN Model to ONNX and OpenVINO IR\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"To convert the PaddlePaddle model to OpenVINO IR, first convert the model to ONNX, and then convert the ONNX model to the OpenVINO IR format.\n",
"\n",
"### Convert PaddlePaddle Model to ONNX\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "c6735bf0",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Ignore PaddlePaddle warnings:\n",
"# The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1).\n",
"warnings.filterwarnings(\"ignore\")\n",
"sr.model.eval()\n",
"# ONNX export requires an input shape in this format as a parameter.\n",
"# Both OpenVINO and Paddle support `-1` placeholder for marking flexible dimensions\n",
"input_shape = [-1, 3, -1, -1]\n",
"x_spec = InputSpec(input_shape, \"float32\", \"x\")\n",
"paddle.onnx.export(sr.model, str(model_path), input_spec=[x_spec], opset_version=13)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "93f8c13a",
"metadata": {},
"source": [
"### Convert ONNX Model to OpenVINO IR with [Model Conversion Python API](https://docs.openvino.ai/2024/openvino-workflow/model-preparation.html)\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "af0d8b16",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Exporting ONNX model to OpenVINO IR... This may take a few minutes.\n"
]
}
],
"source": [
"print(\"Exporting ONNX model to OpenVINO IR... This may take a few minutes.\")\n",
"\n",
"model = ov.convert_model(onnx_path, input=input_shape)\n",
"\n",
"# Serialize model in IR format\n",
"ov.save_model(model, str(ir_path))"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "c5317e89-0b52-4d4a-af5d-d0b4a136c0a9",
"metadata": {
"execution": {
"iopub.execute_input": "2021-08-03T15:46:41.605511Z",
"iopub.status.busy": "2021-08-03T15:46:41.605374Z",
"iopub.status.idle": "2021-08-03T15:46:41.607174Z",
"shell.execute_reply": "2021-08-03T15:46:41.606871Z",
"shell.execute_reply.started": "2021-08-03T15:46:41.605498Z"
}
},
"source": [
"## Do Inference on OpenVINO IR Model\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7f0f83cb",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Read the network and get input and output names.\n",
"core = ov.Core()\n",
"# Alternatively, the model obtained from `ov.convert_model()` may be used here\n",
"model = core.read_model(model=ir_path)\n",
"input_layer = model.input(0)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "e994d44e-377c-47f0-b6e2-509278b316cd",
"metadata": {},
"source": [
"### Select inference device\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"select device from dropdown list for running inference using OpenVINO"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "b630c036-1bc5-4dc5-bcb3-8add17aad69f",
"metadata": {
"tags": [
"hide-input"
]
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5da6c33fe753440cb93b69da39da3f5e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Dropdown(description='Device:', index=2, options=('CPU', 'GPU', 'AUTO'), value='AUTO')"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import ipywidgets as widgets\n",
"\n",
"device = widgets.Dropdown(\n",
" options=core.available_devices + [\"AUTO\"],\n",
" value=\"AUTO\",\n",
" description=\"Device:\",\n",
" disabled=False,\n",
")\n",
"\n",
"device"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "dba4b8d3-6048-4d91-896f-922d17e574c0",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"image = cv2.cvtColor(cv2.imread(str(IMAGE_PATH)), cv2.COLOR_BGR2RGB)\n",
"if max(image.shape) > 800:\n",
" NotebookAlert(\n",
" f\"This image has shape {image.shape}. The notebook works best with images with \"\n",
" \"a maximum side of 800x600. Larger images may work well, but inference may \"\n",
" \"be slow\",\n",
" \"warning\",\n",
" )\n",
"plt.imshow(image)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "4e5c959b-4456-440e-9bd7-5a900b49ac6f",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Load the network to the CPU device (this may take a few seconds).\n",
"compiled_model = core.compile_model(model=model, device_name=device.value)\n",
"output_layer = compiled_model.output(0)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "499cfbc6-e935-4f06-b786-43b3020e72a1",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Convert the image to the network input shape and divide pixel values by 255.\n",
"# See the \"Investigate PaddleGAN model\" section.\n",
"input_image = image.transpose(2, 0, 1)[None, :, :, :] / 255\n",
"start_time = time.perf_counter()\n",
"# Do inference.\n",
"ir_result = compiled_model([input_image])[output_layer]\n",
"end_time = time.perf_counter()\n",
"duration = end_time - start_time\n",
"print(f\"Inference duration: {duration:.2f} seconds\")"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "7f8d9340-4151-475e-a074-9907adba7c9b",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Get the result array in CHW format.\n",
"result_array = ir_result.squeeze()\n",
"# Convert the array to an image with the same method as PaddleGAN:\n",
"# Multiply by 255, clip values between 0 and 255, convert to a HWC INT8 image.\n",
"# See the \"Investigate PaddleGAN model\" section.\n",
"image_super = (result_array * 255).clip(0, 255).astype(\"uint8\").transpose((1, 2, 0))\n",
"# Resize the image with bicubic upsampling for comparison.\n",
"image_bicubic = cv2.resize(image, tuple(image_super.shape[:2][::-1]), interpolation=cv2.INTER_CUBIC)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "2ef4f90a-1d3a-4e9c-a667-a300fe7b1559",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"plt.imshow(image_super)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "563ef395-63f1-4b2f-856d-a1fd9a114c8d",
"metadata": {},
"source": [
"### Show an Animated GIF\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"To visualize the difference between the bicubic image and the superresolution image, create an animated GIF image that switches between both versions."
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "540d1cef-0c64-47f3-86f3-e86442093dc8",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"result_pil = Image.fromarray(image_super)\n",
"bicubic_pil = Image.fromarray(image_bicubic)\n",
"gif_image_path = OUTPUT_DIR / Path(IMAGE_PATH.stem + \"_comparison.gif\")\n",
"final_image_path = OUTPUT_DIR / Path(IMAGE_PATH.stem + \"_super.png\")\n",
"\n",
"result_pil.save(\n",
" fp=str(gif_image_path),\n",
" format=\"GIF\",\n",
" append_images=[bicubic_pil],\n",
" save_all=True,\n",
" duration=1000,\n",
" loop=0,\n",
")\n",
"\n",
"result_pil.save(fp=str(final_image_path), format=\"png\")\n",
"DisplayImage(open(gif_image_path, \"rb\").read(), width=1920 // 2)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "b8ab71ad-e254-477a-a334-3bf1ee509454",
"metadata": {},
"source": [
"### Create a Comparison Video\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Create a video with a \"slider\", showing the bicubic image to the right and the superresolution image on the left. \n",
"\n",
"For the video, the superresolution and bicubic image are resized to half the original width and height, to improve processing speed. This gives an indication of the superresolution effect. The video is saved as an `.avi` video file. You can click on the link to download the video, or open it directly from the images directory, and play it locally."
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "df667cd6-333b-49b0-bad6-684cdd7b8ada",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"FOURCC = cv2.VideoWriter_fourcc(*\"MJPG\")\n",
"result_video_path = OUTPUT_DIR / Path(f\"{IMAGE_PATH.stem}_comparison_paddlegan.avi\")\n",
"video_target_height, video_target_width = (\n",
" image_super.shape[0] // 2,\n",
" image_super.shape[1] // 2,\n",
")\n",
"\n",
"out_video = cv2.VideoWriter(\n",
" str(result_video_path),\n",
" FOURCC,\n",
" 90,\n",
" (video_target_width, video_target_height),\n",
")\n",
"\n",
"resized_result_image = cv2.resize(image_super, (video_target_width, video_target_height))[:, :, (2, 1, 0)]\n",
"resized_bicubic_image = cv2.resize(image_bicubic, (video_target_width, video_target_height))[:, :, (2, 1, 0)]\n",
"\n",
"progress_bar = ProgressBar(total=video_target_width)\n",
"progress_bar.display()\n",
"\n",
"for i in range(2, video_target_width):\n",
" # Create a frame where the left part (until i pixels width) contains the\n",
" # superresolution image, and the right part (from i pixels width) contains\n",
" # the bicubic image.\n",
" comparison_frame = np.hstack(\n",
" (\n",
" resized_result_image[:, :i, :],\n",
" resized_bicubic_image[:, i:, :],\n",
" )\n",
" )\n",
"\n",
" # Create a small black border line between the superresolution\n",
" # and bicubic part of the image.\n",
" comparison_frame[:, i - 1 : i + 1, :] = 0\n",
" out_video.write(comparison_frame)\n",
" progress_bar.progress = i\n",
" progress_bar.update()\n",
"out_video.release()\n",
"clear_output()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "5416273f",
"metadata": {},
"source": [
"#### Download the video\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Please, click the link below to download the video or just run cell if you use the Google Colab"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2fc6d068",
"metadata": {},
"outputs": [],
"source": [
"if \"google.colab\" in str(get_ipython()):\n",
" # Save a file\n",
" from google.colab import files\n",
"\n",
" # Save the file to the local file system\n",
" with open(result_video_path, \"r\") as f:\n",
" files.download(result_video_path)\n",
"else:\n",
" video_link = FileLink(result_video_path)\n",
" video_link.html_link_str = \"<a href='%s' download>%s</a>\"\n",
" display(HTML(f\"The video has been saved to {video_link._repr_html_()}\"))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
},
"openvino_notebooks": {
"imageUrl": "https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/vision-superresolution/vision-superresolution-image.png?raw=true",
"tags": {
"categories": [
"Model Demos"
],
"libraries": [],
"other": [],
"tasks": [
"Image-to-Image",
"Super Resolution"
]
}
},
"vscode": {
"interpreter": {
"hash": "cec18e25feb9469b5ff1085a8097bdcd86db6a4ac301d6aeff87d0f3e7ce4ca5"
}
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|