Spaces:
Runtime error
Runtime error
File size: 27,476 Bytes
db5855f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Video Subtitle Generation using Whisper and OpenVINO™\n",
"\n",
"[Whisper](https://openai.com/blog/whisper/) is an automatic speech recognition (ASR) system trained on 680,000 hours of multilingual and multitask supervised data collected from the web. It is a multi-task model that can perform multilingual speech recognition as well as speech translation and language identification.\n",
"\n",
"\n",
"\n",
"You can find more information about this model in the [research paper](https://cdn.openai.com/papers/whisper.pdf), [OpenAI blog](https://openai.com/blog/whisper/), [model card](https://github.com/openai/whisper/blob/main/model-card.md) and GitHub [repository](https://github.com/openai/whisper).\n",
"\n",
"In this notebook, we will use Whisper with OpenVINO to generate subtitles in a sample video.\n",
"Notebook contains the following steps:\n",
"1. Download the model.\n",
"2. Instantiate the PyTorch model pipeline.\n",
"3. Convert model to OpenVINO IR, using model conversion API.\n",
"4. Run the Whisper pipeline with OpenVINO models.\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### Table of contents:\n",
"\n",
"- [Prerequisites](#Prerequisites)\n",
"- [Instantiate model](#Instantiate-model)\n",
" - [Convert model to OpenVINO Intermediate Representation (IR) format.](#Convert-model-to-OpenVINO-Intermediate-Representation-(IR)-format.)\n",
" - [Convert Whisper Encoder to OpenVINO IR](#Convert-Whisper-Encoder-to-OpenVINO-IR)\n",
" - [Convert Whisper decoder to OpenVINO IR](#Convert-Whisper-decoder-to-OpenVINO-IR)\n",
"- [Prepare inference pipeline](#Prepare-inference-pipeline)\n",
" - [Select inference device](#Select-inference-device)\n",
"- [Run video transcription pipeline](#Run-video-transcription-pipeline)\n",
"- [Interactive demo](#Interactive-demo)\n",
"\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Install dependencies."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"%pip install -q \"openvino>=2023.1.0\"\n",
"%pip install -q \"python-ffmpeg<=1.0.16\" moviepy transformers --extra-index-url https://download.pytorch.org/whl/cpu\n",
"%pip install -q \"git+https://github.com/garywu007/pytube.git\"\n",
"%pip install -q \"gradio>=4.19\"\n",
"%pip install -q \"openai-whisper==20231117\" --extra-index-url https://download.pytorch.org/whl/cpu"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Instantiate model\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Whisper is a Transformer based encoder-decoder model, also referred to as a sequence-to-sequence model. It maps a sequence of audio spectrogram features to a sequence of text tokens. First, the raw audio inputs are converted to a log-Mel spectrogram by action of the feature extractor. Then, the Transformer encoder encodes the spectrogram to form a sequence of encoder hidden states. Finally, the decoder autoregressively predicts text tokens, conditional on both the previous tokens and the encoder hidden states.\n",
"\n",
"You can see the model architecture in the diagram below:\n",
"\n",
"\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"There are several models of different sizes and capabilities trained by the authors of the model. In this tutorial, we will use the `base` model, but the same actions are also applicable to other models from Whisper family."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "84e419a30ba4427c8643d622348d6dda",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Dropdown(description='Model:', index=9, options=('tiny.en', 'tiny', 'base.en', 'base', 'small.en', 'small', 'm…"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from whisper import _MODELS\n",
"import ipywidgets as widgets\n",
"\n",
"model_id = widgets.Dropdown(\n",
" options=list(_MODELS),\n",
" value=\"large-v2\",\n",
" description=\"Model:\",\n",
" disabled=False,\n",
")\n",
"\n",
"model_id"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import whisper\n",
"\n",
"model = whisper.load_model(model_id.value, \"cpu\")\n",
"model.eval()\n",
"pass"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Convert model to OpenVINO Intermediate Representation (IR) format.\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"For best results with OpenVINO, it is recommended to convert the model to OpenVINO IR format. We need to provide initialized model object and example of inputs for shape inference. We will use `ov.convert_model` functionality to convert models. The `ov.convert_model` Python function returns an OpenVINO model ready to load on device and start making predictions. We can save it on disk for next usage with `ov.save_model`.\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Convert Whisper Encoder to OpenVINO IR\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"from pathlib import Path\n",
"\n",
"WHISPER_ENCODER_OV = Path(f\"whisper_{model_id.value}_encoder.xml\")\n",
"WHISPER_DECODER_OV = Path(f\"whisper_{model_id.value}_decoder.xml\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import openvino as ov\n",
"\n",
"mel = torch.zeros((1, 80 if \"v3\" not in model_id.value else 128, 3000))\n",
"audio_features = model.encoder(mel)\n",
"if not WHISPER_ENCODER_OV.exists():\n",
" encoder_model = ov.convert_model(model.encoder, example_input=mel)\n",
" ov.save_model(encoder_model, WHISPER_ENCODER_OV)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Convert Whisper decoder to OpenVINO IR\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"To reduce computational complexity, the decoder uses cached key/value projections in attention modules from the previous steps. We need to modify this process for correct tracing."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"from typing import Optional, Tuple\n",
"from functools import partial\n",
"\n",
"\n",
"def attention_forward(\n",
" attention_module,\n",
" x: torch.Tensor,\n",
" xa: Optional[torch.Tensor] = None,\n",
" mask: Optional[torch.Tensor] = None,\n",
" kv_cache: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,\n",
"):\n",
" \"\"\"\n",
" Override for forward method of decoder attention module with storing cache values explicitly.\n",
" Parameters:\n",
" attention_module: current attention module\n",
" x: input token ids.\n",
" xa: input audio features (Optional).\n",
" mask: mask for applying attention (Optional).\n",
" kv_cache: dictionary with cached key values for attention modules.\n",
" idx: idx for search in kv_cache.\n",
" Returns:\n",
" attention module output tensor\n",
" updated kv_cache\n",
" \"\"\"\n",
" q = attention_module.query(x)\n",
"\n",
" if xa is None:\n",
" # hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors;\n",
" # otherwise, perform key/value projections for self- or cross-attention as usual.\n",
" k = attention_module.key(x)\n",
" v = attention_module.value(x)\n",
" if kv_cache is not None:\n",
" k = torch.cat((kv_cache[0], k), dim=1)\n",
" v = torch.cat((kv_cache[1], v), dim=1)\n",
" kv_cache_new = (k, v)\n",
" else:\n",
" # for cross-attention, calculate keys and values once and reuse in subsequent calls.\n",
" k = attention_module.key(xa)\n",
" v = attention_module.value(xa)\n",
" kv_cache_new = (None, None)\n",
"\n",
" wv, qk = attention_module.qkv_attention(q, k, v, mask)\n",
" return attention_module.out(wv), kv_cache_new\n",
"\n",
"\n",
"def block_forward(\n",
" residual_block,\n",
" x: torch.Tensor,\n",
" xa: Optional[torch.Tensor] = None,\n",
" mask: Optional[torch.Tensor] = None,\n",
" kv_cache: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,\n",
"):\n",
" \"\"\"\n",
" Override for residual block forward method for providing kv_cache to attention module.\n",
" Parameters:\n",
" residual_block: current residual block.\n",
" x: input token_ids.\n",
" xa: input audio features (Optional).\n",
" mask: attention mask (Optional).\n",
" kv_cache: cache for storing attention key values.\n",
" Returns:\n",
" x: residual block output\n",
" kv_cache: updated kv_cache\n",
"\n",
" \"\"\"\n",
" x0, kv_cache = residual_block.attn(residual_block.attn_ln(x), mask=mask, kv_cache=kv_cache)\n",
" x = x + x0\n",
" if residual_block.cross_attn:\n",
" x1, _ = residual_block.cross_attn(residual_block.cross_attn_ln(x), xa)\n",
" x = x + x1\n",
" x = x + residual_block.mlp(residual_block.mlp_ln(x))\n",
" return x, kv_cache\n",
"\n",
"\n",
"# update forward functions\n",
"for idx, block in enumerate(model.decoder.blocks):\n",
" block.forward = partial(block_forward, block)\n",
" block.attn.forward = partial(attention_forward, block.attn)\n",
" if block.cross_attn:\n",
" block.cross_attn.forward = partial(attention_forward, block.cross_attn)\n",
"\n",
"\n",
"def decoder_forward(\n",
" decoder,\n",
" x: torch.Tensor,\n",
" xa: torch.Tensor,\n",
" kv_cache: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor]]] = None,\n",
"):\n",
" \"\"\"\n",
" Override for decoder forward method.\n",
" Parameters:\n",
" x: torch.LongTensor, shape = (batch_size, <= n_ctx) the text tokens\n",
" xa: torch.Tensor, shape = (batch_size, n_mels, n_audio_ctx)\n",
" the encoded audio features to be attended on\n",
" kv_cache: Dict[str, torch.Tensor], attention modules hidden states cache from previous steps\n",
" \"\"\"\n",
" if kv_cache is not None:\n",
" offset = kv_cache[0][0].shape[1]\n",
" else:\n",
" offset = 0\n",
" kv_cache = [None for _ in range(len(decoder.blocks))]\n",
" x = decoder.token_embedding(x) + decoder.positional_embedding[offset : offset + x.shape[-1]]\n",
" x = x.to(xa.dtype)\n",
" kv_cache_upd = []\n",
"\n",
" for block, kv_block_cache in zip(decoder.blocks, kv_cache):\n",
" x, kv_block_cache_upd = block(x, xa, mask=decoder.mask, kv_cache=kv_block_cache)\n",
" kv_cache_upd.append(tuple(kv_block_cache_upd))\n",
"\n",
" x = decoder.ln(x)\n",
" logits = (x @ torch.transpose(decoder.token_embedding.weight.to(x.dtype), 1, 0)).float()\n",
"\n",
" return logits, tuple(kv_cache_upd)\n",
"\n",
"\n",
"# override decoder forward\n",
"model.decoder.forward = partial(decoder_forward, model.decoder)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"tokens = torch.ones((5, 3), dtype=torch.int64)\n",
"logits, kv_cache = model.decoder(tokens, audio_features, kv_cache=None)\n",
"\n",
"tokens = torch.ones((5, 1), dtype=torch.int64)\n",
"\n",
"if not WHISPER_DECODER_OV.exists():\n",
" decoder_model = ov.convert_model(model.decoder, example_input=(tokens, audio_features, kv_cache))\n",
" ov.save_model(decoder_model, WHISPER_DECODER_OV)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"The decoder model autoregressively predicts the next token guided by encoder hidden states and previously predicted sequence. This means that the shape of inputs which depends on the previous step (inputs for tokens and attention hidden states from previous step) are dynamic. For efficient utilization of memory, you define an upper bound for dynamic input shapes."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prepare inference pipeline\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"The image below illustrates the pipeline of video transcribing using the Whisper model.\n",
"\n",
"\n",
"\n",
"To run the PyTorch Whisper model, we just need to call the `model.transcribe(audio, **parameters)` function. We will try to reuse original model pipeline for audio transcribing after replacing the original models with OpenVINO IR versions."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Select inference device\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"select device from dropdown list for running inference using OpenVINO"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"core = ov.Core()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "aaed5765ded34dfebfa13954e15860e7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Dropdown(description='Device:', index=2, options=('CPU', 'GPU', 'AUTO'), value='AUTO')"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import ipywidgets as widgets\n",
"\n",
"device = widgets.Dropdown(\n",
" options=core.available_devices + [\"AUTO\"],\n",
" value=\"AUTO\",\n",
" description=\"Device:\",\n",
" disabled=False,\n",
")\n",
"\n",
"device"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"# Fetch `notebook_utils` module\n",
"import requests\n",
"\n",
"r = requests.get(\n",
" url=\"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py\",\n",
")\n",
"open(\"notebook_utils.py\", \"w\").write(r.text)\n",
"from notebook_utils import download_file\n",
"\n",
"if not Path(\"./utils.py\").exists():\n",
" download_file(url=\"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/notebooks/whisper-subtitles-generation/utils.py\")\n",
"\n",
"from utils import (\n",
" patch_whisper_for_ov_inference,\n",
" OpenVINOAudioEncoder,\n",
" OpenVINOTextDecoder,\n",
")\n",
"\n",
"patch_whisper_for_ov_inference(model)\n",
"\n",
"model.encoder = OpenVINOAudioEncoder(core, WHISPER_ENCODER_OV, device=device.value)\n",
"model.decoder = OpenVINOTextDecoder(core, WHISPER_DECODER_OV, device=device.value)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Run video transcription pipeline\n",
"[back to top ⬆️](#Table-of-contents:)\n",
"\n",
"Now, we are ready to start transcription. We select a video from YouTube that we want to transcribe. Be patient, as downloading the video may take some time."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5fa5aeaf42b14268b15396af3fec8ef2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Text(value='https://youtu.be/kgL5LBM-hFI', description='Video:', placeholder='Type link for video')"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import ipywidgets as widgets\n",
"\n",
"VIDEO_LINK = \"https://youtu.be/kgL5LBM-hFI\"\n",
"link = widgets.Text(\n",
" value=VIDEO_LINK,\n",
" placeholder=\"Type link for video\",\n",
" description=\"Video:\",\n",
" disabled=False,\n",
")\n",
"\n",
"link"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading video https://youtu.be/kgL5LBM-hFI started\n",
"Video saved to downloaded_video.mp4\n"
]
}
],
"source": [
"from pytube import YouTube\n",
"\n",
"print(f\"Downloading video {link.value} started\")\n",
"\n",
"output_file = Path(\"downloaded_video.mp4\")\n",
"yt = YouTube(link.value)\n",
"yt.streams.get_highest_resolution().download(filename=output_file)\n",
"print(f\"Video saved to {output_file}\")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"from utils import get_audio\n",
"\n",
"audio, duration = get_audio(output_file)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Select the task for the model:\n",
"\n",
"* **transcribe** - generate audio transcription in the source language (automatically detected).\n",
"* **translate** - generate audio transcription with translation to English language."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "27c6ea25e4b1444887158695a655ad7b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Select(description='Select task:', index=1, options=('transcribe', 'translate'), value='translate')"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"task = widgets.Select(\n",
" options=[\"transcribe\", \"translate\"],\n",
" value=\"translate\",\n",
" description=\"Select task:\",\n",
" disabled=False,\n",
")\n",
"task"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"transcription = model.transcribe(audio, task=task.value)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"\"The results will be saved in the `downloaded_video.srt` file. SRT is one of the most popular formats for storing subtitles and is compatible with many modern video players. This file can be used to embed transcription into videos during playback or by injecting them directly into video files using `ffmpeg`."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"from utils import prepare_srt\n",
"\n",
"srt_lines = prepare_srt(transcription, filter_duration=duration)\n",
"# save transcription\n",
"with output_file.with_suffix(\".srt\").open(\"w\") as f:\n",
" f.writelines(srt_lines)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let us see the results."
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cbca661ad8284e418aaf94f42ed2621e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Video(value=b\"\\x00\\x00\\x00\\x18ftypmp42\\x00\\x00\\x00\\x00isommp42\\x00\\x00:'moov\\x00\\x00\\x00lmvhd...\", height='800…"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"widgets.Video.from_file(output_file, loop=False, width=800, height=800)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1\n",
"00:00:00,000 --> 00:00:05,000\n",
" What's that?\n",
"\n",
"2\n",
"00:00:05,000 --> 00:00:07,000\n",
" Wow.\n",
"\n",
"3\n",
"00:00:07,000 --> 00:00:10,000\n",
" Hello, humans.\n",
"\n",
"4\n",
"00:00:10,000 --> 00:00:15,000\n",
" Focus on me.\n",
"\n",
"5\n",
"00:00:15,000 --> 00:00:16,000\n",
" Focus on the guard.\n",
"\n",
"6\n",
"00:00:16,000 --> 00:00:20,000\n",
" Don't tell anyone what you've seen in here.\n",
"\n",
"7\n",
"00:00:20,000 --> 00:00:24,000\n",
" Have you seen what's in there?\n",
"\n",
"8\n",
"00:00:24,000 --> 00:00:30,000\n",
" Intel. This is where it all changes.\n",
"\n",
"\n"
]
}
],
"source": [
"print(\"\".join(srt_lines))"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Interactive demo\n",
"[back to top ⬆️](#Table-of-contents:)\n"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"test_replace": {
" demo.launch(debug=True)": " demo.launch()",
" demo.launch(share=True, debug=True)": " demo.launch(share=True)"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7862\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7862/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Keyboard interruption in main thread... closing server.\n"
]
}
],
"source": [
"import gradio as gr\n",
"\n",
"\n",
"def transcribe(url, task):\n",
" output_file = Path(\"downloaded_video.mp4\")\n",
" yt = YouTube(url)\n",
" yt.streams.get_highest_resolution().download(filename=output_file)\n",
" audio, duration = get_audio(output_file)\n",
" transcription = model.transcribe(audio, task=task.lower())\n",
" srt_lines = prepare_srt(transcription, duration)\n",
" with output_file.with_suffix(\".srt\").open(\"w\") as f:\n",
" f.writelines(srt_lines)\n",
" return [str(output_file), str(output_file.with_suffix(\".srt\"))]\n",
"\n",
"\n",
"demo = gr.Interface(\n",
" transcribe,\n",
" [\n",
" gr.Textbox(label=\"YouTube URL\"),\n",
" gr.Radio([\"Transcribe\", \"Translate\"], value=\"Transcribe\"),\n",
" ],\n",
" \"video\",\n",
" examples=[[\"https://youtu.be/kgL5LBM-hFI\", \"Transcribe\"]],\n",
" allow_flagging=\"never\",\n",
")\n",
"try:\n",
" demo.launch(debug=True)\n",
"except Exception:\n",
" demo.launch(share=True, debug=True)\n",
"# if you are launching remotely, specify server_name and server_port\n",
"# demo.launch(server_name='your server name', server_port='server port in int')\n",
"# Read more in the docs: https://gradio.app/docs/"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
},
"openvino_notebooks": {
"imageUrl": "https://user-images.githubusercontent.com/29454499/204548693-1304ef33-c790-490d-8a8b-d5766acb6254.png",
"tags": {
"categories": [
"Model Demos",
"AI Trends"
],
"libraries": [],
"other": [],
"tasks": [
"Speech Recognition"
]
}
},
"vscode": {
"interpreter": {
"hash": "916dbcbb3f70747c44a77c7bcd40155683ae19c65e1c03b4aa3499c5328201f1"
}
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|