malvika2003's picture
Upload folder using huggingface_hub
db5855f verified
from collections import namedtuple
from functools import partial
import openvino as ov
from pathlib import Path
from typing import List, Optional, Union
from math import floor, ceil
import io
from scipy.io import wavfile
from moviepy.editor import VideoFileClip
import numpy as np
import torch
from whisper.decoding import DecodingTask, Inference, DecodingOptions, DecodingResult
class OpenVINOAudioEncoder(torch.nn.Module):
"""
Helper for inference Whisper encoder model with OpenVINO
"""
def __init__(self, core: ov.Core, model_path: Path, device="CPU"):
super().__init__()
self.model = core.read_model(model_path)
self.compiled_model = core.compile_model(self.model, device)
self.output_blob = self.compiled_model.output(0)
def forward(self, mel: torch.Tensor):
"""
Inference OpenVINO whisper encoder model.
Parameters:
mel: input audio fragment mel spectrogram.
Returns:
audio_features: torch tensor with encoded audio features.
"""
return torch.from_numpy(self.compiled_model(mel)[self.output_blob])
class OpenVINOTextDecoder(torch.nn.Module):
"""
Helper for inference OpenVINO decoder model
"""
def __init__(self, core: ov.Core, model_path: Path, device: str = "CPU"):
super().__init__()
self._core = core
self.model = core.read_model(model_path)
self._input_names = [inp.any_name for inp in self.model.inputs]
self.compiled_model = core.compile_model(self.model, device)
self.device = device
self.blocks = []
def init_past_inputs(self, feed_dict):
"""
Initialize cache input for first step.
Parameters:
feed_dict: Dictonary with inputs for inference
Returns:
feed_dict: updated feed_dict
"""
beam_size = feed_dict["x"].shape[0]
audio_len = feed_dict["xa"].shape[2]
previous_seq_len = 0
for name in self._input_names:
if name in ["x", "xa"]:
continue
feed_dict[name] = ov.Tensor(np.zeros((beam_size, previous_seq_len, audio_len), dtype=np.float32))
return feed_dict
def preprocess_kv_cache_inputs(self, feed_dict, kv_cache):
"""
Transform kv_cache to inputs
Parameters:
feed_dict: dictionary with inputs for inference
kv_cache: dictionary with cached attention hidden states from previous step
Returns:
feed_dict: updated feed dictionary with additional inputs
"""
if not kv_cache:
return self.init_past_inputs(feed_dict)
for k, v in zip(self._input_names[2:], kv_cache):
feed_dict[k] = ov.Tensor(v)
return feed_dict
def postprocess_outputs(self, outputs):
"""
Transform model output to format expected by the pipeline
Parameters:
outputs: outputs: raw inference results.
Returns:
logits: decoder predicted token logits
kv_cache: cached attention hidden states
"""
logits = torch.from_numpy(outputs[0])
kv_cache = list(outputs.values())[1:]
return logits, kv_cache
def forward(self, x: torch.Tensor, xa: torch.Tensor, kv_cache: Optional[dict] = None):
"""
Inference decoder model.
Parameters:
x: torch.LongTensor, shape = (batch_size, <= n_ctx) the text tokens
xa: torch.Tensor, shape = (batch_size, n_mels, n_audio_ctx)
the encoded audio features to be attended on
kv_cache: Dict[str, torch.Tensor], attention modules hidden states cache from previous steps
Returns:
logits: decoder predicted logits
kv_cache: updated kv_cache with current step hidden states
"""
feed_dict = {"x": ov.Tensor(x.numpy()), "xa": ov.Tensor(xa.numpy())}
feed_dict = self.preprocess_kv_cache_inputs(feed_dict, kv_cache)
res = self.compiled_model(feed_dict)
return self.postprocess_outputs(res)
class OpenVINOInference(Inference):
"""
Wrapper for inference interface
"""
def __init__(self, model: "Whisper", initial_token_length: int):
self.model: "Whisper" = model
self.initial_token_length = initial_token_length
self.kv_cache = {}
def logits(self, tokens: torch.Tensor, audio_features: torch.Tensor) -> torch.Tensor:
"""
getting logits for given tokens sequence and audio features and save kv_cache
Parameters:
tokens: input tokens
audio_features: input audio features
Returns:
logits: predicted by decoder logits
"""
if tokens.shape[-1] > self.initial_token_length:
# only need to use the last token except in the first forward pass
tokens = tokens[:, -1:]
logits, self.kv_cache = self.model.decoder(tokens, audio_features, kv_cache=self.kv_cache)
return logits
def cleanup_caching(self):
"""
Reset kv_cache to initial state
"""
self.kv_cache = {}
def rearrange_kv_cache(self, source_indices):
"""
Update hidden states cache for selected sequences
Parameters:
source_indicies: sequences indicies
Returns:
None
"""
for module, tensor in self.kv_cache.items():
# update the key/value cache to contain the selected sequences
self.kv_cache[module] = tensor[source_indices].detach()
class OpenVINODecodingTask(DecodingTask):
"""
Class for decoding using OpenVINO
"""
def __init__(self, model: "Whisper", options: DecodingOptions):
super().__init__(model, options)
self.inference = OpenVINOInference(model, len(self.initial_tokens))
def patch_whisper_for_ov_inference(model):
@torch.no_grad()
def decode(
model: "Whisper",
mel: torch.Tensor,
options: DecodingOptions = DecodingOptions(),
) -> Union[DecodingResult, List[DecodingResult]]:
"""
Performs decoding of 30-second audio segment(s), provided as Mel spectrogram(s).
Parameters
----------
model: Whisper
the Whisper model instance
mel: torch.Tensor, shape = (80, 3000) or (*, 80, 3000)
A tensor containing the Mel spectrogram(s)
options: DecodingOptions
A dataclass that contains all necessary options for decoding 30-second segments
Returns
-------
result: Union[DecodingResult, List[DecodingResult]]
The result(s) of decoding contained in `DecodingResult` dataclass instance(s)
"""
single = mel.ndim == 2
if single:
mel = mel.unsqueeze(0)
result = OpenVINODecodingTask(model, options).run(mel)
if single:
result = result[0]
return result
Parameter = namedtuple("Parameter", ["device"])
def parameters():
return iter([Parameter(torch.device("cpu"))])
def logits(model, tokens: torch.Tensor, audio_features: torch.Tensor):
"""
Override for logits extraction method
Parameters:
tokens: input tokens
audio_features: input audio features
Returns:
logits: decoder predicted logits
"""
return model.decoder(tokens, audio_features, None)[0]
model.parameters = parameters
model.decode = partial(decode, model)
model.logits = partial(logits, model)
def resample(audio, src_sample_rate, dst_sample_rate):
"""
Resample audio to specific sample rate
Parameters:
audio: input audio signal
src_sample_rate: source audio sample rate
dst_sample_rate: destination audio sample rate
Returns:
resampled_audio: input audio signal resampled with dst_sample_rate
"""
if src_sample_rate == dst_sample_rate:
return audio
duration = audio.shape[0] / src_sample_rate
resampled_data = np.zeros(shape=(int(duration * dst_sample_rate)), dtype=np.float32)
x_old = np.linspace(0, duration, audio.shape[0], dtype=np.float32)
x_new = np.linspace(0, duration, resampled_data.shape[0], dtype=np.float32)
resampled_audio = np.interp(x_new, x_old, audio)
return resampled_audio.astype(np.float32)
def audio_to_float(audio):
"""
convert audio signal to floating point format
"""
return audio.astype(np.float32) / np.iinfo(audio.dtype).max
def get_audio(video_file):
"""
Extract audio signal from a given video file, then convert it to float,
then mono-channel format and resample it to the expected sample rate
Parameters:
video_file: path to input video file
Returns:
resampled_audio: mono-channel float audio signal with 16000 Hz sample rate
extracted from video
duration: duration of video fragment in seconds
"""
input_video = VideoFileClip(str(video_file))
duration = input_video.duration
input_video.audio.write_audiofile(video_file.stem + ".wav", verbose=False, logger=None)
input_audio_file = video_file.stem + ".wav"
sample_rate, audio = wavfile.read(io.BytesIO(open(input_audio_file, "rb").read()))
audio = audio_to_float(audio)
if audio.ndim == 2:
audio = audio.mean(axis=1)
# The model expects mono-channel audio with a 16000 Hz sample rate, represented in floating point range. When the
# audio from the input video does not meet these requirements, we will need to apply preprocessing.
resampled_audio = resample(audio, sample_rate, 16000)
return resampled_audio, duration
def format_timestamp(seconds: float):
"""
format time in srt-file expected format
"""
assert seconds >= 0, "non-negative timestamp expected"
milliseconds = round(seconds * 1000.0)
hours = milliseconds // 3_600_000
milliseconds -= hours * 3_600_000
minutes = milliseconds // 60_000
milliseconds -= minutes * 60_000
seconds = milliseconds // 1_000
milliseconds -= seconds * 1_000
return (f"{hours}:" if hours > 0 else "00:") + f"{minutes:02d}:{seconds:02d},{milliseconds:03d}"
def prepare_srt(transcription, filter_duration=None):
"""
Format transcription into srt file format
"""
segment_lines = []
for segment in transcription["segments"]:
if filter_duration is not None and (segment["start"] >= floor(filter_duration) or segment["end"] > ceil(filter_duration) + 1):
break
segment_lines.append(str(segment["id"] + 1) + "\n")
time_start = format_timestamp(segment["start"])
time_end = format_timestamp(segment["end"])
time_str = f"{time_start} --> {time_end}\n"
segment_lines.append(time_str)
segment_lines.append(segment["text"] + "\n\n")
return segment_lines