{ "cells": [ { "cell_type": "markdown", "id": "ebc080c9-4580-4a8c-bbfb-e391d2871b10", "metadata": {}, "source": [ "# Text-to-image generation using PhotoMaker and OpenVINO\n", "\n", "PhotoMaker is an efficient personalized text-to-image generation method, which mainly encodes an arbitrary number of input ID images into a stack ID embedding for preserving ID information. Such an embedding, serving as a unified ID representation, can not only encapsulate the characteristics of the same input ID comprehensively, but also accommodate the characteristics of different IDs for subsequent integration. This paves the way for more intriguing and practically valuable applications. Users can input one or a few face photos, along with a text prompt, to receive a customized photo or painting (no training required!). Additionally, this model can be adapted to any base model based on `SDXL` or used in conjunction with other `LoRA` modules.More details about PhotoMaker can be found in the [technical report](https://arxiv.org/pdf/2312.04461.pdf).\n", "\n", "\n", "This notebook explores how to speed up PhotoMaker pipeline using OpenVINO.\n", " \n", "\n", "#### Table of contents:\n", "\n", "- [PhotoMaker pipeline introduction](#PhotoMaker-pipeline-introduction)\n", "- [Prerequisites](#Prerequisites)\n", "- [Load original pipeline and prepare models for conversion](#Load-original-pipeline-and-prepare-models-for-conversion)\n", "- [Convert models to OpenVINO Intermediate representation (IR) format](#Convert-models-to-OpenVINO-Intermediate-representation-(IR)-format)\n", " - [ID Encoder](#ID-Encoder)\n", " - [Text Encoder](#Text-Encoder)\n", " - [U-Net](#U-Net)\n", " - [VAE Decoder](#VAE-Decoder)\n", "- [Prepare Inference pipeline](#Prepare-Inference-pipeline)\n", " - [Select inference device for Stable Diffusion pipeline](#Select-inference-device-for-Stable-Diffusion-pipeline)\n", " - [Compile models and create their Wrappers for inference](#Compile-models-and-create-their-Wrappers-for-inference)\n", "- [Running Text-to-Image Generation with OpenVINO](#Running-Text-to-Image-Generation-with-OpenVINO)\n", "- [Interactive Demo](#Interactive-Demo)\n", "\n" ] }, { "cell_type": "markdown", "id": "4a41b1c9", "metadata": {}, "source": [ "## PhotoMaker pipeline introduction\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "\n", "For the proposed PhotoMaker,\n", "we first obtain the text embedding and image embeddings from `text encoder(s)` and `image(ID) encoder`, respectively. Then, we extract the\n", "fused embedding by merging the corresponding class embedding (e.g., man and woman) and each image embedding. Next, we concatenate\n", "all fused embeddings along the length dimension to form the stacked ID embedding. Finally, we feed the stacked ID embedding to all\n", "cross-attention layers for adaptively merging the ID content in the `diffusion model`. Note that although we use images of the same ID with\n", "the masked background during training, we can directly input images of different IDs without background distortion to create a new ID\n", "during inference. \n", "\n", "\"image\"" ] }, { "cell_type": "markdown", "id": "7509c1ba-a099-49fd-a1c5-7118f2d0c4e6", "metadata": {}, "source": [ "## Prerequisites\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "Clone PhotoMaker repository" ] }, { "cell_type": "code", "execution_count": 1, "id": "3f706db4-b4e5-4d2b-94ae-e4ae2f6008a5", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Cloning into 'PhotoMaker'...\n", "remote: Enumerating objects: 236, done.\u001b[K\n", "remote: Counting objects: 100% (145/145), done.\u001b[K\n", "remote: Compressing objects: 100% (97/97), done.\u001b[K\n", "remote: Total 236 (delta 114), reused 65 (delta 48), pack-reused 91\u001b[K\n", "Receiving objects: 100% (236/236), 9.31 MiB | 7.26 MiB/s, done.\n", "Resolving deltas: 100% (120/120), done.\n" ] } ], "source": [ "from pathlib import Path\n", "\n", "if not Path(\"PhotoMaker\").exists():\n", " !git clone https://github.com/TencentARC/PhotoMaker.git" ] }, { "cell_type": "markdown", "id": "8648f92f", "metadata": {}, "source": [ "Install required packages" ] }, { "cell_type": "code", "execution_count": 2, "id": "a25fb368", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[33mDEPRECATION: torchsde 0.2.5 has a non-standard dependency specifier numpy>=1.19.*; python_version >= \"3.7\". pip 24.1 will enforce this behaviour change. A possible replacement is to upgrade to a newer version of torchsde or contact the author to suggest that they release a version with a conforming dependency specifiers. Discussion can be found at https://github.com/pypa/pip/issues/12063\u001b[0m\u001b[33m\n", "\u001b[0mNote: you may need to restart the kernel to use updated packages.\n" ] } ], "source": [ "%pip install -q --extra-index-url https://download.pytorch.org/whl/cpu\\\n", "transformers \"torch>=2.1\" \"diffusers>=0.26\" \"gradio>=4.19\" \"openvino>=2024.0.0\" torchvision \"peft==0.6.2\" \"nncf>=2.9.0\"" ] }, { "cell_type": "markdown", "id": "5959be5b", "metadata": {}, "source": [ "Prepare PyTorch models" ] }, { "cell_type": "code", "execution_count": 3, "id": "465e7bd8-eacd-45cd-9a8b-d6019ba6e0f6", "metadata": {}, "outputs": [], "source": [ "adapter_id = \"TencentARC/PhotoMaker\"\n", "base_model_id = \"SG161222/RealVisXL_V3.0\"\n", "\n", "TEXT_ENCODER_OV_PATH = Path(\"model/text_encoder.xml\")\n", "TEXT_ENCODER_2_OV_PATH = Path(\"model/text_encoder_2.xml\")\n", "UNET_OV_PATH = Path(\"model/unet.xml\")\n", "ID_ENCODER_OV_PATH = Path(\"model/id_encoder.xml\")\n", "VAE_DECODER_OV_PATH = Path(\"model/vae_decoder.xml\")" ] }, { "cell_type": "markdown", "id": "4ead4649-6aea-4c52-bec7-a87dd1a1251c", "metadata": {}, "source": [ "## Load original pipeline and prepare models for conversion\n", "\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "For exporting each PyTorch model, we will download the `ID encoder` weight, `LoRa` weight from HuggingFace hub, then using the `PhotoMakerStableDiffusionXLPipeline` object from repository of PhotoMaker to generate the original PhotoMaker pipeline." ] }, { "cell_type": "code", "execution_count": 4, "id": "7328db41-0de6-4f26-b9f6-70c9df1a1be6", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/ea/work/my_optimum_intel/optimum_env/lib/python3.8/site-packages/bitsandbytes/cextension.py:34: UserWarning: The installed version of bitsandbytes was compiled without GPU support. 8-bit optimizers, 8-bit multiplication, and GPU quantization are unavailable.\n", " warn(\"The installed version of bitsandbytes was compiled without GPU support. \"\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "/home/ea/work/my_optimum_intel/optimum_env/lib/python3.8/site-packages/bitsandbytes/libbitsandbytes_cpu.so: undefined symbol: cadam32bit_grad_fp32\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2024-04-23 21:09:49.291953: I tensorflow/core/util/port.cc:110] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n", "2024-04-23 21:09:49.293771: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.\n", "2024-04-23 21:09:49.328180: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.\n", "2024-04-23 21:09:49.329067: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", "To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", "2024-04-23 21:09:49.957456: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n", "WARNING[XFORMERS]: xFormers can't load C++/CUDA extensions. xFormers was built for:\n", " PyTorch 2.0.1+cu118 with CUDA 1108 (you have 2.1.2+cpu)\n", " Python 3.8.18 (you have 3.8.10)\n", " Please reinstall xformers (see https://github.com/facebookresearch/xformers#installing-xformers)\n", " Memory-efficient attention, SwiGLU, sparse and more won't be available.\n", " Set XFORMERS_MORE_DETAILS=1 for more details\n" ] } ], "source": [ "import torch\n", "import numpy as np\n", "import os\n", "from PIL import Image\n", "from pathlib import Path\n", "from PhotoMaker.photomaker.model import PhotoMakerIDEncoder\n", "from PhotoMaker.photomaker.pipeline import PhotoMakerStableDiffusionXLPipeline\n", "from diffusers import EulerDiscreteScheduler\n", "import gc\n", "\n", "trigger_word = \"img\"\n", "\n", "\n", "def load_original_pytorch_pipeline_components(photomaker_path: str, base_model_id: str):\n", " # Load base model\n", " pipe = PhotoMakerStableDiffusionXLPipeline.from_pretrained(base_model_id, use_safetensors=True).to(\"cpu\")\n", "\n", " # Load PhotoMaker checkpoint\n", " pipe.load_photomaker_adapter(\n", " os.path.dirname(photomaker_path),\n", " subfolder=\"\",\n", " weight_name=os.path.basename(photomaker_path),\n", " trigger_word=trigger_word,\n", " )\n", " pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)\n", " pipe.fuse_lora()\n", " gc.collect()\n", " return pipe" ] }, { "cell_type": "code", "execution_count": 5, "id": "d737c5da-6f7f-455f-b2ec-e89d379ba8bf", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "561fe4a704424dedb9226bf6961b1618", "version_major": 2, "version_minor": 0 }, "text/plain": [ "model_index.json: 0%| | 0.00/577 [00:00\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "20231" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "id_encoder = pipe.id_encoder\n", "id_encoder.eval()\n", "\n", "\n", "def create_bool_tensor(*size):\n", " new_tensor = torch.zeros((size), dtype=torch.bool)\n", " return new_tensor\n", "\n", "\n", "inputs = {\n", " \"id_pixel_values\": torch.randn((1, 1, 3, 224, 224)),\n", " \"prompt_embeds\": torch.randn((1, 77, 2048)),\n", " \"class_tokens_mask\": create_bool_tensor(1, 77),\n", "}\n", "\n", "input_info = prepare_input_info(inputs)\n", "\n", "convert(id_encoder, ID_ENCODER_OV_PATH, inputs, input_info)\n", "\n", "del id_encoder\n", "gc.collect()" ] }, { "cell_type": "markdown", "id": "9c896614-c369-48fe-a04a-65456458c7dd", "metadata": {}, "source": [ "### Text Encoder\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "The text-encoder is responsible for transforming the input prompt, for example, \"a photo of an astronaut riding a horse\" into an embedding space that can be understood by the U-Net. It is usually a simple transformer-based encoder that maps a sequence of input tokens to a sequence of latent text embeddings." ] }, { "cell_type": "code", "execution_count": 8, "id": "f38e2043-6de2-49e3-8031-0cf260e4df55", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/ea/work/my_optimum_intel/optimum_env/lib/python3.8/site-packages/transformers/modeling_attn_mask_utils.py:86: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n", " if input_shape[-1] > 1 or self.sliding_window is not None:\n", "/home/ea/work/my_optimum_intel/optimum_env/lib/python3.8/site-packages/transformers/modeling_attn_mask_utils.py:162: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n", " if past_key_values_length > 0:\n", "/home/ea/work/my_optimum_intel/optimum_env/lib/python3.8/site-packages/transformers/models/clip/modeling_clip.py:289: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n", " if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "INFO:nncf:Statistics of the bitwidth distribution:\n", "┍━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┑\n", "│ Num bits (N) │ % all parameters (layers) │ % ratio-defining parameters (layers) │\n", "┝━━━━━━━━━━━━━━━━┿━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┿━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┥\n", "│ 8 │ 100% (74 / 74) │ 100% (74 / 74) │\n", "┕━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┙\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "be7529e1fec54b178b1147626a7a2d6d", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "INFO:nncf:Statistics of the bitwidth distribution:\n", "┍━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┑\n", "│ Num bits (N) │ % all parameters (layers) │ % ratio-defining parameters (layers) │\n", "┝━━━━━━━━━━━━━━━━┿━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┿━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┥\n", "│ 8 │ 100% (195 / 195) │ 100% (195 / 195) │\n", "┕━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┙\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "abbda547876f47079d9ab6c377101f88", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "39988" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "text_encoder = pipe.text_encoder\n", "text_encoder.eval()\n", "text_encoder_2 = pipe.text_encoder_2\n", "text_encoder_2.eval()\n", "\n", "text_encoder.config.output_hidden_states = True\n", "text_encoder.config.return_dict = False\n", "text_encoder_2.config.output_hidden_states = True\n", "text_encoder_2.config.return_dict = False\n", "\n", "inputs = {\"input_ids\": torch.ones((1, 77), dtype=torch.long)}\n", "\n", "input_info = prepare_input_info(inputs)\n", "\n", "convert(text_encoder, TEXT_ENCODER_OV_PATH, inputs, input_info)\n", "convert(text_encoder_2, TEXT_ENCODER_2_OV_PATH, inputs, input_info)\n", "\n", "del text_encoder\n", "del text_encoder_2\n", "gc.collect()" ] }, { "cell_type": "markdown", "id": "49ae9c7e-15e6-4304-bd93-f493011503d9", "metadata": {}, "source": [ "### U-Net\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "The process of U-Net model conversion remains the same, like for original Stable Diffusion XL model." ] }, { "cell_type": "code", "execution_count": 9, "id": "6cfcdc45-773d-404d-a5da-db4a99f80254", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/ea/work/my_optimum_intel/optimum_env/lib/python3.8/site-packages/diffusers/models/unets/unet_2d_condition.py:1110: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n", " if dim % default_overall_up_factor != 0:\n", "/home/ea/work/my_optimum_intel/optimum_env/lib/python3.8/site-packages/diffusers/models/downsampling.py:137: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n", " assert hidden_states.shape[1] == self.channels\n", "/home/ea/work/my_optimum_intel/optimum_env/lib/python3.8/site-packages/diffusers/models/downsampling.py:146: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n", " assert hidden_states.shape[1] == self.channels\n", "/home/ea/work/my_optimum_intel/optimum_env/lib/python3.8/site-packages/diffusers/models/upsampling.py:149: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n", " assert hidden_states.shape[1] == self.channels\n", "/home/ea/work/my_optimum_intel/optimum_env/lib/python3.8/site-packages/diffusers/models/upsampling.py:165: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n", " if hidden_states.shape[0] >= 64:\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "INFO:nncf:Statistics of the bitwidth distribution:\n", "┍━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┑\n", "│ Num bits (N) │ % all parameters (layers) │ % ratio-defining parameters (layers) │\n", "┝━━━━━━━━━━━━━━━━┿━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┿━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┥\n", "│ 8 │ 100% (794 / 794) │ 100% (794 / 794) │\n", "┕━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┙\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3e9d221fc338402c9071ab2381d844e1", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "114451" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "unet = pipe.unet\n", "unet.eval()\n", "\n", "\n", "class UnetWrapper(torch.nn.Module):\n", " def __init__(self, unet):\n", " super().__init__()\n", " self.unet = unet\n", "\n", " def forward(\n", " self,\n", " sample=None,\n", " timestep=None,\n", " encoder_hidden_states=None,\n", " text_embeds=None,\n", " time_ids=None,\n", " ):\n", " return self.unet.forward(\n", " sample,\n", " timestep,\n", " encoder_hidden_states,\n", " added_cond_kwargs={\"text_embeds\": text_embeds, \"time_ids\": time_ids},\n", " )\n", "\n", "\n", "inputs = {\n", " \"sample\": torch.rand([2, 4, 128, 128], dtype=torch.float32),\n", " \"timestep\": torch.from_numpy(np.array(1, dtype=float)),\n", " \"encoder_hidden_states\": torch.rand([2, 77, 2048], dtype=torch.float32),\n", " \"text_embeds\": torch.rand([2, 1280], dtype=torch.float32),\n", " \"time_ids\": torch.rand([2, 6], dtype=torch.float32),\n", "}\n", "\n", "input_info = prepare_input_info(inputs)\n", "\n", "w_unet = UnetWrapper(unet)\n", "convert(w_unet, UNET_OV_PATH, inputs, input_info)\n", "\n", "del w_unet, unet\n", "gc.collect()" ] }, { "cell_type": "markdown", "id": "a74680d5-9bf1-438b-8d3b-bd91a8dc3802", "metadata": {}, "source": [ "### VAE Decoder\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "The VAE model has two parts, an encoder and a decoder. The encoder is used to convert the image into a low dimensional latent representation, which will serve as the input to the U-Net model. The decoder, conversely, transforms the latent representation back into an image.\n", "\n", "When running Text-to-Image pipeline, we will see that we only need the VAE decoder. " ] }, { "cell_type": "code", "execution_count": 10, "id": "f00ad717-897e-4b2a-ba59-0afa88573569", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "INFO:nncf:Statistics of the bitwidth distribution:\n", "┍━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┑\n", "│ Num bits (N) │ % all parameters (layers) │ % ratio-defining parameters (layers) │\n", "┝━━━━━━━━━━━━━━━━┿━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┿━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┥\n", "│ 8 │ 100% (40 / 40) │ 100% (40 / 40) │\n", "┕━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┙\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "22b2aa6b4d8a4ed88f5b4d099ea19c3f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "6311" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "vae_decoder = pipe.vae\n", "vae_decoder.eval()\n", "\n", "\n", "class VAEDecoderWrapper(torch.nn.Module):\n", " def __init__(self, vae_decoder):\n", " super().__init__()\n", " self.vae = vae_decoder\n", "\n", " def forward(self, latents):\n", " return self.vae.decode(latents)\n", "\n", "\n", "w_vae_decoder = VAEDecoderWrapper(vae_decoder)\n", "inputs = torch.zeros((1, 4, 128, 128))\n", "\n", "convert(w_vae_decoder, VAE_DECODER_OV_PATH, inputs, input_info=[1, 4, 128, 128])\n", "\n", "del w_vae_decoder, vae_decoder\n", "gc.collect()" ] }, { "cell_type": "markdown", "id": "61c721a4-de35-4d62-b910-98927486580c", "metadata": {}, "source": [ "## Prepare Inference pipeline\n", "\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "In this example, we will reuse `PhotoMakerStableDiffusionXLPipeline` pipeline to generate the image with OpenVINO, so each model's object in this pipeline should be replaced with new OpenVINO model object.\n", "\n", "### Select inference device for Stable Diffusion pipeline\n", "\n", "[back to top ⬆️](#Table-of-contents:)" ] }, { "cell_type": "code", "execution_count": 11, "id": "dffa0201-5d5a-4710-9cdd-30c116f558b0", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "49b7dfb83cf243158653c6ce8e198ca4", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Dropdown(description='Device:', options=('CPU', 'GPU.0', 'GPU.1', 'AUTO'), value='CPU')" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import ipywidgets as widgets\n", "\n", "core = ov.Core()\n", "\n", "device = widgets.Dropdown(\n", " options=core.available_devices + [\"AUTO\"],\n", " value=\"CPU\",\n", " description=\"Device:\",\n", " disabled=False,\n", ")\n", "\n", "device" ] }, { "cell_type": "markdown", "id": "c9c9170c", "metadata": {}, "source": [ "### Compile models and create their Wrappers for inference\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "\n", "To access original PhotoMaker workflow, we have to create a new wrapper for each OpenVINO compiled model. For matching original pipeline, part of OpenVINO model wrapper's attributes should be reused from original model objects and inference output must be converted from numpy to `torch.tensor`.\n", "\n", "[back to top ⬆️](#Table-of-contents:)" ] }, { "cell_type": "code", "execution_count": 12, "id": "a713b243-37be-45a0-81e1-de97531fbc02", "metadata": {}, "outputs": [], "source": [ "compiled_id_encoder = core.compile_model(ID_ENCODER_OV_PATH, device.value)\n", "compiled_unet = core.compile_model(UNET_OV_PATH, device.value)\n", "compiled_text_encoder = core.compile_model(TEXT_ENCODER_OV_PATH, device.value)\n", "compiled_text_encoder_2 = core.compile_model(TEXT_ENCODER_2_OV_PATH, device.value)\n", "compiled_vae_decoder = core.compile_model(VAE_DECODER_OV_PATH, device.value)" ] }, { "cell_type": "code", "execution_count": 13, "id": "e682f1c2-7831-474c-838f-bdbf8fcbb7ec", "metadata": {}, "outputs": [], "source": [ "from collections import namedtuple\n", "\n", "\n", "class OVIDEncoderWrapper(PhotoMakerIDEncoder):\n", " dtype = torch.float32 # accessed in the original workflow\n", "\n", " def __init__(self, id_encoder, orig_id_encoder):\n", " super().__init__()\n", " self.id_encoder = id_encoder\n", " self.modules = orig_id_encoder.modules # accessed in the original workflow\n", " self.config = orig_id_encoder.config # accessed in the original workflow\n", "\n", " def __call__(\n", " self,\n", " *args,\n", " ):\n", " id_pixel_values, prompt_embeds, class_tokens_mask = args\n", " inputs = {\n", " \"id_pixel_values\": id_pixel_values,\n", " \"prompt_embeds\": prompt_embeds,\n", " \"class_tokens_mask\": class_tokens_mask,\n", " }\n", " output = self.id_encoder(inputs)[0]\n", " return torch.from_numpy(output)" ] }, { "cell_type": "code", "execution_count": 14, "id": "60dcd0d6-00dc-400c-b4d5-fb5cc7e49112", "metadata": {}, "outputs": [], "source": [ "class OVTextEncoderWrapper:\n", " dtype = torch.float32 # accessed in the original workflow\n", "\n", " def __init__(self, text_encoder, orig_text_encoder):\n", " self.text_encoder = text_encoder\n", " self.modules = orig_text_encoder.modules # accessed in the original workflow\n", " self.config = orig_text_encoder.config # accessed in the original workflow\n", "\n", " def __call__(self, input_ids, **kwargs):\n", " inputs = {\"input_ids\": input_ids}\n", " output = self.text_encoder(inputs)\n", "\n", " hidden_states = []\n", " hidden_states_len = len(output)\n", " for i in range(1, hidden_states_len):\n", " hidden_states.append(torch.from_numpy(output[i]))\n", "\n", " BaseModelOutputWithPooling = namedtuple(\"BaseModelOutputWithPooling\", \"last_hidden_state hidden_states\")\n", " output = BaseModelOutputWithPooling(torch.from_numpy(output[0]), hidden_states)\n", " return output" ] }, { "cell_type": "code", "execution_count": 15, "id": "08b255de-1a10-4ff9-b6cf-63ab943269a9", "metadata": {}, "outputs": [], "source": [ "class OVUnetWrapper:\n", " def __init__(self, unet, unet_orig):\n", " self.unet = unet\n", " self.config = unet_orig.config # accessed in the original workflow\n", " self.add_embedding = unet_orig.add_embedding # accessed in the original workflow\n", "\n", " def __call__(self, *args, **kwargs):\n", " latent_model_input, t = args\n", " inputs = {\n", " \"sample\": latent_model_input,\n", " \"timestep\": t,\n", " \"encoder_hidden_states\": kwargs[\"encoder_hidden_states\"],\n", " \"text_embeds\": kwargs[\"added_cond_kwargs\"][\"text_embeds\"],\n", " \"time_ids\": kwargs[\"added_cond_kwargs\"][\"time_ids\"],\n", " }\n", "\n", " output = self.unet(inputs)\n", "\n", " return [torch.from_numpy(output[0])]" ] }, { "cell_type": "code", "execution_count": 16, "id": "c09b9401-2992-481a-b8e2-45e23f43bb04", "metadata": {}, "outputs": [], "source": [ "class OVVAEDecoderWrapper:\n", " dtype = torch.float32 # accessed in the original workflow\n", "\n", " def __init__(self, vae, vae_orig):\n", " self.vae = vae\n", " self.config = vae_orig.config # accessed in the original workflow\n", "\n", " def decode(self, latents, return_dict=False):\n", " output = self.vae(latents)[0]\n", " output = torch.from_numpy(output)\n", "\n", " return [output]" ] }, { "cell_type": "markdown", "id": "ed6bef08-e5c3-4d82-9541-627035413590", "metadata": {}, "source": [ "Replace the PyTorch model objects in original pipeline with OpenVINO models" ] }, { "cell_type": "code", "execution_count": 17, "id": "4954fb06-25be-45cc-b6fa-c3ae92c045ac", "metadata": {}, "outputs": [], "source": [ "pipe.id_encoder = OVIDEncoderWrapper(compiled_id_encoder, pipe.id_encoder)\n", "pipe.unet = OVUnetWrapper(compiled_unet, pipe.unet)\n", "pipe.text_encoder = OVTextEncoderWrapper(compiled_text_encoder, pipe.text_encoder)\n", "pipe.text_encoder_2 = OVTextEncoderWrapper(compiled_text_encoder_2, pipe.text_encoder_2)\n", "pipe.vae = OVVAEDecoderWrapper(compiled_vae_decoder, pipe.vae)" ] }, { "cell_type": "markdown", "id": "dda95419", "metadata": {}, "source": [ "## Running Text-to-Image Generation with OpenVINO\n", "\n", "[back to top ⬆️](#Table-of-contents:)" ] }, { "cell_type": "code", "execution_count": 18, "id": "1b4f0f86-44be-43c1-a260-a102f5407b65", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1fabb11fb0c44e0586e4dba4fc404b73", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/20 [00:00 30:\n", " start_merge_step = 30\n", "\n", "images = pipe(\n", " prompt=prompt,\n", " input_id_images=input_id_images,\n", " negative_prompt=negative_prompt,\n", " num_images_per_prompt=1,\n", " num_inference_steps=num_steps,\n", " start_merge_step=start_merge_step,\n", " generator=generator,\n", ").images" ] }, { "cell_type": "code", "execution_count": 19, "id": "c692c794-9d61-4463-957d-c35386e04f01", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAGfCAYAAABCyCSkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d7wlRZn//67qcMI9N+fJMzBDDgoiKDAoIKAEFxVF5Qe7rCuK2V1g/e4SdHdB1+yaAyp+xQyCCF9YBEQQJUlQkDQ533zPvSd0d9Xvj6ruey5zJzIEod6v19WhT5/u6j4VPvXU8zwltNYah8PhcDgcDofDAYB8vgvgcDgcDofD4XC8kHAC2eFwOBwOh8PhaMAJZIfD4XA4HA6HowEnkB0Oh8PhcDgcjgacQHY4HA6Hw+FwOBpwAtnhcDgcDofD4WjACWSHw+FwOBwOh6MBJ5AdDofD4XA4HI4GnEB2OBwOh8PhcDgacAL5Rcitt96KEAIhBGedddZ2f+/xxx/n5JNPpqenJ/v+1VdfzcUXX5z993e/+91nrdwpCxYsyO7neOmwfPny7Hc/6qijnvP7vxTr3d13381rX/taOjo6smf/05/+9HwX6wVJ+n4WLFjwfBdlRr773e9mZbz44ouf7+I4XiDsrB7YGcbGxnjf+97H/Pnz8TwPIQQf+tCHntV7Ppv4O3LyxRdfzCWXXLLZ8ZaWFvbdd1/+4R/+gX/4h394UQ0wIyMjfP7znwfMALorKtiCBQtYsWIFL6RdvpMk4e/+7u/485///HwXxfEC4tmo/3+LZXimLF++PJtcHnjggbzxjW98XssDZjA78cQT2bhx4/NdFMcLnOXLl7Nw4cLsv19IY5dj53g2+qTzzjuPr3/968/4Os8GZ511Ft/73ve45ZZbttsAs0MCeUuMjY1x5513cuedd3LHHXfwne98Z1dc9gXByMhINilYunTp38Tg/LKXvYzbb78dgN7e3u36zrJlyzJxvHjxYr785S9TKBTYe++9efnLX84xxxwDwJIlS56dQjtekDyX9b+/vz+rt62trc9LGZ4tli9fnj3DmWee+YIQyH/84x8zcXzYYYfxn//5nwRBwOLFi5/nkr0wSetmPp9/nksyM69//euzMs6bN+95Lo3jhcKW9MCz0Sf96le/AiAIAn7wgx8wa9YsZs+e/Yyv+3yx0wL5hBNO4GMf+xjVapUf//jHfOtb3wLg8ssv573vfS8HH3zwFr+rlKJer79gO5q/dVpbWzn88MN36Dtr167N/n3YYYdx7LHHZv/d0dHhOtyXGBMTEzQ1Ne3093emjedyuR2ut46dp7HNH3vssbzmNa95HkvzwueFXjd7enro6el5vouR8Uz7EMeuYWf0wM6S9in9/f2cdtppz8k9n1X0DnDRRRdpQAP6zDPPzI4rpfTChQuzzz772c9udv63v/1t/YlPfELPmzdPSyn1Lbfckn3361//un7lK1+pS6WSzuVyeo899tD/+q//qkdGRqbdf+nSpdn17rnnHv2Od7xDl0ol3dvbqy+66CKtlNIPPPCAPuqoo3Q+n9dz587VX/jCF6Zd4/LLL8+ucdFFF+krrrhC77333jqXy+m99tpL/9//+3+zc88888zs3Kf/LV26NDsvPTZ//vzteo/z58/XT3/1t9xyiz766KN1e3u79n1fd3V16Ve84hX6Ax/4wGbv4frrr9cnnHCC7urq0kEQ6FmzZuk3velNevny5dm1ZvqdtkTje33637Jly6b9jpdffvl2PeOWWLlypT733HP1brvtpnO5nG5ra9OHHnqo/tGPfrTZ+3n6O9qRurJs2TJ9+umn6/7+fu37vm5tbdV77bWXPuuss/QDDzww7dwHHnhAv+1tb9N9fX3Z+zz77LP1qlWrpp3XWB/S+qv15nVqpvf64IMP6ve+9726q6tLF4tF/YY3vEE/8cQT23xfy5Ytm1bn/vjHP+ojjzxSFwoF3d/fr//t3/5NR1G00++psYz33nuv/vu//3vd2dmZ1Z1t1f9ttfFyuazPOeccfdBBB+menh4dBIFuaWnRhx56qP7Wt7611Wd9+jvfWhuciR19/431btOmTfrMM8/UbW1tulQq6dNOO00PDg5udo+f/vSn+qijjtKtra06DEO9cOFCfe655+q1a9fOWI6n/zW2z3Xr1un3v//9etGiRToMQ93a2qqXLl2qf/KTn2z1ORup1Wr6sssu0wcccIAuFou6UCjo/fffX1966aW6VqvN+KxP/9sa3/rWt/TrXvc6PXfuXF0sFnUul9O77767ft/73qc3bdq0XWVs7C8feOABfcQRR+hCoaD32GMP/dOf/jR7r3vvvbcOw1Dvv//++uabb552jdtuu02/+c1v1rvvvrtubW3VQRDo/v5+/Za3vGWz9t1YR7/zne/oz33uc3q33Xbb4rW3p9wpT2/7//M//6Pnz5+vi8WiPuGEE/TKlSt1pVLRH/jAB3RnZ+cW61KSJPqSSy7Rs2fP1oVCQR911FH6/vvvn1Z3li1bttXybU8/9MADD+j3ve99uru7W+fzeX388cdn48bWaGybjXXk6W32tttu04ceeqjO5/PT6va9996r3/zmN+ve3l4dBIHu7e3Vb3rTm/Q999yz1We44oor9D777KPDMNSLFy/WP/7xj7dZVq2n1+/ly5frN7zhDbpYLOp58+bpL3/5y1prM04efPDBOpfLzXjthx56SL/97W/Xe+21VzYud3d369e//vX6tttue1bK/ac//UmffPLJuru7W/u+rzs6OvQBBxyg3/3ud+sVK1bM+M639NwpM+mB7e2TtpfGNvb0v8svv3yHxoGUbekcrc1Y953vfEe/6lWv0s3NzTqfz+v9999ff/7zn9dJkky7XjqWNI7d22KXCGSttT7ggAOyzy677LLNzl+0aNG0l3bLLbdopZR+29vetsUXu+eee+qhoaHsHo0/6m677bbZ+e9///t1W1vbZsdvuumm7BqNFXmPPfaY8b4//OEPp73QbQ3OM3WcW+PpAvnRRx/VhUJhi/d6/PHHs3MvueSSLZ6X/vAvVIF8//33646Ojm02ypka+Y7UlSiK9JIlS7Z47je/+c3sur/+9a91Lpeb8by+vj791FNPZec+E4E8U12bPXu2HhgY2Oo7a+wM58yZo5uamja7zrvf/e6dek9PL+PT2+iOCuSZ2vi6deu2eA1AX3LJJTM+664WyNvz/hvr3V577bXZ+e94xzumXf+8887bYtka6872DEZPPfWU7uvr2+J5559//lafVWutq9WqPvLII7d4jSOPPDITyTsrkI877rgtfm+vvfbSlUplm+VMz29ra8smY+mfEEL/27/922bXbm5unlZvL7300i2Wo1gs6r/85S/ZuVurozNde1vl3pJAnmlM2n///fUb3/jGbdalD3zgA5ud09raqhcsWJD9964QyDM9/6tf/eptPvv2CORZs2bpfD6/Wd3+5S9/qYMgmPG3CoJA//KXv5zxGWYqq5RSP/roo9ssb2P9nul3ueCCC3QYhlu99pVXXrnFOial1L/5zW92abkHBgZ0d3f3Fu+Z6pi/RYG8I+OA1tunc7TW+v/7//6/LZ731re+ddo1nxeBXK1W9fe//30thMg+u+6662Z8ae94xzv0ddddp7///e/rxx57TP/oRz/KPmtvb9ff+MY39FVXXaX333//7Pg555yT3b/xR+3p6dFXXnml/q//+q9p99hzzz31VVddpd/znvdkx9785jdn12isyID+4Ac/qK+77jr9zne+MzvW19en6/W6fuyxx/RPf/rT7PiBBx6ob7/9dn377bfrBx98cOolsnnHuSN86Utfmlaem2++Wf/sZz/T//Ef/6EPPvjgzNJ19913Tyv72Wefra+99lp95ZVX6re85S3ZrHZHBfKDDz6ov/jFL2bfOeGEE7LnrFaru0QgK6X0fvvtl11n33331VdccYW+7rrr9IUXXqg/8pGPZOfO1Mh3pK489NBD2bFjjjlG33DDDfpXv/qV/tKXvqRPOOEE/f3vf19rrfXExETWIfm+r//zP/9T33jjjdOEz/HHH5+V4ZkI5K6uLn355Zfrn/70p9M60MbnnomnD0yve93r9LXXXqs/8YlPaM/zsuOp1eyZtCnf9/VFF12k/9//+3/6c5/73HbV/2218dHRUf3xj39c/+QnP9E33nijvuWWW/SPfvQjvXjxYg3oUqmUibaZOv7tbYMzsaPvv7He9ff36x/84Af6K1/5SjaQep6XWeDvuuuu7Nx8Pq8//elP62uuuUa/5jWv2azubK19PfbYY1prrY8//vjs86OOOkpfc801+rOf/ew0wXHXXXdt9Xkvu+yy7Ny5c+fqH/7wh/rKK6/U8+bNy46nxou7775bf+xjH8uO//3f/31Wpq3xne98R3/nO9/R1113nb711lv1ddddN22QalyB2xKN9eXQQw/V11xzzWaTulNOOUX/6le/0ocffnh27H/+53+ya9x88836S1/6kr7mmmv0Lbfcom+66Sb9yU9+Mjv3Xe96V3bu0+vo+eefr6+55pppRp3Ga2+r3FsSyIA+77zz9C9/+Us9e/bsae3q05/+tP7hD3+YGUIa69Kjjz6ajZ9SSn3hhRfqa6+9Vh977LHTrr0rBHJzc7P+2te+pn/wgx9MMyY9/PDDW7329ghkQO++++76Bz/4gf71r3+tr7rqKl0ul3VXV1f2+Xve8x7961//Wr/3ve+d1jbL5fKM7/Pss8/Wv/rVr/TRRx+dHfvnf/7nbf5WjW15yZIl+qqrrtIf/OAHp1371a9+tb722mv1qaeeOuO177vvPv2Zz3xGX3311fo3v/mNvvnmm/VXv/rVzKBy7LHHbrEe7Ey5r7322uzc008/Xd9000366quv1p/+9Kf10qVLM0G+KwTy9vRJO8KKFSv07bffnl2vr68vu96GDRt2aBzYXp3TOC7sscce+sorr9TXXnutPvTQQ7PjjSvTO8NOC+Qt/R188ME6juPNzp9plnryySdnn3/pS1/KjjcKnPb2dq2U0lpPb+jf+MY3svNLpVJ2PF0u27Rp07RBNaWxIjeWKY7jaQPJb3/7W6311ivjruJrX/tado/Pf/7zet26dTOe19jATz/99C1eb6YGUa1Wswrb+Le176TsCoF8//33Z9doaWnRGzdu3OK5MzXyHakrjz76aHbsjDPO0E8++eRmyy1aa33VVVfN2EHcfvvtmeVGCJEtHT8Tgdxotb7pppuy44sWLdrqe2usf8VicZqLxDve8Y7ss49//OM7/J6eXsaPfexjW73/TPV/W21ca50N9l1dXdNEffqXivst3Wtn2+COvv/GenfVVVdlxxvF65/+9Cet9XSL30c/+tHs3E2bNmUDqBAiW0rfWvsaHBzMBFIul5tm1f7oRz+afe+DH/zgVp+3cRJ07bXXZscbB94DDjggO76lers1Vq5cqd/1rnfphQsXzrjy8uEPf3ib12g8Px2MGwfFYrGox8bGtNbTB8EPfehD2TUmJib0xRdfrPfbbz9dLBY3K8fLXvay7NzGOnrKKadkxxsnk43X3la5tySQX/WqV2XHzz333Gl9UMob3vCGzepSo7B/05velJ07NDQ0bWVxVwjkz33uc9nxc845Jzt+9dVXb/Xa2yOQZ7KS/uIXv8g+P+igg6Z9dtBBB23W3hqfobGuNk5I3/jGN261rFpPb8s33nij1nq6JgBmNDw1XjuOY/35z39ev+IVr9DNzc3TjIBpP5qyK8p9ww03ZOeed955euXKlVk/3ciuEMhbO/5MmKmNpGzvOLC9OueUU07JzvviF7+Yjd3f/OY3s+MnnnjiM3qeXZYHOQxD3vnOd3LDDTfged5mn5944ombHXvssceyf7/yla/M/r3vvvtSLBYBGB4eZtOmTZt995BDDsn+3d7env07DQ7s6urKjo2MjMxY5sZ7ep7HQQcdlP33U089NeN3ng1OOeUUOjs7AfjQhz5Ef38/HR0dnHDCCfz0pz/Nzmt8XzO9z62xbt06jjjiiM3+niue/lt3d3c/o++nzFRXFi9enD3bFVdcwW677UapVOKwww7jv//7v6nVaptd8/rrr5/2XpYvXw6A1ppHH310xx52BhrL3Fh3ly9fvt0pk/bcc89p2R0ar5PW12fSpk466aTtKseWmKlO/uIXv+Ckk07ipptuYmBggCRJNjtnS+1zV7Kj73/p0qXZv9O2CVNl3dJ77urqYtGiRYCpO0888cQ2y/b4449nZdhtt92m3a+xrI33nIktlWlHrrE1xsfHedWrXsU3v/lNli1blrWjRnbkt2xra8syZnR0dGTH99hjD5qbm4Et9+Onn346F198MQ899BCTk5PbXY5t/a7PhMb33Pg8jQHrMz1P41jT+Lu1t7ez5557PuNyNfJsPv/ixYvZY489ph3bUp2EbdfLXVXW9D6Nv0l7ezu77bYbsOU69pGPfIQPfehD3H333YyPj2/WT+zqOnbEEUdk7eFTn/oU8+bNo7W1laOOOopvfvObKKW2+v0XMjsyDmyvzmk87wMf+EA2dr/rXe/Kjj/yyCPPqNw7LZBPOOEEbr/9dn73u9/xwAMPMDIywhVXXDGtQjSyvenGtpdGoSDl1GO0tLRsdu72CpDnK39zX18f9957L+effz6HH344nZ2dDA8Pc8MNN3Daaafxox/96Hkp198qUkp+/etf85nPfIbjjz+eefPmUalUuOuuuzjvvPP44Ac/uEPXm5iYAKbXj8YGPjAwsEPX21X1bFfX12faRmf6/v/8z/9k/z7rrLO48cYbuf3226dlSXmuO/7teW+Nk27fn0r2sz19ya78XXbFtXZVea666ipWr14NmMnaj3/8Y26//XY+97nPZefsyG+5I304TL37lStXcs011wBQKpX4yle+wq233sqtt966zXI8k991W+zs8zTybI9Bz+bz72j/sa1n3VVlTX+XHflN6vU63/jGN7J7X3bZZdxyyy3cfvvtmaDeUjl2ttzFYpE77riDj3/847z2ta+lr6+P8fFxbrvtNv7pn/6JT33qU8CWxyHY8bHoueL5GgfSsXtn2WmB3NPTw+GHH86rX/1q9t9/fwqFwlbPn6kxNObU/eMf/5j9++GHH86sAu3t7TtsbdxeGu+ZJAn33HNP9t+pFaixUT1bA7nWmvnz53PZZZdx++23MzAwwN133519/otf/AKY/r6uu+66HbrHggUL0MalZtrfc8XTf+sdbcg7Ule01pRKJT7ykY9w/fXXs2LFCjZu3Jglup/pfZ555pkzvp+JiQmOO+44YPoAuH79+uzfN9xwwzbL31jmP/zhD9m/093btoe//vWvjI2NzXidtL4+kzY1Uzl2pP7P9P01a9Zk//7Sl77Esccey6te9appx7fFrmiDu+L9N7Kl9zw4OMiTTz4JmPex++67A1t/ht133z0rw5NPPsng4OCMZd1WDvItlWlHrrE1Gn+zc889l9NOO43DDz+carW609d8puU47rjjeM973sPSpUvJ5XLPaTl2FaklE5jW7w8PD++S1avnih0Z45/+3y+0/PqDg4NZvT7ggAM4//zzOeqoo1i0aBFDQ0PPyj211nR3d/Pv//7v3Hzzzaxbt46nnnqKUqkETI1bWxqHfve73+2QIHwutE3KjowD26tzGs+75ZZbZhy/0754Z9klG4XsLG9/+9szS8CFF15ILpejq6tr2m59b33rW5+1WfXvfvc7PvKRj3Dsscfyox/9iJUrVwJmJnzooYcC02eDDz30EFdffTVdXV3Mmzcvyw2clm/+/PnZ0vyOcOWVV/K1r32NN77xjSxcuJDW1lZ+85vfZJ+nS5nveMc7+MIXvgDAD3/4Q5qamjjllFOYmJjgl7/8Je9+97s58sgjd/xF7CSNOytefvnlW93A4YADDmDffffl4YcfZnR0lKOPPprzzjuPjo4O7r33XoaHh/nMZz6zxe/vSF1ZvXo1xxxzDKeddhp77703vb29LFu2LHMrSN/nscceS3d3N5s2beL73/8+HR0dHHvssSRJwvLly7njjjt44IEH+Mtf/gKQiR2Af/u3f2NkZIQ777yTm2++eZvv6l//9V/xfZ+mpib+9V//NTt+yimnbPO7KRMTE7z1rW/lfe97Hw888MC0lYX0Oru6TW1P/d8a8+fPz5bCLrzwQo477jiuuOKK7J0+F2WAXfP+Gzn99NP54he/CBjryKxZs1i8eDGf//zns/p13HHHZcu6jc/wu9/9juuvv57m5maWLFlCT08Pxx13HDfccAO1Wo3TTjuND3/4wzz55JN85StfmXbPrfH2t7+dBx98EDACdnx8HCEEF1xwwXZfY2vMnz8/+/d3vvMdFi1axBNPPMF//Md/7PQ1n2k5fvOb33DllVfieR4f+9jHntNy7CpOOeUUzj//fLTW/PznP+cTn/gEL3/5y/nCF75ApVJ5vov3jHjd615HZ2cng4OD3HPPPbzvfe/jDW94A7/+9a8zg1RXV9c0S+ILgd7eXvL5PNVqlYceeohvfOMb9Pb28olPfOJZE5N33nknH/jAB3jTm97E4sWL6erq4sEHH8wMG2m/0tbWlr3TJ554gnPOOYc99tiDT3/60zt0v231SbfeemuWG/3MM8/Mdt3bGXZkHNhenfOOd7yDX/7ylwCcccYZ/J//839YvHgxmzZt4vHHH+e6667jhBNO4KKLLtrpcu+yNG/bOn+m4C6llH7rW9+6mbN2+re1lFSNAQtbypubHttSUEVjVoXGvyuuuGLadRqDCdK/xiCIme6zI1xxxRVbfAeAvvLKK7NzL7zwwi2et7Np3rb1nS39jjsavHfvvffOmIbv6ffcUpq37a0rq1at2ur7bEyLdt11120xzdvTf9OBgYFpAaHpX2NKsC0FxzQGUKV//f39Ww1W1Hp6QMb8+fN1S0vLZtf5x3/8x516T08v45aCgLZW/7dVBxqDrNK/fD4/7Zppvd1a8Mm22uBM7Oj731I/sqXgzO1N86a1ST04Uxq39J09+eSTuyTN2xFHHLHFazSmedN6x4P0xsbGdH9//2bXffWrX71D/c1MbWtLv/2W+qXGYLeZytF47S3V0R3tJ2e69pbe4ZbuuaW6NFOat5aWlml1clcE6TVeY0f67+3NgzwTV1999U6leWt8hh0N1N0RTbClazcGWqZ/ixcv1j09PZtde1eUuzELxEx/l156aXbuv/7rv87YnzWOrylbqufb6pN2RkfM9H613rFxQOvt0zlabz3N2/b2a1tjlwXp7QxCCH74wx/yta99jUMOOYSmpiZyuRxLlizhggsu4K677po2y9nVnHrqqfz4xz9mn332IQxD9thjD6644gre+c53Tjvvyiuv5Pjjj3/WynLYYYfxwQ9+kJe//OV0dXXheR6tra0cccQR/PjHP+Ztb3tbdu4ll1zCddddx/HHH09nZydBEDBr1ixOPfXUzIXguaJxJr09y5svf/nLeeCBB3jPe97DokWLCMOQtrY2Dj30UE444YStfndH6kpHRwcXXXQRS5cupb+/nyAIKBQK7L///vzHf/wHX/rSl7Lrvv71r+eee+7hjDPOYM6cOQRBQFdXFwceeCAf+chHpgVJdnZ2cvXVV7P//vsThiG77bYbX/7ylznvvPO2+exXXnklH/jAB+ju7qZQKHDCCSfw29/+dofchxYsWMBtt93GUUcdRaFQoK+vj4997GN89atf3an3tL08k/r/5je/ma9//essXryYfD7PK17xCm644Qb23Xff56wM6fef6ft/Op/85Cf5yU9+wtKlS2lpaSEIAhYsWMC5557LfffdN609+r7PNddcw+GHH54FoDWyaNEi7rvvPt73vvexcOFCgiCgpaWFI488kh//+Mdcdtll2yxPLpfjpptu4rLLLsvc3vL5PPvttx+XXnopN954I2EY7vTzNjc3c9NNN/Ha176WUqnE7Nmz+fjHP87HP/7xnb7mznLFFVdw5pln0tXVRVtbG2eccQbXXnvtc16OXcVnP/tZLr74YmbNmkU+n+eII47glltumVbf0yDbvzVOOeUUfv/73/PmN7+Znp4efN+nu7ubU089lTvvvJOTTz75+S7ijHz605/OguZLpRInn3wyN9988zbdSXeWJUuWcP7553PooYfS29uL7/uUSiVe8YpX8OUvf5nzzz8/O/fCCy/kn/7pn2hra8ssrHfcccc094ttsa0+aUfH962xo+PA9uqc733ve3z/+99n6dKltLa2EoYh8+bN4+ijj+aLX/wi733ve59RuYVV/S8Zvvvd7/L3f//3AFx00UVcfPHFz2+B/oY5+eSTufbaa1m0aBF//vOf3dbhT+Ooo47itttuA2DZsmUsWLBgh6+xfPnyrENYunTptEAkx9bZFe/f4Xgu0Fpv5vY0ODjIvHnzmJycpK2tjcHBwWl+ow7Hs8lnP/tZPvrRj+L7Pg888AB77733812k55zn1QfZ8beLUorbb78dgC984QtOHDscDsdO8ulPf5qhoSFOPPFE5s2bx4oVK/j3f//3zP/0LW95ixPHjueU1LjwwQ9+8CUpjsEJZMdO8uCDDzIyMsIb3vCGHc7J7HA4HI4pJiYmuOyyy2Z0pdlrr7249NJLn4dSOV6qpAaw/v7+Zxbk9jeOE8iOneLAAw98TtPEORwOx4uVo446invuuYc//elPbNq0iTAMWbx4MX/3d3/Hhz/84SzVl8PxXCClfNbS2f0t8ZLzQXY4HA6Hw+FwOLaGc2pyOBwOh8PhcDgacALZ4XA4HA6Hw+FowAlkh8PhcDgcDoejASeQHQ6Hw+FwOByOBpxAdjgcDofD4XA4GnAC2eFwOBwOh8PhaMAJZIfD4XA4HA6HowEnkB0Oh8PhcDgcjgacQHY4HA6Hw+FwOBpwAtnhcDgcDofD4WjACWSHw+FwOBwOh6MBJ5AdDofD4XA4HI4GnEB2OBwOh8PhcDgacALZ4XA4HA6Hw+FowAlkh8PhcDgcDoejASeQHQ6Hw+FwOByOBpxAdjgcDofD4XA4GnAC2eFwOBwOh8PhaMAJZIfD4XA4HA6HowEnkB0Oh8PhcDgcjgacQHY4HA6Hw+FwOBpwAtnhcDgcDofD4WjACWSHw+FwOBwOh6MBJ5AdDofD4XA4HI4GnEB2OBwOh8PhcDgacALZ4XA4HA6Hw+FowAlkh8PhcDgcDoejASeQHQ6Hw+FwOByOBpxAdjgcDofD4XA4GnAC2eFwOBwOh8PhaMAJZIfD4XA4HA6HowEnkB0Oh8PhcDgcjgacQHY4HA6Hw+FwOBpwAtnhcDgcDofD4WjACWSHw+FwOBwOh6MBJ5AdDofD4XA4HI4GnEB2OBwOh8PhcDgacALZ4XA4HA6Hw+FowAlkh8PhcDgcDoejASeQHQ6Hw+FwOByOBpxAdjgcDofD4XA4GnAC2eFwOBwOh8PhaMAJZIfD4XA4HA6HowEnkB0Oh8PhcDgcjgacQHY4HA6Hw+FwOBpwAtnhcDgcDofD4WjACWSHw+FwOBwOh6MBJ5AdDofD4XA4HI4GnEB2OBwOh8PhcDgacALZ4XA4HA6Hw+FowAlkh8PhcDgcDoejASeQHQ6Hw+FwOByOBpxAdjgcDofD4XA4GnAC2eFwOBwOh8PhaMAJZIfD4XA4HA6HowEnkF/iDA0NcfHFF3PwwQfT3t5OoVBg4cKFnHnmmfz+979/RtcWQrBgwYJdUs4FCxYghNgl19pRli9fjhCCo446aru/c9ZZZyGE4NZbb33WyuVwOHacZ7PPezFy6623IoTgrLPOer6L4nA8pziB/BLm5ptvZvfdd+eSSy5h+fLlHHHEEZxyyim0tLTw/e9/n1e96lV86EMfQin1fBfV4XA4njHPdZ/3Qpko78wk3+F4qeM/3wVwPD/cfffdvP71ryeKIj7+8Y9zwQUXEARB9vnvfvc7Tj/9dL7whS/geR6f+cxndvgejzzyyLRrPhNuvvlmoijaJdd6Lrj00ku54IILmDdv3vNdFIfDwXPT570YOeSQQ3jkkUdobW19vovicDynOAvySxCtNWeeeSb1ep2LLrqIf//3f99MyB5++OHceOON5PN5Pve5z3HXXXft8H323HNPdtttt11S5t12240999xzl1zruaC/v58999yTYrH4fBfF4XjJ81z1eS9GisUie+65J/39/c93URyO5xQnkF+CXH/99TzyyCPMmjWLj33sY1s8b6+99uLcc89Fa81nP/vZaZ8dddRRCCFYvnw5P/zhDzn00ENpbm6mra0tO2dLPshaa77xjW9wwAEHUCgU6Ovr4+yzz2bjxo1bXJKcyQe5cdmwUqlwwQUXMH/+fHK5HLvvvjuf/OQn0Vpvdv/bb7+d973vfey///6ZD+Kee+7JBRdcwMjIyDbf3/awPc/x5S9/mX333TfzgfzUpz6Vlfe+++7jpJNOoqOjg1KpxCmnnMKKFSs2u8+6dev41Kc+xdKlS5k9ezZhGNLX18epp57K3XffvcXyPfjgg5x00km0tbXR3NzMkUceyU033bRVf0OtNVdeeSWvfe1raW9vJ5/Ps9dee3HxxRczOTm58y/L4XiW2RV93tbiIGZqN0IIvve97wHwmte8BiFE9rd8+XIALr74YoQQfPe73+UPf/gDxx13HG1tbbS0tHDsscfOKNK/+93vIoTg4osvnrEsjX1zeo+FCxcCcNttt00rx/b4FW+pT2gs+7333ssJJ5xAW1sbHR0dnHbaaaxevRqAiYkJzjvvPBYsWEA+n2ffffflZz/72Wb3SfuXt73tbSxZsoSmpiaam5s55JBD+MpXvrJFt5eJiQkuuOCC7Pq77747n/jEJ4iiaKu/2SOPPMJZZ53F3LlzyeVy9Pb28ra3vY0///nP23wnjpcGTiC/BLnuuusAeMtb3rJNF4h3vOMdANx4440zdlCXXnopZ5xxBmEYcuKJJ7Lvvvtu8/4f+chHePe7382jjz7K0qVLWbp0Kb/+9a955StfyfDw8A4/T71e53Wvex3f/OY3Ofjgg3nNa17DmjVruOCCC/j3f//3zc7/l3/5F7797W9TKBQ4+uijOfrooxkbG+OTn/wkhx9+OOVyeYfLsKN8+MMf5l/+5V+YP38+xxxzDIODg5x//vlcfPHF3HHHHRxxxBGsXbuWY489lv7+fq655hqOPvpoKpXKtOv88pe/5Pzzz2fDhg3sv//+/N3f/R2zZs3iqquu4tWvfjU33njjZvf+/e9/z2GHHcavfvUr5s+fz4knnki1WuX444/nF7/4xYzlVUrxjne8g7e//e3cfffdHHjggbz+9a9nYmKCSy65hNe85jWblc3heKGwK/u87eXMM8/MVtCOO+44zjzzzOyvVCpNO/fOO+/kyCOPZPXq1Zxwwgnsscce/O///i9Lly6dsQ3vCAceeCBvetObAOjt7Z1WjsMPP/wZXRvgD3/4A69+9avZtGkTxx13HJ2dnfz0pz/l6KOPZnR0lNe85jV873vf4xWveAWHHXYYf/nLXzjttNP4f//v/027Tq1W4+1vfzv/+7//S19fHyeddBKHHnoof/7znzn33HP5h3/4h83uXavVOOaYY/jkJz/J+Pg4J554InvttReXXXYZp5122hbLfPXVV/Oyl72M733ve3R1dXHyySezcOFCfvKTn3DIIYfw29/+9hm/F8eLAO14yfHqV79aA/qKK67Y5rlRFOkwDDWgn3jiiez40qVLNaDz+by+9dZbZ/wuoOfPnz/t2O23364B3dHRoR966KHs+MTEhD7uuOM0oAF9yy23TPve/Pnz9dOr67Jly7Lzly5dqkdHR7PP7r77bu15ni4Wi3p8fHza937961/rkZGRaceq1ar+p3/6Jw3oSy65ZMb7LF26dMbnnIkzzzxzq88xa9asae/zkUce0blcTheLRb1gwQL91a9+NfusVqvp1772tRrQ3/nOd6Zd78EHH9QPP/zwZve/4YYbdBiGerfddtNKqex4kiR6yZIlGtD/+Z//Oe073/rWt7L3eeaZZ0777FOf+pQG9FFHHaXXrVs3rWxnn322BvT555+/3e/H4Xgu2RV93kx9UMott9wyY7vZUj+QctFFF2Vt7v/8n/8zra1+5Stf0YDu7+/Xk5OT2fHLL79cA/qiiy6a8Zpp37xs2bLs2M70Ydt6tsayN/ZX9XpdH3PMMRrQe++9t37ta1+ry+Vy9nnazxx55JHTrhdFkb7qqqt0vV6fdnzjxo364IMP1oC+7bbbpn32iU98QgP6kEMO0cPDw9Oed+7cuVn5Glm2bJluamrSpVJJ33TTTdM+u/7663UQBHru3Lm6Vqtt9ztyvDhxFuSXIIODgwB0d3dv81zf92lvbwdgYGBgs8/PPvtsli5dut33/trXvgYYC2qjtblYLPLFL34RKXe8Skop+frXv05LS0t27OCDD+aEE05gcnKSe+65Z9r5J5xwwmYBJ7lcjs9//vP4vs8vf/nLHS7DjvLxj398mn/2nnvuyetf/3omJyeZM2cO55xzTvZZGIZ88IMfBMwSaSP77bcf++yzz2bXP+6443jLW97Ck08+ycMPP5wd/81vfsNjjz3G4sWLueCCC6Z95+yzz+bVr371ZteK45hPfepTNDU18aMf/Yi+vr5pZfvSl75EX18f3/jGN1zGE8cLkl3Z5z0bzJ8/P3NZSHnPe97DK1/5StatW8fPf/7z56QcO8Phhx8+rb8KgoD3v//9ADz66KN89atfpampKfv8rLPOoquri9///vfTAq993+eNb3zjZhb+7u5uLr30UoDN+uZ0PPnMZz4zzb1vwYIFXHjhhTOW9/Of/zwTExNceumlHHPMMdM+O/7443nPe97DqlWrslUHx0sXl8XC8Yw4+eSTd+j8O+64AzBLnU9nyZIlHHjggdx33307dM358+ezxx57zHg9MH66T2fNmjVce+21PProo4yNjWXCLgxDHn/88R26/87wute9brNjixYt2uZnMz1LrVbjhhtu4I9//CObNm2iXq8D8NBDDwHw+OOPs99++wFT7/9Nb3rTjJORt771rdk5Kffddx8DAwMce+yx9Pb2bvadQqHAQQcdxHXXXcfjjz8+42/hcDi2zJve9CZ8f/Ph+PTTT+cPf/gDt99+O+985zufh5Jtm631VwsWLMj64RTP85g/fz733nsvAwMDmwX//elPf+LGG29kxYoVTE5OorVmfHwcYFrfvGLFCtasWUNfX9+MriJvfetbede73rXZ8dRl5dRTT53xeY444gi++MUv8sc//pG/+7u/29qjO17kOIH8EqSzsxOATZs2bfPcOI4zv+Curq7NPt/RNGapwJs7d+6Mn8+bN2+HBfKcOXNmPN7c3AwYAdnIZz/7WS644ILnNW3c7NmzNzuW+iVu7bOnP8tDDz3EySefnAXkzEQ6uMD2vf+nk177pptu2uZmLQMDA04gO15w7Mo+79lg/vz5Mx5Pg5zXrl37nJRjZ9jRvqzx88b+rF6vc9ZZZ3HllVdu8V470pelQeNPD7xO+7MtlS3luVo9cLxwcQL5JcgBBxzAHXfcwT333LNNq8TDDz9MvV6ntbU1i4RuJJ/PP1vF3G52xC3jrrvu4qMf/Sitra184Qtf4KijjqKvr49cLgfArFmzZrTS7mq2VubtfR6tNaeddhrLly/nnHPO4ZxzzmHRokWUSiWEEHzsYx/j0ksvnTGTx46QWtd33333GV0wGkmFiMPxQmJX9nkz8UJyLXquy7Ir+jIwhosrr7yS/fbbj0996lO8/OUvp729nSAIeOyxx9hjjz2ecV8GU+/nzDPP3Op5r3zlK5/xvRx/2ziB/BLk9a9/PV/5ylf42c9+xn//939vNar7hz/8IWCW0XbGP/jp9Pf3s3z5clatWjWjpXHVqlXP+B5b46qrrgLgP//zPzfrICuVCuvXr39W778refTRR3n00Uc5+OCD+epXv7rZ50899dRmx9LlzC2955mOpxb6Pffck+9+97vPoMQOx/PDrujzwjAEoFwub5aF4pn2WzOlcGw8PmvWrBnLMRPPdh/6bJH2zVdeeeVmcRU705eNj4/PmLZzzpw5PPnkk3zmM59xE3rHVnFBei9BTjjhBPbcc0/WrFnDZZddtsXz/vrXv/I///M/CCH4yEc+skvunVogZwo6eeKJJ7j//vt3yX22RLp0OpNbxk9/+tNdYqF4rtjaswwPD3PTTTdtdjx9/1ddddWMz/qTn/xks2OveMUraG1t5bbbbmNoaOiZFtvheM7ZFX1eKsgee+yxzb43U1uDKTEbx/FWy/eLX/yCJEk2O/6jH/0IYJqP7dbK8dhjj7Fy5cqdLsfzydb6s5n6pfnz5zN79mzWr1/PnXfeudnnP/3pT2e8z7HHHgtMCXKHY0s4gfwSRErJ97//fcIw5KKLLuK//uu/Nus477zzTo499lgqlQof+tCHOPTQQ3fJvd/97ncDZjntL3/5S3a8UqnwgQ984FlfHkwDRr797W9P80H+y1/+wvnnn/+s3ntXs/vuuyOl5De/+c204JVqtco555wzo5h97Wtfy+LFi/nrX//Kpz71qWmfffe73+X222/f7Du5XI7zzjuP8fFxTj311BmtOWvWrOGKK67YBU/lcOx6dkWfl2brufTSS6eJ2SuvvHKLfrOp5fevf/3rVsu3fPlyLrnkkmnHvvGNb/D73/+e3t7eLI8xmAlrsVjk+uuv5957782ODwwM8I//+I8z9qFdXV0EQcCTTz45oxB/IZD2zWlmipSf/exnfP/735/xO2n2jI9+9KOMjo5mx1esWMHHP/7xGb/z0Y9+lEKhwD//8z/PmPe9Vqvxs5/9LNvoxPES5vnMMed4frnpppt0e3u7BnRXV5c++eST9Vvf+lZ9wAEHZPkj3//+9+skSTb77ky5Np8OM+RB1lrrD33oQxrQuVxOH3/88fq0007T/f39ev78+fqkk07SgL7jjjumfWdreZC3lNszzdN5+eWXZ8cGBgZ0X1+fBvTChQv1aaedpo855hgdBIF+y1veslP3mYlt5UHe3vJuqwzvete7NKALhYJ+wxveoN/85jfr3t5e3dXVpc8666wZr3fnnXfqYrGoAX3AAQfo008/XR9yyCFaCKHPPfdcDeh3vetd076TJIk+44wzNKDDMNSvfOUr9dve9jZ96qmn6n322UcLIfQBBxyw3e/H4Xg+eCZ93vr163V3d7cG9JIlS/Sb3/xmfcABB2jP8/SHP/zhGXMF33PPPVoIofP5vD7llFP02Wefrc8++2w9MDCgtZ5q8+9617t0EAR6n3320aeffrp+xSteoQEdBIG+/vrrNyvLhRdemOWhP+644/Txxx+v29vb9ate9Sp92GGHzdg3p33rPvvso8844wx99tlnb5ZXfSa2lQd5R/qrlJnGj9tuu017nqcBfdBBB+nTTz89y3/8z//8zzNer1qt6kMPPVQDurOzU7/5zW/WJ510km5qatInn3yynjdvng6CYLP7X3311VkfuPvuu+uTTjpJv+1tb9NHHHGEbmpq0oC+//77t/luHC9unAX5JcwxxxzD448/zoUXXsjcuXO59dZbufrqqxkeHuaMM87gzjvv3OncxFvjs5/9LF/72tdYsmQJt9xyC7feeiuve93ruOuuu7Ld2J4t37DOzk7uvvtu3v72t1Ov17nmmmtYs2YNn/jEJ7YaPf1C5atf/Sqf+cxnWLhwITfffDO33347xxxzDPfcc88WI+MPO+ww7rzzTk488USWLVvGNddcQxAE/PrXv+awww4DNn//qQXul7/8JcceeyzLli3j5z//Ob/73e/I5/P8y7/8C9/5znee9ed1OJ4Jz6TP6+3t5be//S0nnngi69at4/rrr6e1tZWbbrppi+kuDzroIH7wgx+w9957c+ONN/Ltb3+bb3/729OyMQC86lWv4rbbbqOvr49f/epXPPLIIxx99NHceuutHH/88Ztd9+KLL+a///u/mTNnDr/5zW94+OGH+Yd/+AduuummzJ3i6XzrW9/ijDPOYHBwkB/+8Id8+9vf3iyv+vPJkUceye9+9zte+9rX8tRTT/GrX/2KMAz5+c9/zrnnnjvjd3K5HDfddBPnnXceTU1NXHPNNfz5z3/mox/9KD/+8Y/ZsGHDjGPJKaecwoMPPsh73/tehBDcdNNNXHfddWzcuJGTTjqJn/zkJ+y9997P9iM7XuAIrf+GnC4dL2rK5TILFy6kWq0yMjKC53nPd5Fecpxzzjl8/etf50c/+hFvfetbn+/iOBwvai6++GIuueQSLr/8cs4666znuzgvKu666y4OO+wwjj/+eK6//vrnuziOv0GcBdnxnPPII48wOTk57djY2Bj/9E//xMDAAG9729ucOH4WGRoamjFv8o9//GO+9a1v0dbWxoknnvjcF8zhcDh2kPvvv38zv+unnnoqi3d5oW6w4njh49K8OZ5zvvCFL/CDH/yAgw46iP7+fgYGBrj//vsZGhpi0aJF/Nd//dfzXcQXNY899hiHHXYY+++/f7bj1SOPPMJf//pXPM/j61//+rStYR0Oh+OFyumnn87o6Cj77bcfnZ2drFy5knvvvZdarcbJJ5/M29/+9ue7iI6/UZxAdjznnHrqqaxfv557772XP/7xjwAsXLiQf/zHf+S8885zuSmfZRYtWsS5557Lb37zG2655RYmJibo6uri1FNP5Z//+Z8zP2SHw+F4ofP+97+fn/zkJzz44IMMDQ2Rz+c58MADeec738k555yzzd0/HY4t4XyQHQ6Hw+FwOByOBpwPssPhcDgcDofD0cCLxsVCKcXatWtpbm52SyoOh+MFidaa8fFxZs2atcvTJzocDodj1/GiEchr165l7ty5z3cxHA6HY5usWrVqxi11t4YzAjgcjhcyLzYDwItGIDc3NwOwx26zAZACfGHcq4UArRVJkiA9iRQSzw+I4xiVJCitEAg8z0NrhR949nyF1gKlNIHvozXESYQnPIIwRKmEOI5NRRCCWEikFsRKgwZfgvQ8oiRBJBB6AXES4weQqDphGOD5PvVaHa0lvu+BhiSpk2iF73kkaBKVkPcD4ighSTRCSFNO30dKiQaiJEYJBWg8BGhMqjStUSpG+pI4SfA8H8++gyRJyFzQtTaDrpTEiUIIiVIKz/MIQg+hQccJURQjpYdSKvvc8zy7batAK0GcJARhSKI0SmvCnCRJYgJbbs/3kMIz21YpDcLeXwpAoxIFSDzfI5/LMTExacoR+NTqdbTWCDC/p5QopbPnEEIgpUApRRDm0FqhUaA1vgzQWpMkCbmc+f2FFIR+ANJjslJBxwqUohAGBL4gARIgVgkCkd1DaU0cRQjh4QchvoxBeESxuZfWmsCTSJWgNSRKk0iJ5/nmGZUiSWKk5yGEIEk0SInneagkwbP6R0pJlCREUYKUAj8IkGi0TWvk+x5CaDTavheJRiCFIJ/Lk6iIRJmOK07MNaJIIaVEJBolTN0W9jdNtNmGNqnX8X2fJEnwPA/hS9AQRZGtf0y9C6XI2c0J4iRp+A20bXvgSYlGkws8PE9QqypTT3zfXsennkRoEqQw9/KEQEpJPaojhEAIUAloFL4v8aRHPYogTQmoNXGiCHwPrSDwArQElcTmtxMQkyA0KA1aeUgglzPP6Qc+vpDEKqFWryGFpJAvUq9HBEFIpVpFCEEQ+Aih8TzTRoQQqEShYhBSAglxHIEQJCpBQ1YnlYa7/7Qs6692BGcEcDgcfwvsjAHghciLRiCnFpVcYASjSmIjONPPpcBTAq21HawVUgBSIPGM0NTaiAE7qEspEEIihWfFmCAQvhUFMQCeJ/F9nzhSdmDXBJ55rZ5QVhgK8DTSS/CEMuO5EGitiOo1hBB40vwJIfD90AywGIHmB0YIS2WFjZCAEaYabQorPGKrNT0p8aS04ljhi4CYGM/38IUpL0CSxFn5U4GZqISc8EGB9qUpjy2rlgLPM8e0Ns9uREKCEOa/VaLtNSUKgdYJnifwhIeKE/N9NFJOCVytjcATGBGkhRF+Ukqq1QpSQhB4JEkMWhEGAVorwnDq943jGCGkFWeezYupkJ4HSKSUeMJDa41SHr4vbRkUCkVcj/ClgNBD1zEyU2g8IdBamgmCNu9fCiuVfYkQHhKPXCgJ/JDJas2KOYFOEnzPinUESN+KJkWCRuBZIR/i+5J6FKGSmCAIMNOHVPBLhDB1RgiNLyVaGLGqlUB6Pp40dVvY8mX11c8RxTGxrTtJovA9zLv2BUKZyaEUIHyJL+yEx0uvY9sT2gjmOELKqXdsJigiezeeFLYNCWIdo7Ui8EK0AE9MiUcpAgJfEoYBcZKAUOQ8jyQx+/1KwPd84ihGAIEV6/l8QL1ew/c8giAwZQlC+y5M3VBJgpYgPVNf/UKOODL9wWRURSiFRhLXNbkwIJfz0coDa/EItJmoSSkJcwFKK6QHhXxAHCemXkmB79vy2kmY9Hw7iZLkcwXTnnSCFmZCkyQJ9Sie1l/tCJkR4OBXm3sLMyFCCxDKNH7hmRIIDULZSaf5DYUw9VhJAQikFrYuawQaLQRCKFO3TYXDR4CQaClAaDvRkPhCIE33icBHCYWwnwvt2/IIBAIlBB6ghUJoiRaS9BaKBBCm3noh+cDHF4pc4LHH7FYO22sOOd9j+dqNVCcUs7r7WbVuBQ88+gid7W2IpMbIyBiz+vuIKhPkCyH9vX08/uQqVo6MsHL9CHFdkW8psLCvm8MOeBki1KxetY7qZMRkEvDY6rVs3LAOFUdEUZ06PoUgTy1OiKMJtFJIP8/cBQsZGy+z214vY3JoDUpphkZGGFq/kqDQQig1zXlYesg+JNUKa8rQUSyydsNayhN16pUyYxMTKDy8QgeeSMgJzcjkJEJo5vR2sWbDegLPY/WqdRQLTTSVAsYm6wR+nnptkjhO8HIlBgc2ksQxnR2dVOMY35dUJiaZPWs2b1j6KkYmxyg1d7BxeAyRxORzTbR0tjEyOk7oefT2dJMrFRmeVJSaStTKm6jpHIKARMdMTFQoT4wxNjbBwKaNxPUyAkWSgEDS3tpChCTfVII4ptTeQTI5Rrlapa21hWqsaWruQKuY4aENVCYr1JQiGR+FYist7f0UAo+NG9dSzJvJblNHBzkvoFatMzpRwUtqVMbH0DJCxBHr1q5HCk0hFzI2PkZLaxu+FxDXqwjfp6d/AZV6RLFYZGR0gHiiTFdPL10trRSKBQaGRqkJCWjiyTJtrd10d7UhBEQqIdEaJTxrXJNIa4gBSV0nKIxRQmCbnG0LaGn6FAFCK9CghQfCfMOzE35jrxPEAjQJWngIpVBCg1IIJIIkbRFGIwiQyvxbmBugBKASzEjqYUw4Go2HhzAGIaTtte0O6spcy/y30TUCgSQx97XGKwWmLzAPYdo+aR4HjTSdDHZXdmJ7tlQKTysmo5iff++bO2UAeCHyohHIKYFvrEimknhG8OVyaGsZMwh0YgSwqSwiE1canYlfIwAESiu0NgNm+ler1Ywg8DwrYHQmvqWQSClIUtEgJErFKB1jrIfSWqtTQZ5ajpW1SBmrlJACoTVJokD6RthqacW7Ef1aGyu2J4ygUUojtBF2SFMOlEYKaS1ZHkppfN/LhIzWmjiO8X2fwAtQiUb6RrgqjOUxbRZm2URk39PKPIMRpGZQDkPfCGPhEUUxKgGlNInSeJ4g8AOElOb5SK2Q2oqt2AjS9FmkaZKJUpklH52YSY7WNsxUI6QGEpLECH+tNWGYM5MJFSOsCI/jmHy+QJJEmRXW1BtJEkWmDL6wFvQYpJcJeVt10Mp0Gb7vI2SAJwJqtTIqUcb6jsC35Z6aTGiEiNHKWMp1YqRBdl2tMwt1EsdIz3RacaJAKjxf2c5YGyu+kARBYOqyMhZqz/fwpJiadGiNTkznizadpC98YmJyYY4kiYmJMwuoDLzMIqqVItZWFCuFFD5SeOTCAsqKR5LEWnXN5NBMdMxvpZXC833z+2uFED4gSeKaGRyURHhQVzV8L8zqoJCSxK5G4IGUPoUgZ8plV0Q8T1IoFOy1NYGUJEJQTxJzHgqlNYkGT4RZ3VZam0FAK9CJFY8evoQ4UVSrEflCHoEg8DxzDRXj+4BQeHaAEQJyYR4NeJ4gSerGou0FKJWgY1N/Y7s6ZUdGW4bpGxrsCKmolr6H9H07UCsrbn0zRNo2hTArC0IYIaxs/4YGr0Egm2taY4HWRvxqjZI+WlrhKqYEgSekFb4grfA11/BA2Gmu8OzwbOuFMNZ7gUAqjRYSJUALiakVID3fdmpmpWZ2WxOv2m8JvZ2trFrxFOPlMvNnL8CPxhjYuIqWUpH+zhbGxsr0LWoniatsrOcQMs/t9zzIxqEhElGkrbmN3fq62ffAvegoFRgfn2D5+lEGJxKaZMj4+CYmJ0dQScSmgUHiWo1IaISW+J5ESwjDPCJSVGoxxeY2JmuThK291MZGaO+bz2S5jJCCuD5BV0c/TV7I+uoEOSHIeRGzZ/fT3d3Hxo0DPLF6PaVijmVrh6jHCZOTE9RqVXJhDj8oUii14fkBfnGUKIkQXjOe0MRxQlN7BzkBiRIEfg8b1m+iUq2QJBFJ5COQhBJEoUhbvsjw2DhBmKMynpDPxWxcv4Gmrm4KQZHKyDAbh0Zo6uqjPDHB8GjEwOA6SsUmNgwMQAKjwwPopEJNSwJPEgQ5qspsuV3Ao5SXVBNNR2s3Ogyo4NHX08LIpnWE+Zwx7Igc1bEyXj4kJ0ImxycIPLM6qGXI/CX7gdSgYlSiWP7ow9TGh5icGKXQVCKOI3K5Al7YxILFL8eTERNjQxSa2omTmPbuPnKFApVKhSiqE9cmWT+wCUTC5NgIY4ObiBYsomf2AhYtXsKaDRsolyep1Ou0ehod5sgFAaGAelQjnUxKYeSqh5no+RoSDUIn5gwhUWbWCTpJp5igTX9u/jvAzivNpFCA0JpQCCKt0NLDLPqqVLaCjq1IlbYdKzvpNQLWtFbPSlMrxJVKS23KL4xxSGgPtBmX7ZzfSlwzUUZqJAokSGsESjAiXwkF2khoM+wp+10jupU9HoDRVlrjqXQKsXMGgBciLzqBXK9HZgnfM52w9IxI9jxphAJkrgEgkJ4RGGCXQFViLCXWcud5Hp70M5eCRktzKpaVUmaZXoCOFFobYSXQSM9YaNI16SnxIuzSekIY+qhEG2uatYTWojpCCyPCtLWQYmZ3QkgQGik9qtUYhKAWxYRhCBgxJz0PlWi0MoNTaK3EqXUzfTbf97P3oRKVicapJXsQvoeOk+y5QWTfS5QVAZhOHKFJkinfI096ZrIQR0jpZRMQz/ON5RkzqYiTBKl827A0KontFcx/pwN16r6QTWLN28WTPnFcw/P8TGCbTk6jPTOREErgW9cSpdKJh8iEnSmvAE+CZ4WhFMYqkBiXF4BIJEjpgZAkcYQnNYH08AKfUJuO3rNWRrStD8a2T6IShBYI60IgpEDY76t6zYpCY5kGBSR4wkwEVJIghI/wPGttF/h+gMYs5Zt6Hlj3jYQgCKjHEUppaxEEhP0NG8ReomoI4ZNERhxbZY9n67YnjZtQXZmJku/5eNIzEy8p8EMj/JRKzOTMvkPf9xDaNx27jvFkCF6OODYuC2l3mli3DCPUTWer0Ob9e5JaVCMIfCvOzC8eqwjpC6Q2v2fqCpK2b601YRCQJMo8ozDvNZABwjOT3nqtTpxE1GrGWpK6QejEtgFt3nmSJPjW/Uprje8H1KPIDmCmHQohiOPIvD/frBIIaYYUbd2d4jjG2wVdrkKZvk0LaxkW1uxuJtQybRzZ/wk8LUgwdU1qY8k1yjdBSzPsCQkSK6TTP9sGPYRZ1dBYdywyoZA1HvsVqaxgkGbAlVqb7k8INHaCjc6EvEQjhUfgh3gBFHOw92499HZ1MDY6war1I+TyzRSDgIGBMaIkZn5/L57vM6u/jwIxoxWfJd1tTFQmSWbPprevm3wQ0Dd3LrM724ijmDUbRlm+ci2V2iTliTrDImDtxiEmxsts2LSe8YkqoZBoKRG+j/B9kqhGojWtra3EtSo9/XNASIQfUK2WaW9uwQtyxLVx6rUKoa+ZmCgT5vN0tffREiRsLJeZGBlivKIZHB2nGHh09PSx7slH8HRMXKtSr0wyXm5lTlcHjy1fxcjQKCqO0FpQq0X4gUczTeTCkPLEJLO6e8j5OdasX0c9ipAioVRqYbeFC9iwdjWtbe2sX7OB0BNM1mNGhmPyvmDd2lU0t3fj+T5NzS1U1i4nqcdM1BTlaplNG9bhhUUScnTMXYKuT7Bq9XJ0tY4UktZSE9WxTahcC93ts4jLg6xf+xQdPb3kwwK1ao3mUgdaVSgPDSDCPFFtgnqljEIQBiFNza0UCgG5fB4Z1yiUCjz52F9ReOSLRYJcnvbZCxgbHSWIJ6hXa5QHNlArD1BqbiFOBC3d/WYlLVEkcULoe0zWFHG9RqmpifGJcQrFEqPDA6xZt46OWfOQuZDDDjuUu/9wP4Mb1lKvTlKp1ZHCpxB4KAWemOqLNIJIKWNNtuMM1ogmhLGgCiGxpiGENsI6sdZVqY32N99IjPAVEo0xZmlACyOlEQLPaFKkWVoxK0/CtHhjgVb2/gngTblFYscKLbLJq9bW+IcwE1TbOCVpXzdlkNH2f4XQZjItrT5Bo4VCpu509nyBxkeTmHUhtJBmnLUrnC8mXnQCORVGiV2K8DXUo4hQTwlE3/eyQVRYy6pWxqc3ioyFKQiM0FCJwpPmup7nZYN5ow9uPp9Hx6bCRSoilIIkqhOGPvV6HT+wLhfWYpst/8vUigueL/B82yij2LhJWCtzPjRLyAZjLRUCI+atz6mxrpEJdw1myUgrAs8sKwmsL6hWxs/VCoq0TKnmNAO+NMLXjGfG6qmwZRf4nrVgeRjBp0CK1JJsF3xSKy8CKXziJCGOImTeR3gC3/pwGjHjE0VmQuNLmfmN+r6H1lhhrbLfxBQcsGXyhGdEGwqBbwax1FomJVJ6xtUkTpC+BOFR90RmafX8gEhr4xMsBVFs/LUTbSZXEo1vhaOUHkoIlBam80jq+GGIShJ8CamfiGc0pBEyQuLLAOH7eL712ZaCSCV2NSwi9MxXC4U89cRak5VA+oJER6A0SulswobArG5Yq56y/tWgCcMwc1eJkhhPevi+qUdGCMZI6SOkNn7XJLbjNBM739Z16U1NCOM4JghDY1mREiVMnZAi7YqFXUExAhQrrs2kz4p9LzB1Vmn7uxghHUdGyHuej++B0hrhSaI4IlExQjW4XIh0vdJ05GlbTa3QZoIhSJKYej2xE0HjoqMTDVIQx0Y4a51QKJSoVepoW556PTL1wJP4foBSZCswnjTvZjKuZC4dIM3gKj3iJCaWitD3SerG3x4rZH3f+NDvkn5O28VQ+7t7aLtIIKx4xU4kpW35VtRqjdACKYybjxYaiWePCZSUJHaJyvQOpm4lxgxmLMbo1CiONGM5UlobmJZIYVbwhB1SFdZNKB1gRTqQG/uUEBpUnURpApFnblcru/V1UClPsHr9IEL49HR3IYOAKPGY3d1jJtBK093RgvRyjEeasYFhNg5vIt/UhBYhc2bPoae9g/VDFR5/6ik2jUxQ9CWDYyPUogQfj8GhIXSiKeSaETKPb1d0EkJy+dD0y7kmWnvm0tXWxtjQILlSEaVicrkcMq6w+7w5CKnwdURPS4hsaaU9l6M5n2P9pg2sGRhDBnnClnZm93TjRRM0CQ1RRHtPH/mmFjwSAi+go72fOZMVerpamRwbZ2y8zGQQs27dekaGRpk9exZhLqRUakYGeQaGRvCCgKRep5gPWbBgLiuXP8nE+AhRrU6+qZmJyWFaik34YROze3qIZZ4giRjduI4NA4MUmopIP2BocJBiWxdNLe1EOqA6Pkx1ZD1yYoB6vUa9UqC9LWJkZJjW7pjcpoi2WQsgyDNeHieKR+junc1kpUIU1UjiCFUZRUozwSoWitRiRVAoMTk+Rm1yAj/MsWHDagQeUb1CS7GAFDm8sEhTUyvFQsimwWEKoU+tWkZFNWpj41CvMF41Y2sUjVPMN+F7mmKxaFYuvXZyuRz59m6iyTKVsWHWrwppy+VYvMeebBoaIo5i2jv60InGC0PyQQEdVYlVglIRQptaHGuNL4R1X5BmJcr0dqSuBgLTZpSSVvTa+aXWKC0Aaa3PiZlU2v4WBIlZLDPGZ52OyaZ/11KaBiZS63Dahk3/mwpxIYW1HJPJWGHbvBLpIpawK04JUntGCGNcTLVUaAVaNAhqi/mONfQJmYlvc0VjvTZF18YS8SLiRSeQgyBAW4GQaPASjQhCPAkg7WCdzhDNIJJojZbW2ijMYJgty6oksxynQW2pxSq1BlerVQIZUE8S42vp+ZhlXiti0kAe+/9mgDCDcSp8tdZEUZTdK/1LB/zUTzgVoKlbgwk20yRakOgEgVmKj+IIoU1gm1YxqUROBb60LhbVahVIl3/N8qaQyswwpQmyU1oay7I24llng6PxNZZAUo+sO4TAk2Z5WkpjPdPmf5Dp8Kp9fC9nXVKMD6cQGt9a3rRKjHXAWp7Sd2N8XD1bDml9P1N3CG1FUGTdFayl3ZbTk5IkifB9idAKrSFAIDzzWb0eEQpBXhoh73seYT60rh0Jsa4jrX9u3vOIlDJ+vYG1AHsC7ZlgO5UY9wLfB6XMZEIaNWZ8CKVMV8MQ0iOONb70iKXGkx5JrBE6sdZPaTouLaz10gguITxilSCFEYhZvYyjzF83ndRJmWR+zKENpgOsJcNDyNC4HOl0gmlEUhiGZkFNa0RiO3mlTT0Txl0mdRFKxakRrcpMmqwFMl2pAKjXa4RhjlpUN1Z4BCpO0HYi6vu2jmImczLIUdfGrSVSUdbmoprxr/VtO4iiiDAM7STWrFB40sf3jR8ymGfzAzMAJUqQxKZugJmYpRbT9B6pwVR6MltR8aTxfRb1Op4N3DWrEXZC53lEqMyKb/qT1KMcG8T3zJB4ZrlTJ0i7bGp/UCP6zbqMHaiF6YuE+aZCWJcJ48OYpD6GEhJhB1trtTISXOBpSLA+jNnKDShhJ/yk9zF1RAllrEnWduYJzFKvkA1XNe/F/C6ShBiZROREgVlNOZJEsWpoED/M09HcjBgfYWB8iGpcoaezjUQL/DBgcrLCqnXrqaiY8fEqsZ+jPQiZN28Wxe45DG3YxLKVA6xaP8RkrcaKTRsolJrxAsHaDRso5goMDI4yMTEKXkCQb8GTPoGWqKROvq2b1q5ZFJqaGR3aQDw5SlsR8lrQ2t1KzvfwRZGRyUm8RDNa1eiyYtMTj9Hb3sHc3RaT60x44vEnWPXInwk0EAaUCgGz5s4lX2xiTqGHJ1asIVEKRJ3m9lZmdXewbN0YuwWKKIFVa9YzPjbK2MgwPT1dVKqT9PXPZmhkkKGhUWpa0N/dTegFrFyzkY62NsoTkygZ0j97MdHEEMOjg8RJhXoiaGluxfMD+ubMQ/oh1WpMR1eOuhSsX/MUtbERVFwjET7Sz9Hc2U69DgNDI7S3NDO0cSOTI0NEBASFdrQskGsSjI0MUKtEhDkb+BtpZC5PPBGRlz5BKFD1CvWJMoVigfFKhSSKCXJ5mvMFtE7IN7fR0zePiWqdnO/ROXsBceTh6xpDI0N0xnUKUhAnMeODmxCyxawGRROMT5ZpLpaQAgKhqUVVlIbVq1ewYsUy1q18iiV770uhGFKvRgxsXM2CBXsYA8BYhfHyGKXWDpLEQ+iYer1ijCHSrvilFl80wvr1CjwjLI2Z19Z34wsc69QVKXUtsq5v1q1SC9ue7SpsaoEVdgVIYLWxzryJpyalSLRO0Ea5mMlpOu6JBG2DqQWgpXGMMCpc2ZgBhUhXibUCocyk2Ch122Gl01rThoVtx0JZUW47hHTKIBuE9YuBF51A1tZqigYZBEYwKeMDJOV0MSGspUlYX7tEKeMHpxITQBdF+F6QDf6puA6CoMFVwYjABBM8VWxpIhSS8fExGzRlrMNapeJSW6uc8Yk2fqySyPo0gxEDShtRE/gBURRl1l5thWfqA2ws4GbQwa60pq750vqSpn6w6Xf8wKMWxZnoBLJ/m6XkJLNQa2UmDcY6a8pmLI+mcSgdI/RU8KOfyxlRm9QJwhz1eh10ghd4yEQQxaC0oB7F1l/WZBywhipj/bcCWEhhgq/A+KxhBIYnrNiRgZncAPl8SBTXkF6IJGfLLFD1uhH02gQvqSQh5+eQ0iNOlA2GNKEO0pP4UqBTNxsNMBVslCSmE/M9H194BGGAFMYih4yNH3AYGOsokjDwQBu/Y9MBKpJII5Tx4EpiE5HmCZ+oHmX+7kk9wfPltI4wsVZIRYJnl9dMBghNFNXscrUwrkWJssuAJniukMtTrdasZQ88GQAm44QfeKBreEIhlLVCKhPwKbUy1kQNvvAJwwDf86kn9czAIG1gZuqeJG2QHpBZ/E0dN92n55k2I6zxRVjvIyNijY+rFsrGEZj2YSarabaPJBPk2GcGsjbppULXto00MNHEG1g3V+uP63le5k+uhW13SWzKHPjEibJLpuZZAt8njiOzCmL9wROlkdL2J9i+RBiXqEQphPJIMJPsIAjQKnUdeibYpVEhkdggn9RXUIpsGRiRDl3W1QMTnyCkQOGDddOQaCMChDQTd40Z6Ox7EkIYcWAHzTR2QNplaPMTCOOioRJj2RLWcgy2LNZ3WZgJtdB2KViaFRBBABpKvqSvvYWVK1exfnCMnrYOOltLlMerhIU88xbOY8O6ddTLk5Ram3hqzWrKdagpM7Gb3dXG/nssQVUneOyJv3LXQ08yuGoFlVqdkcokpWITnorpauohaIrQcZ1aVKe9vYtqvWoMHvWYWm2C3s5uxgYHCMISOc+j6MW0zuqlGHrEqkas84wMDDM+MERHZysLF+1GHEWUa5MUmtr566o1PLZiFb39/XR2dFAenySu1ylXa8zq7mF2bxcDwyM0lUosXLTIZJMJBV3FHiYmJ2gKIV/qoinIMTw2Tld7Ceb2EbR0Ux7YhKpN0N1SIuf5rF67Bq9QQHkhLaUCo+UxhOfT0tKMqleItWZWXy+FfBPaD6hWJtG1ScrjoyB8hieqgEdFJUyWhygEAr+QpxopalFMZd0q6tUqpdZOhocH0TqimgSsXP4Us+fsRqGzk03rVtHa1IRfLFGt1kiiKuODm5CBh04S6nWBknnKk3XiepVarUKtViMnPWrjQ8TCZ+7uezJn0UImxyaIEkVlbBjhS8rlcfKews/lqNbqVOoxQTFPvqPfBFePDxOP1envn83gxg1UKpPUhIfvGwNFWGwnDAOaS81U6wlNoU9XWz8t7b2sXLuG2b29dM9ehJI56vUqnZ39xOVNCJ1QjeokOjGuFkKS4GVi2HjlQhoUl44bHgqFWb3UmDHPBMkmCBKEktZ9wq612I5QW+2SZnTy0aDN2KeExtN2JUsISGJrIU5jhNI2GpMIaVypbD9l3CVV2nMAvgnwTqfQwgTWJpnRyfQbXrbOI0Ga2BErZvBsOGFa/tRr+8XEi04gCynxjJJCKG3SOVnRLJlKTyalCXIyfoECnRjho5RCSSMshBTEcYLv+WSRKopMKHueJMz51Go1fF8QSI+mXMj42JgRwEIZvW0jVFPrr7Ewepl1OkliM4hZFxDPl0SxJvGlEU4KcrkctVrNWpE19ZoJfpLSzjaTyA5UGpmYqPlIJCg0oRcYgWwD9eu1hASFh8gs4VIaK7Gp7D4Sn0SZ4EMpTZBfvV4HIfClCTBDgFCpL5YJqrNTULukaoSu5/vU6zW80Fi1EAqTRg+SxFiekzTQK0nQaBKtEEqSWHcrIa2l0S4VBWFgxaP5Pev1yFrsPRJhAvBkGJpUeIkReKnvdRAYNwDP+lz5gY+Xy6OSCKUSfDuQexgRHmuPSET4oXFJMMtKglyugLKZGgq5EKEF9SgiURrfyyE8QT0yHZjn+Ujh4yfGhUNqhYhNZ6Q0aBmZGbxnlrCSxAg35UG2nm0nLVLbd2XnRcbH2wTuGZ9YiS89CkFAEpnJT2At9coKy3SCqJRGK58krhH6pruM48i4uUgfqa11WCnq9TpBYMKqRGJXMWJMuX2o1SOUFnjat37eCuGZIC0VmxUC37qLhDkflJe1wcziCtb3G1Axtag2LctKunKSruhMTRSxEzvjh6uUafOp1UVg/K7r9anJpicDPE8SR5IoqgFYq7b5Uuj7JJFZfYm1IFIapE+sEkLf1PkkFkgvMG5b2JWlCAI/Ry2xAbueyFafglywy/o6aZYg0NadTNqqoq2bRRpYk07wQJusFVpMBe0ITSxT+691e7DtAvtutUjf4dQ9jA8kSGktwloYX2OJ/W9tfOdTf0tt2z3Y1SRJQoLQnp28G7Gf9yOkqvLkk4+ZJeumHCopUCo101TIsXL5k6zeNMZ+i5cwPjFBOZI8sWIFLaUSBx+wB6Ug4JGnVrBq9QaWb1jPpuFxfKEQPhSbSkgvpKetlag+SU5KBisxhVIbKo4pFtup1OvkiCm2dlKNFG3NbdTLg7T2tuN7AevWr6GQK9DaVCRWHsLPscc++7H/ktlMVKqsXLma6tgwQni0d/VDFCGCIuvXDzE5Mc7s2bPp9XP0d7bS0dUKa0voKCbvh6gkYqI2ST6qU5MFmnp7qA6P0tnUxKyFS5gsTyDrZfxcSNf8WSRxTCkUrNwwQjhvHq1NJZqainS2NFGNE7ygyMb162lv62ThgtlUxkaYLI8yXK4xVqlSnRhjshahYkWiISzkyZVaaO3qpVapEdcqyCiiMj5GR0cvKtnIwMY15PN5lE7wZcC8hb3UJwYh0DTn80gkAxvX09LczPj4APmcMNmP8q2sX/sUvbMXoVRMPggojw5Rr0VUqmU8z6Olby4TwwPc99tVzFqwCCkDkolxRobWMDY2bN3bTDB7X988aiqhGk2gtaB//iIUmuGNq2jv7EEPDSKUojw+Qr5QZN2aFYikzmhrByPVGk25gOVPPc6cuUtYsmQPIKFULNKz/8tY/tRT+NInbOrCD/KokQFiFRk5KDw8jBew8BLjq2v9hbMlFpEG9oOPsm5P1u0MM5FTQiOFWZlBSKSyrgzCjuc6XbGx0leDJ9J1HR+BRsnYZMKwk1zTKZgxMs3CBIldyUttu6nF1wjfNJuXWeUyE1lhRbmwU1xPGAOgEB62oNb32rhhmlVgad6K80F+4SOkCRyRCHKBiWKX1tUhG7iFyNwbVKKnrLfWYialdTkQU8utnkxTwKXO8cIIbM8nTiJEkjA+NmqEpBWJabqtKUtW6ltsLMg6NkEyMs2ioY0YVdqIXK2NZTotayryzHI21ueUTBiZ3M1mxuh7aRCTsXxKzzOZMhKNztwn0tRxRqhlgYhW9NrRywaICZsJYMpCLRrKlGUysGIm9R22BbRlMIOhyVWbmCA5gFgbgSPNZAWMuA6DgMQzM9kwZ1KCpW4XxvcY4/4h0karbZ5r4yPtCWsVVwlBLgciQSU1m0pOIj1pXRKwHQv4XmizfBjLbbWeIHOhtQJD4IeIwPgSC6NuiaIaYRCQy+WJ48T4tHseQvpEkSmrkMbFIXXj0V5i83ALFKbOpKsCJiuKiUSOa8Zia1L3GYtAnETGt12YbAlgVjYQUJusIMPApt8zdmcpzfJ6HEWAcR+K4joyMS4xSWItgTrNWCHtkrj5bfEgihT1JDbCLPX99ky2BBJTH0zGE5m5KQjPTLzi2KxKGDeZIJssxlFsVipQ2cpOrBNIFPlc3vj11iOCfMH6n0/5zgOZhTqOzSDlZTJP22cl88eObVtJs2WkdTSKIozfusrKOFWPBZ700TqdnApiXSeXs+kWhZk7J3FElNTRykMnJge6L81kKM2qIqUkfgZZLKYe2sp+OyCnvoGkltw0St0OwjJN15QJ3dQHGZCe+Vwa+49UoD1p3Uu0Te+G6QMwz2rSvaU+0GbS62VJXtKBOc0KZMZM07eJzGqWCBONLzWIKZ8tmguSuFqmFpvsHH4QMDIywNxZfQxsWMPG9etoa+tiYnKYjvYO5tR76Onrp0lGrN+wid8vX0OhqUASS8qDgwwNj1ONEor5PB1tbUhhVgKSuEa5PEy1WmPTwDAqSQjzJdp65yJ0hNCKpuYSfS2tzOpuYePQEIOTEUMjY/R0hmb1Jaoxv7+Xrs4WyuOD/Omhv7J+rEq9PMZQOSFKahQKBTq6+yjlc3h+nvauHpqLebraSnR1tPPkk6vRXkBLPqBcLrN2/UaEkITNbdSiMmOjY9Q11KOYJI5ob+8jrlcpT5QptHcihUdXc5WgrxcpPZLJMXw0C2b1of08qIh8sYOkFjE0UWe0kjCwbj3jE+MkShHm87Q0N5NEEbValXK9hpY+1VqVQHoktRq6VmPj2pUEoYfn+wRBiPRMPMPq1avwELTWaoT5EqVSK76OGVi3EoRkqDYJfkhPfwfNpWZGhwbwm9pIVI3y2DDCD5G5PKVCiYmRQQY3rKNUCCkPFJFhE+PDG4lrk7S2tuDliwTSJ6lNsm7Vk5RHh1m85x4oGbJxzTKKzR10LjmQVcv/QrHUzOTIJmrVcXwfWppbCAKzClavlmlv6SeXCxkaXMPKldA7ayE6mkDGmvnz5jA0MEQgC7QELTQ15Vi/caPxq1YxvieNe4PybJrMqYC8qfptXJtSbwWFQmtjwEiExtPGbc4Yio3Qldqzgjg1iOisPQnMyrBJz2b6ext2hNCJFdRW4Npg3UwEa2txNrNTFAKvYTJrwgdtmjk77vikXYy1hNv2jxB4WWCSUe0CEEoYS/aLy8PixSeQtQ1eMmNbGoSVLhtMpcDKOm/IlkVT8WxHB5NmDHMtpRUKTZAGSIEVTFP+jVppajWTB1d6ns3WYJebdWpltWLFWr2U9bOVnocnJbV6zWaS0EYMSOuDylTeYGONMtbA1IcyDWIDbfMjWwRom14ujhP7LiDdCCQti0pim6c2TZMGcVRHeh5xPTZLMVYQp5a7hCmLnpmECHKByRsbxxHSy03z3RbSWGWVViY9nPSIlBHFfhBgx160TFO+pRMKY1lGgB9I4qhm02vFSC8wPrvphCWpEYjAOk1YVw0lzAYdSUQQekg/xJMSYa37xaa88WOtK0rFJpMGTmkmyuMmAKZcseUTqMTkHVbCSP+4luBZEekHPrVqRL0emY0zdILQCl9olF2l0gJEYiYgQRAQC2MJlMrUF2Et3YGfIAlBQ4w0S3XKTAJiAULYjW/SzWISZZf1E7zAJ9YxtbgGUWLcZ/zAWBtsD6asgJ/y7zZuFWAs6CQJJm+zJE4iM6Gzok/bhNta201QknTDmJAkqU1foUERJyaLh5m8mTRDSWy2YPE8z+SFtqsowroPKcgEs/SmVn4EZO0vDUg1k1TPfmdqkmfahSK2VugwCKhUjdCV5kOzEmEnzlLY7BxE2SQvdcUIZUiW9SMxA0SiTHv0hMYLAuO6VDfDjRagJIhsgyJT1l2RxUKjSdIJtcT4Hmb+h0xNbFOxTCpSzbfTQUxIaaPsSZ207AqJ+Y/UdSK9q5Be5nZkxmIz4Bv3C7PELIRx4zADqkn9pqauYNJWYgd+WyaBCXYN0JQKeSqxphILZvfNZnJilOZCno2Dw2wYGGXD8ATJaI3d58+nVh9meHiEfEsz9Tgi19SKnx/g/sdXs3HtIPlQ0NRcpKm5lba2NgLts2rjeurxOhb2tCG0YHhkjHocG+NFXKM+MUhbzxzyWjN3Thd9LQFKCzraWsgVqowOazZuGqCpaTeWzOln7936WbZ6Nbfd92dq1TKj4xPkwgLFUgfV8TpJnLB6xVN0d3TQ39WNBCKVx5d5SvmQPfdYxEOPPEmSTJBramfubq1MTEwyUR5lZGyczq5+6pUKSRLT1FRCagV+gSTQ+EGeoYEBWrtnsXH9embPnU8lUrR0dlGerBEGPjEhY7UIncB4VTMxGVFobjUTTq2p1KqMT5TxvIBE+HgS6gR4MmF0ZNAIOIzLEVqgYkV5fJQwzFFsakH6PnEUEU2MUh8fojqWB7+JKEqI66PoRJEr+iSqjheUGC8P0tYMeDnCpjb8IKBeqzJZreIFAcWWFrq6OpASKuURhOehfZ+xsXHi4SHiyLjutbR30t7dy6ZNA4T5Ej2zO4ijKmXh09TWw8D6ZbR1dlNsamX9+nWEvqQ2WUckChkrBgaHaGrppqngkyQRj/75XjatW86s/lmEYYFcPo/wmyiPVfC1wickTmrG4OMZ9zMlJEiz8qtF6o9r2oyX5j/H9LkSRSIEmHVbzGqORxZsDAhhDAVpm1PSZHgxYtcIWCkEUiekCd+kTqx7lGdaujbtSiOz+AQJCGVcNAR20myzaQiUDczTdrXJfGavjvX3wNNYgUwW22CTzxkPaLtyn6aFe7HwohPI0jO5/3K5HHGU2Oh2u/xP6o9rembf7lqWLk1bQ8nUIK1BW1/IRCiEFddhGFohPCW2zeA9JUCMBTewljPjspFmpUiS2DYMY7kxvok244H0jcePSHcN09a9w7otpBZtu4SKteoKbECcAuyyiMYGsimTDcK4fPiAQHgmqC+bJCAz36dUaBu/7CQT8kHgo6zlWtrJhhlIJWEutDsCmmXqwJf2OU1mAzBWNs8zVqM0TzRam01EdENqLWWtycJsniGUjbDHuGZgc+qGQWgts2b3s3QzEGlFQbYJgtA2mNCUIwxDpNZ4oY/0PXp7e6jUJqmM2yTxgUdLsYBKalRqdZpLRXK5AvW6SYeGgrpKmJis4ElJ4PloLahHprPxApPTNdEa6flm8LWBXib4ENDWLcI37i+Bn0PrINu9zreZSuI4Qdn0a2Ehb+pxHBMnmjDME1tLqdbKCG3pmXqKIPBDkrhOEJhuLBFTojJJTJ5qJTT4U4EYGo9Em4wRidYI0hRnRpRHcYzvhaYjFlP+xqmbQypMU+GqpZlQxElklvF0QqIhUXFq/jBBpDZwMUkSVGK6/3q9nmV+MdlnfFNf0nR71kKcWL9haXfXS3e5NDv5CXwvwPNlFjyZTfTiJNs5UNoJl9IJUVQnyIXWDWHK+o9dupTWPSrwfCTCTmo1QT5HoeBTrym7qY2JWE+DbKXn4XvPfABR0ohJDSgt8e1ApjD9giTdIMQOmnaHzVTvGvuuZwdQ0jk+U6msTDYMpGfc1ex3hTJ9kUkdpUArK47B01mokF3NAU+nosBeFMxgi11iBhDGym4mX4KoGjHha5IoIucLenu6KY+N8NCjj7B+4yiJhvaOdobGJnjo0adYPzRCX3cPrU0ej6xYy/DgEJ4QzJ3fh0CQ0wlz5vQS4XHPg39hdDKmt2N3KlVFsdBEV1cP+UqNwIq1pFom0HX2WbyI1uY8mwYGmJic4MnVg9Qnx4lUzOz+WSyY1c3eS2bzpwce4X/v+KPJWFNPVyYrjA48SV//IibKI/R2dTKrbzazZs8FEaMT48deLo/RWSrS09FGPldirB4xOmpyIgelIuXxCqpSpjw6QiGfJ5qcwMvlCZtKxLmQ8vAm/DBHPdH0L9qbanmYqB7hiYDJJCEZj5mo1SlXK+h6QlNzE8VSid6+JUQEjI8OIEkYHxlholpjcnQEITRReQzhCbp7Z1GrVRkfGaZaqxFIj+bmVqpKU69OIifHUEhKzW2MjYwQJ4pCU0KiyibffS5PPY6oR3WGBoZpKZZo72wnTuoETc0UlaZcHkGiaG7thlyJnrmLaG/OMTkyRK6Q4OcKVCsT1JHMmbeAYs4n7xeoTI4yObKJ9etbTd2vT9Lc3kttYoyW9k7QCbXyKLmcx/y99mdyaB1R7DEZ1ZnT30d1cpzy4Aa8tjZEU4lKpc7k5AT33/dHkkixeI99mJisMjkxRHNTgVoUUa1WaWpupr2tGy/wrKA1Sc9AW+8K49qp7aTR0xqViVGNr5MsviiNDkhX68zAEBt/ZU/iZanWjH+vtH7NZvse07coYWbinraBcqmuoGFst323WZk0gXrmM3M1MhcMZSewJusSduVWJAJPxNadEKwfpbm3jVfS1g/acy4WL2xS66tJB2WDcXyTizeOTSCatAFBUb1OuvOaWdiIbSyJZ9wrJIRBQK1WMwOD5+GpqZRt6e5hJruAyWUMU9bkJF1GkTZy1FrBwGzqYHIghybIKdE2d6rd9Q1llju1sZymrhTGV9hYpDQmk4ERO2ZDkjT/sXHnSEWCb1dljUA2/rWe3cghQmhBICVRXLdWwXRZ2GRJAM9mqDAmUJXEeIHMtg+OY7OVdRAExmfYRuoWivnMFQQg9D1bntQnPA1cAGHvmQqidInW8+xGFH6DD7cQxHa5HRtmoO0kwZMBnhQEUhBKn0AKfN9E9QbSCMie7k5C32MiiqhFETLwqI1WCYOQMAiJYpOKq6W1hfkdnWwaHKJQKOB5wiybI9k4MIJUZumzVqvZJXthdnqLIpTUJqtJbOqNEQbmNzCOdBrPCxGeJFaaUPnGjcfzTbYGHdutxE0e7iTRxIkNEvVTi92UfS8VfkpBrEDiU6uCVGZCpEnwfY9aZFcolLEtiFCi4rp1VzG/r9kgxjOWiyQBaXKE+kGAl6bvshOpdNKXWXvTDBCQCfU4tjsayvTaNora1p0gsJlRpM02EicNwXl+lsINyCZbaSrDVIylOYxNfmptNtLQGpXUiZM6Ya5g28TU9uueL0msD7nWJhAUgERkolzFiXG3wgh5hPFZ18quhsTapqSzVp8kwe5ngmf3Q/SDnEmLp+1k95mSaU5t/ehtyjoBkAbZ2QE7FcYYI4CxVHnGVYfEBhGZ0BobBpvK4cxNLRW96Z/IptTapr4yA7C1EZNmr1AizWKjEMKzg3G6jGJzrNqeN53wS12nWokoFgsEqs742Dhrh8ZZtm4jUSJpbSpRmazy0LohujuaOHjfvejv6WVocIB5fRB6AWNj4/i5PJ2d7fS1FFi+ai2PLlvHeKXCngsX4XmCB596imotpquziyiqUsx7tHT2o2sT9HQUKZaKjI2W+ctT61m7djnVeszc/jm0FvPM7uli0ewubv3dvdx534NMTE4wq38+dVln4exZVBSEQxspj2xk990XM3/eLPygibHxcQaHNpCXgpGhdvbabQ6jQ4N4QYHxyijtpQKDm0bYNDRCZ3cPurmN8ckJurpmUU8ShA+D5UnawjpNbd2QdDH05F9p7Wlj7YaNdHd0097VTr08zOSGJxkYGaO5OUdraxPd3f3MmbcbxaYSiQ5IhNmBrVA0G/9MVutMjowwuGkTo8OjjIwPMTE6Qlgp09U9h/HqBHG1ShDkENUy+WKJ8ZFB4sq46beDEC0l5YkJk7VGKqqVKl5YIJmcwJOC4YlROjo6qGuzoVE9rlEoNCGkIN/UQqIiRtf8lc69DyRo7aXZy1Mq5YlrZZo7O6kl0N3eTEu+RF3NJaopdtcJa1c/TnnTajauW0ff7DmMjZdp657DkyPj5D2Nmhyn1NrD0OAIc+YvIqpWGBgcRKo6WkfU4oRcoZWnlq0kCAPGxgYRvqSpVEKrhFrk09zUBAgq5UlqlfV0dHZQaM4jUDbmCStiwYhl45Ob9tJm0xxhg2StYYnULdBMMNExSqYuXdoIcGuZFjr1Ijar4VIkJNb/WEiNUGbnXSWmhHe6jJzmpBA2VVxmELOxC8Kua2ltDGqeTR1q9qA145UWEnRoreQKswMfVh9M9Wlav7gk5YvraSxC2OVPa9GKrctANugpux2yl2ZGMEE0nh28UlEnUmsfNv2YTtDCiEozEMrMn9lYvkxLSVOzIexsET9zGZiyOE/5Q6ZmG6Nh9ZToDnzqUZL5CYONHNcKlGkIHgLhWcua72V+RjKNZtcJUprlmUSZLZuzHLqZO4omSqJM6EibyipJpnZWM36ijbu1mXRawmYtiJPYumskaBvIiLVYKp1mOZguaszzyGyJG0wGCSF8oiTGt0GVaR7pNP2eQoPdIEJpkz9U2g1JsELZT9+JFHhCkcuHNBWL9PbOQktFVKmYYKsgQNsMA2kWhzAwoqy5uQUBtLa0EIQewm6BG/ohI2Pj2btJU5hJKanUI+LYvEslINGKfD5PFCc2h7ER6SqJ0Tom5/n4KPDtRisYQWssz5ooMRuLaEydNlZUrKXZBO2l9/c8j6RWt1ZWH4kml8tbdxyMGI+FsXiLVHQmIO2uTEpkdTndUjx14UgSU2/D0M9+K3Nfka2aZFlSfJ84ie0OfCYzSKJiY+nw01zZIl26sHUgMRsepMGi1rc4fa+kfvJqalKaTTDTDlqbFQYpptqbJ00ua6WVmfQqz6SAjE3mGoVCKWGzsuhpgX+pS0ecRERxZE2vgqgeEQYhtXSXKrM4ZfInp64PygakSRtFnnZOu8AH2dcyW05FKJT0zXKnMLsIaulZUWr6FfPb2Byp6a5cqSsGxkdZSGXTsgoQxi/ZfN0EGUlhgveEwvob20wW1tfR9KNpzgptLMNYn2Z7NNXZ2Ya26f2FpOB75DxFgkBFCe1tbYyVR1m5Zg1PrVpFrtROU8GnVGpBJwkHzZ9FW7FAcymPVHUeXruODUOjSE8yp7eDtrYWxqsx9z2yEoFHV3c3c5qLbFy/kWIcMTBSprW5hZHRUfpn9YFfRMQ1+tqa6WgrIEXMqvUDrN+wicrkJN3dPYyMjdLT0czLdp/HQ48+xvK1w/TNXUR5cANtnR309fVDPSYZHKSzo52Wec30dnZQL48SFhXD69fx16eW09naxMRf/szs9qOhPkl5eD0bhifR83ej2FSkTSU88fgjFHJFqtVJ1k9WaW3rpKWji7amVnKyxviatdSSiKaCz/jGNYRBgcroIFFLgclKhfbuHlpnz2deVxthUxPjlZh6nFAE4jgiIWKyPM7wpohSzkcFBZpKzXTNmkc9iihPTDCwaZChTetY88SfmRgdQqmYOC4itCLM5cn1zWNk0zrqtQrp1uJSCmqTZYKWVuOra8eO8dFhmkqtlMuTFFvayPsSCk2IoIkgn6eQzzE8OkxnSzuxCCCuMjE5yfiYSd25fv16hK6xptBBqVRCRXVjCAl8vFyO9u7Z1CNY+eTj9PT3MLhuBf09XWxctwwpBZP1Or4vWPmXP1GNInRSp7Orjzg2Ab3V8jDz5y2iEkWU2ruplgcoxAlB4NNSKBIIn1JTMxVRYdWqVWwaGWbhwvm0NDcZ6ywSaf13pQ3oN7tbJnbzHrNxWboJGdluk4nddGnqe8btQUJqpFDp5iUmC4a2K+HG59nGrUjfriSnbV6Spoyza4vYBTHbFo3hTVg9IvCty2Ga8hbMJgfKrk3ZCXGWLs6kiRRao7W0AYRTaepeLLzoBPLUltDp9oxmYwXpmaXYNGNDohIb7ILZZpGpZeFUvHnS+AWnmx9I4aNtoF3g+6Q7ayVJki1TTIkGQGjC0LdBd0aIe/iZMEkH8cyR3psa+NOAO2GvJewabxybXdyEHcy0SdNhXS9SAW0raZrQW5gd/ZQWdptiu9FJYkavVMCmljiNyeGcCqE0dVeaz1hpU64oiglyUwFX2GcwZZRTwk1KsxGEViTKZPDQShPFCYHv2wDANE2VSdMVyiDbmCW2HRXa7vRmH89kKTDvTAqIbMCktqJfSEGURDQ3lcjnc0ghGR0dRQtNaLdOrdWqTE5WSJSilC/SXCwxWSlTLBbI5XL4vm86VAVJoqlWJhkaXsv4eJUoSUCbHQjN5AASLYi1zDI4COkZq7qS6CSybicJKkqQUhMGqchIkJ7dxMbumIRW6CgxOa29qVzDvm8yp0jPz+qLVsbCHHhm22ifyAjheBINxjKeJKh6jMz7KCBRkdkaWyYoJa0bjxGL6QYhSlu3kMTaDaVA2Gc21cH6DWtrVU7UVGdOglCmPUlMysNUBEspqVUq5POhnWianf+SODZZRdIUbNbXXmCyQaTC2qx22Dqq01gBbVK1iQbLtkqjrk3av6QWU7O5qGMR44c+aXo9UwfTyejUUGPak03jhA1SNXNU436ltG13icm4Yt2P0iwhUhiruJm07oIgPQlZGj/MgKpSVwe7ypNGt6ciV2fLqCJbihVoPG13w4JswxlP2725BFkEfjrAeti0hvaNaJn6UdoJvvFRs9bi1HLlT1myVTqIp1tkQ3upmd1626nXxqjXyzQVQsY2bqLgh9TqMbFSjG3cSFdnFxNiHCEUSd0n7OqgrbuXgYFBevr7CEtFhobHaG8r4Qca5eXZbfcihSDPSKXK0PAwhVwTwyNlwrDA8OgYYRAQ+CHVqEpXexs9nZ2MlAcRqs7Q4FokmkKpHU8IwkDwyn0WMDZRZsX6ASrVGvXxKk35EF9oolqFsdFRxsaGyBVLNOVDNm1cSxRrSguayHsJeRExPDaK53s88PAjvPKAvfC1olaNGNi4gcdWriLwQ5ryTYRaU9d1cn6EjicYH0wY94cICyVaSy3Uq1X8XMDESExlfIT21oT6E3+m1NFLsbmZSHsMDg+SDG4i39pNU3c/E9UqaqLMWHmcugLlNzEyMky5/BRhUCSXC6lqTZgroYWgVGph/1cuZfnjf2bD6sepTkwSJQmTQ5vI5fOgEoqlVuKoRlKvUldG8EX1CD9XJImqyCCH5xmf6UhrknqNXHEW4xNVOluaKE9WEdoniurU4hiRJIyOl0miCiR1hgbWI6VH79xFtLZ1kG9qRSYxfiFAT46yae0KBjesp9TeTfesuYRhgJYVcoUS46OTCC9AqCpt7T0kcYXxoU0UCiXrlhcQTZbp6minUMzT1dxHuRKxUZnc4UJ4hGGR5uZWhsuDyEDS2tHB48ufQKuYJYuX0JS32YNEmn9cpMOuyeBj/YZ9bVzYEGlvMpUCTgpQQmY50yUq69fwzGYi6YZDpt37IMFTtiWZ4BYTPKjNWCQxadm0l9h0mtpOTqdWg4XApJ4T0q6g2747SXf9VEbkY7JbgbmWkcsJaU5lswG3ALUL+rcXEC86gSztrllKmWXUwA+sz67Olu+lkFPBc4mJADVL1KmPcmqlsi4KmGUPUvcIuzuY1grPl9ZSqxE+JFIhQmMFM9HlZpNJrc1giVKZ1XXKSibQcWxFUhpdn25YqTKhEIYBsbZBh0pn4iQdoJQyS6ZpSieljChJEmVznyZonZhAK5v5QQrQ8VRmDzP6KpPWxgq/BJ19bnYbMzlilRbUq4ldLjUzyzRfcpIk1OuxtWwLk48ak1bLGs9NYIgxbSI9jyiqm6YrdSZ+tDYZN2qRyVHqeSY/sPGDNZtfqCS1Xhif0AAPEkUYeuTyzRCYwJ8QQbVcpqOrg6bmViZGRlCxprXUycZNG6jX69RzdbRUKF1nZGSCjo4uoihhbKJKpTpJLucj8yFz2jtRSrB82XJ8P0DKEC0koYBavUaURPY3ENTrxpLpBQmqrgiQJqArqVGrJybQKja+6B4KX2r80KdWSwhzHlrHtpNKCP2Aej2CxKSu8qRPvR4jUPgCEmU6qkhLlBJE9SqhEGhpBKCUCi3TNIPg6Qi0bwSRBDyfwAus2c+knUMYn2ST7MAEdMjAroiA2XBDTll3lbUcm90GE7A5wIFMHGutyYWh3cZaEyUaX6YTJA9lXT1sOJcJMtGRtYSGJPWIwJNmO15bN00WTrvqo0xSe4m5pq4nRvj5giSuEwY56okiie3OfNaHz/fM5HnKym1WRYSWdoAw1pdI1QnshNkPjS98PU6MtUeb+Y1xkbIuBlZ0qzTrzDPp47RCaplNyk3gjV3WtSmfpDbptTQNi6pW2GpJtpGHWYyZEtueHb1TX+R0CdWzy7Ym8t34iysres1yrLJzChsYKKxl3Uv9HVM7lE3JZzo5pOdRzAW0hZAQUJFNDI+PsWr1Og7Zb29UFJErdJJvDlmycDbtTTm8nE/o+UxMRNzxx/tYvnI1SayQnmBBfx/dHW0sW7WKltYOivkCjy1bycp1A4RhwPp1G6hGMRpFdbJM56xZrFq9ikK+wMK5cxmrjFGJNH4o0X6efBBRau9BJ5O88sA9kPk8Tz21nkKYY7xcpa21jURDzvOgViEgpre1me6ebmoqwReaebvtbt6AzCP9AqpeY3x0kLvWrcUXgle+fH/m5ous3jBMZ6mE0lCrVxGeRz5sYmRkjOUrVrNowWIqUURUX021fw65YgsbN2yiHikCH6q1mCiu0Nlj3JniyRrlyXEKre3MmT+PiQjWrltHdXgd1UiwYcNayuUJSi3tjFaqFIIcpXyOWlzD93K0dvchfZ9lf11FUGimtWch408+SlQbxxcJlbER/DBHXJvED3JU6yYANsx71CqT5IotZiMaFeOHBaq1CkGYZ2RkkK45C/CEYnTTWoSCiShvNmmqTrBx9QrAbH9dainRO3cJE9UYdJ7BFU+yemIYzwsYnyjT19ZGoaWZebvvxZrVK0gqE+RzBdo7OhkbHSbf0sb48ABNpSbi2gT5YjNNkSJfyON7gpGhDWwqj7B8mc/+Lz/EaIRYMjo8RD0UFDs7GBsepCmfs8F6mtbWZro6u1i7diWl5mYWzZ2D9EFbS63ZptmISpTEM1vdGUEqjYsCmOBWKdJVFzG16kIav5CKYYkvtQlKQtjJrUJp47+spLZ9nQSV7u1gcuwLoTJ3KyPaJVp7meENbVaO0p0yTXrcNOd+nGVtU3bFSorUHcpOlNPNiLSPJxT1KW+LFwUvOoGsksSkKUKjVEIUpzl5BemGGb51CUg3/dBKpHnsbV7WxC61GsutSszWs7FS+H4IUhjLi/DwPBMkZwKGjCjXNkhQx8ZNIqrHmfuC56UeQWTWP9/37b2mMm1MpaJTJq2YpCErRupzawRiGj0rhbRuD9YP0yYbF0LYdC0mVCCxvqPSikvVMOtTdjnIbJBgLMypUE2Du4Ds30obVxZPSuv7nFhruJdtvWssk35mUZ7KXWvKHQQB1WrV+kfbtFtCEAYh9XrNZnAwuZGNZdH4H5utqs3wO+X/KpBKE4Ym/VgUxyAjqpUKC+bNZWx0hCAIGBobpzxWRtciBjYOMlmuEOXM8ydxQlQFz5cMDI1SnphktFymWCoRJcanuVgsopSgs6+HsdEq1cmEycnJbLc3oTXC0yTKuCIEQWh8rxPwRECcmHzJQnsoCb6U1GsRgW8mI1FUz9xwcvnAbCccm8lTPswRS49ImZhn38+BrpILfKI0+M/zrSuLBGncMwLfJMLWngmQNDvx2UljAFp4mddcYjOoJHbzj0QrG2SX1tvIbhttdJHxG05FG6QTSeGbXQoR5jcM7E5+aaBpHEXZhj1Kp1lm7CWsu4VGW7cSY12PkyhbSRBWVJv8x9YiktUHEyDqizRHJzbjxVSec9nQFoV1JfACs720H4bU63WSWJPzfVMHExP0Knybz1yYQTHBbACU+jhjfewTFZO6Hme5Rp8hwopYY+HSJhRPm+2gNWa+bHKsaiN20yVemaaEsxZxnVrJpf2O7S+0WWbV9n2kXsWpD7LWdvlWYwdrE9STIPDtIGusX2rKd1IIkszibd6BsEu5idKs2zRIf0uB1uYiA+s2kMgcj68dZGJ8nH32XELf7D46Wtt48L77maxOENerBEHAeCViTn8P82b3EagaG4fHuP+JNeR9SaeMGalUGRsbhWqFx5YvI1Zm18qmphKlQgkpfbp6+xgbG8WXMZXJCrNnL6RamzS7PvoJbcWAebMWsqinmTsffIIn1wxRyAWMj40yb04/odRMlit0dnbidbQg4zpRtUI+KNDR30dldCOekDQVBGHOJ0lqhMVmVDHP6oEBulesp7+vnXzBo7Ojg8cffYSJyXHiOKEeKcJSK63NbVQnx8jlQmrRBOtXL6OtvYt6FNOUzzE+MkyuUCTnQbk8TKhNfu5SRx/F9i7Wr1nLyrUDxLUa9doka1avIYlqhKHHutXLyBWLRKKNkbEJJsZGaOudzejKp9BxRGdPD3F1lGiyTPfseVTLrWxc8wT1qI5fbGVybAN+UMMPm5BCUa/XyBVLTJYnaGppRtXNRkTj5THaWlohiUnqVfr6ulm3diNNbZ14QpFMVghyTZTLY3T19lOJxxkZHCAaH0b5OepNLYS5gHJ5nPLgeurVSWoj7WgR0Nfbi8gFFJuKTIwNkm8rUswH9Pb1UxsbJFdoZWJoA2G+RFjTtHR0M7JpLbVqnWqiQNR45OF7OfDAQygUSrS3t1GbHCfMFVm/cR1hPkc+nyfwNFEtZk7vPEZHxhgd2EjU00XOy2XuC76XBu5ZVyKd5iO36RFF6l5k068K8z1PglAe03z+wU77VZbGUgmb4dy2xan9KRuub1eKpNDZZD11lDCZSa0BD2G2nbaTXWk7X5t4E5sbx6aKbNgYJJsQ+0bUC20mBvLFJSlfXE8DWaaJRmuWEWSRFaAeaeKh1KcxSUzyFUiyATBJjOjTWuD7ARHGnxO7/a/Z9MBDeoJqrWYEJ8YSnSQxOooy1wWtTJJtIYyfUWpNS/01jXC2mxd4U1tAp/lbjfAGzwvNYJsGEma+u9NdS7TGBv+lgTOaRNgtrDHJwQWYpXshwRN4qsEvUWk8L7DZJMzAqFSCTkxqstSX2vham+WdOIoQwieXC40gIvU/VtbVJMx+l3Tr4XTSoLUml8tlVrswTK2TZvOWSJvldy9J8IX57ziuG2u7MJMbnRhRYrYaj0mQhF4OP8xTaCoxVp5k7Yb1dHS0sWb9eorNrZkbSaVSMfWBkHoNKpUakzICEnK5HFG9jtSafBgAgmiyyurKRrQnqdaqJIky6dU8s7GJUBrPl9SjGl4QAop6fdL8FgIiVTVL/p5PXWiiWoQSZrKTSLuToF22l15gAup0ZAI9PLM8Fsc2hZ22PrpaUK9H6IYtk7Pd26yVVevUjSh1yzDL10EutKsNgkRrk8fbukoEoU9N1e2W22ZyKaVJG+gL4wbjY/zQonodYVdp4jg2dVBHJj+zlnYDi3R3RI1IJ2pSmvzJwgTQJnFstnFWylhwUXZFKN1e2rerMkZuBTnPbDUd5MzENw2I1SYSXGmzM2FicyinqQ5N8KeX1b80RSOarJ1ObfluAlY9KUl9ez0TXWDcipXC82x+XE/geQHFXI5KrW6CNmONILZt8pmhJXalyPg9KqlNFgltXCyk7TOMi4XNfGMDiFJ/YePhCOmWtEKQfWK2RTc5iz1lRbYV5JI0Uj217kvrh2L914Vp79L6SafWLrM0bF3ZrJDQwrggRbUqujlEB0VQdQISahPjrI8j9jvwQPbZcw+KOcVf//woft4j77UwqU1qvQXd89h/391Zu3olDz62lkKYo70g+f/Z+68ny7IszQ/7bXHkVa49ZEbqquqqVtMYgbEhYQY+kH8xzQgYHoaGITDANKa7q7pk6tAurz5qCz6sfa5HgXya6oe2tDlmaRkR7n79irP3Xutbn6gnU759d0Vdzzk9OWW53KOVIStLQtdQliXPnr/g9uYG5QPb1QptYNsMWO3RfiC3lp0yfPnxCyaZ4/Xtlq+/fw1YbrY7Xjy95OJ4gRsGFtMTbDXBDR0hq3Fhz8mi5t3dkklVimB5veGzZ49FBOw8xlrarmGzWZEViqbd8fz4nPN//S95ebvmm6++xa/uuL+9Jc8s/TAwmR+xXG6ZHh+TWct2t2c+mTA/OiNGRdMPrLd75sWcxeVT2vWS99/9HqUUVT3n3d0Nm9u3ZNYwP3nKbrvk4skRrh9Yra6oJjOKMmN19QOYjDKzvPrDFfOTS3a7PcGvqBfHPP/Z33Dz8muGpqGqS/qm4ezFx9xeX1FPc8rJnPXynv3mnrqacH97Q1VN6XtPXtWsl/d8+bP/C7frjqHdE5STda9qptOa/WbN1Q+/Z337miKvmJw+5er+PUO7BxRFWYOy3N7dMasLvv39e6wxPP/kS7xXrG/vZKJXzSlmRzjnWZycMT8+5ukLy3J5hxvOyXPLeXEpU6y+45tvvuLFRx9jsxxf1Ww3d9wtb5kezTjNz0BnbNcbBr/my5/+Gbv1kl27Iy8zMiP+x32UJD2tongDJ3qlSsZpjPhyWk8qhXPECEqHFOSjU8IkArbIyhGrtvjg0BTxBwtZmQZ5mchG0rpLFCotYIx4no/DnrFVNekZpfZdjYWz4MgP0kOd5kjyGkZSF8jE0GPQ+k+fkP1zun50BfLQ93it/ih9KyQCvA8hFb2JjJ48eEOMhCGhMUY6uFyP/FexfhqjIsVkXkjzXdcTkYQxmxkiknwHMAw9JjP0bZ+KYw4FQPD+gHgKVeMhqETQw+EDxNalOOR0W37IMYY/+vNBmGQegkXMOOKMiGVdEiL6kZupE10jAEphM8PgBoZBiiIQvNtokygn/lDgj0X9KHwUN4IHO7r0DA+vM88LETgefKQfGoMxVXB87BFNd1EK5ZCCKfrQAQZr7ANYqaHMSrHs02J/Np8uRChGoPM9eV2SFTl3y6W4gNhMbOu6Dh8G8kKswZqmQ6x2ApkpsCqHLGAwB19qHTU+yIY6tB1Wa07nOVFleF9ARHxAKYlKMXhpJPZNkxDvxH0f6TEx0g49RV7gQsSnQlQQAEkvCsHgXU+RlaAtXe/Epm4QUeRYfPSHpsNIY9c0WK1TFLNODY00Zii5x63K6GPPMPTYrBD0L4nRnOsoykKQ0ABDMGTZKPgI9F0r0d1qtEZMgkAtzYNSo+eyREEPybptvO9H5GIs3VyaHoSRXhPBptAeoW7IffphAqSMHTXd0B0aShHGPKwXrS1t05BnuUwqsgx8eGhiP9grDvdlFOFuVlb4wSdbuMRRjggVwzuJHNc6WT/JvhKDTzHrHBBw7z3O/+kIMumQUiSOcKp4VRQqhAK8kkbaxFTMKjkGR4/miITAkN6/MbHLoB84lOnfSD+jE39RHkMKYB3l+1wKFIkJatAH+sWDx7KJEA3gJcUzaFHgD0NDN1i2g0EHx3Lfk1fH/MVf/oI//+tfMHQ9v/nH37K5u2U6LdluOk6PT/jo8QVHl0+4vb7hq2++52JaUM2O+Hq95g/fvaKaTBhcwLUNR2fH+Kzg/btr8vkxk+kMk2XM5xN2myUvnj8lejg9OWbXtvRDT24Mzz57QZ11fPd2Rdt1NA4yo7g8P+PnP/lCLBaVYraY0my3eLen6R2+79iuoCwz3BB5+3bFy3fvOZvPiHjyLGdaZOyWV7TR4/yccnLEr3/7OybTitnRJf/23/5bfITr1Zbdesn9/R23d3fU81OarufN+2txoOn22HLCZDJnPptisoKgcxSR26s3ZPNzJrMJf/jdb3DDwOTonMGU+KFBBei9IeCwZc1+31CXOZgMoqJ1iiyvub95iy1qlOvxm2u8LTl+9DGrd99DWVCWU9b3t5ycn7G/v6HZrDAqEFxkt9+LXagxBC0i4eVqyXq3pVvfMey31PMjzp98zLubO7LMUVQFs8UJvt3R9S0nj59y9WoAN0CM7JsdZVFzfHQiGgk0m9s3vHn5NeVkQR48s/kJdV0yqadUJqDzWoTPwaGtxRQZZSiJfkAHEVMrArfX76iPzwkx0A4NLnrulvfU0xmonOOzC16++obHJyc8efacdy+/wUVFnigSAYV3gcrKpEV4vkEoFCokYdzDtE1+yhGU7JFhLIfT2hp9hwMqUb3E0zgmmpVlTA1NkdExpQBoICTe8Vg3KHGqEOencZIrJ5JPXGgzIsdpH4ghTcBicuAILu3DQExuNQci14/r+tEVyIJkCL1iDMMAUoEVUZlQebSyyav0wd9YkeyPFPgUfxuRA89mOaEfaOhEyJQI9QpDZgtQKQxESyGltHgbW2MhcYhRka7tk33XQ8F7EPWoBx5nPwgtwEdJvNFxFEWJOO7DxwApjsV5IGKMYhiiWPIk9HcYRHUahhE9T8hjcGTGSLSzIgmNosRSB/GOtSMqOAR614NW5CYTekmIWJsBGjcEQLxmpYgZl7oU2GNxbIw4CfS92IuJ17JPI1eJaxZlrRHOE6m4T6IjYyT9TRNQJiGlGpSx5JOc0/kJcYjs2x3G5Oy7Pd3QYK2ld4FcCzo+tHtM2jiGYZAwiVwQ/G7o8cHRdi3B9/gYCIOjKATVr4sJ+8bThUhZl/I4ISZuNBA6NAEXfQqjAFNW8ru6jt4NadQfE6JeSGAGimiMpMlFEZjmWIKLDB5J9VOS41FlOU2/Z8yczrKSGHyKas7wQyCzBRoPXu6NLI6IX6AL6bMKErusjNjBFZkV5xQl0dpZbsiUOdAxYhjfM+HZdcn1JSDR7mKrKNQOokKZmEQjmtwYaSwj2CwnRo/3khQYXABsCuVxaSSp8cmSjZjhXQDtIVGbvHd0XUiBIxEfPXlpJG69G/BapShzQexGMaoPTsb96iE86I/XJLhB0CrnPdHLYZGlxlsHud90PvpdG5RqxTEmmINOIMTUvGhBkTo3/MlbnFbxUKwa5HkFSF7hUjxrrTBRnC2iSp6pyTE5SL0uyLIaTdtGYbEnKiOPm3o5lSrdqEEHdThQFSlpT/5yGMUqNVrMCQ+clOw1+u5EnbBnlZrsGIk+0G5u2bdr7lb3/M1f/TU//5d/iVtd89Xvv+X923eUmeW8OuNRHsgzBW7g9s23/L/+/X8Ek/Hf/Td/SbPbkk+mPKpm5Ebz+vVb3t7eMz+54MnFlNO65Kt3N1w8esRHn3zG7fU73r5+y6NHj2iGwNHRnPc39xxPKv78Z58S3cC3b25YbhpcEIHzrC7461/8DB8kIfL09Ihu6GnahndXb/ExclrULHcdu26PMeIKdLdas97tMEqz7xqenhwzKafsgmXT9MxNQbBzvru+obpbEaJmcnTM0flT5k8/4uijzzlbrshNxjYo2rajsArcjs5b6nJCqQZ2q3f0XYuJjtnxCfebPe/fvaHf7wlEtm2DUpp911NPZ9g8Z1pNqSYz+gGqzDCZzdl1LbvlHbnJ8W7gZnmDDp622bLcLKmc58mLL2jbHZu7a4b1PQrDbrclz0uULWk3dxSZpywK2v2GejZDG0WhM/abe9rtkno24+jRI8Kwh37LMFiMN7SbG2xmKGcX7G6vUa4DY5hOjzDbJd4NdLsNFCWzoxPq2U9RcWBzf41xA/iO7WrF5OSMzevviWpP17WUVU0xOyYqw+nFE27fvyGEwLScMZkWbO/es759z8Wjp7TbhtOjE4ydEpxG0ZMv5syPFvh2R7FYyLnoA2WeY6Mshhax27RWj3MWOQlTmp6WBYhPwToj91hFK13kSMeIOlEwZC3JaapTIytT05CoGijZY5VKEdZBuBU6mCTikz1PJkSG0fdcvJHHszYe1nyS/2JVipmVg5iIOfxOmU6NdBGFDv8VQf5nfRmbDLxFBQKMSKVN3ZygdoIkj64RI18wfbjpUOUgNiKZeXOwNAthVKwnjm/ylY0uQioqURwcDkarlg+T/MbrEA7xAepNFEX+CMRmyefWJ5rDhzSSsbAWL2V52WMRMyJigszKyATG6GufEuU0ZrS5cv5Q7HPwcB7/TnJayDDKSJCDtum1COpotBbqhtZYk1LznPCwxpH/aIM3WopZa+hdj0IS9UxC7xNojs2MvG7ka0pL10yQ0AYZa1uUViymR2iTsd6sKKoSWxa0Qwta0fXC69VZLg2D0pRFjtXyWsqywA8tQ99BDBR5zmwyYbnyDL3wr5wTG7em6dnuW4pSqCEhjatCSOEVWvx/XYgM+z3WZlilyJSWhioml4DgMUq4qhoZ5YeEgkbn6VWLzSqiVngDIaHxQUd2TZvcKDwm2f1opfExpEjUDNd3ZAb64KSg8eJfidG0rke7ISUPxoNwVAVPpg3RaPn8elkXKhvdCWRj1PYhpMYmT22txw0zOegexHsqOW14ud/UB04RGtwQyLI8uaCNwTuAiklkmlCUNMGI6eCQNZUa0CjR48EHTIgSBBRHXnw8FMkZQmHxkQcf8URtGmlL3juMTdoEPU44kq2igsHLRGQ8DmLwBCWvQWmDc116LLlHYYyNf4jJ/i+9pF5N9AUVQQU5MpUgukErbBy/NuLNEgkdxqZAMCRBmBMXOyQ8f9wpxAN1/CzlwBSexgE+OiBQh+cUowiBVDyg0uOT9ohns0aTGcVkOpF4dq2g2dLu19zc3vLk4y85OT3iD7/5Pb/+u//MerVi13ZcnJ2Tmytmkwl3qz3frddMF1NUZnl3s+bvfvUbfvLROfNC83a54+LRE+53A1lnIXj6fs+f/exLHn/8EWeziqPLY04qz7QqMcbw/uqGZ89PuL65JSjFrulptjvevF9ydH5Mu1xzsZjz6bNnTDJLGw3PHp+TVwveL7dczE9Ybpa8fvWG0ycFq/0Nu0Exmx6hlOXJ5SW79ZreO6qywljDcrumnkzB5FwsJqxWa26aKftuw7bd8/UPr5jPviWv5pRHZ0yLkqt9y+12x2x6xOz4FGMqdJ6z2W1pdvcUteXR46c0nePq/Q2bm/e0Q0vTrIlRMzt9zKOLRxyfPqaqKqaLEjUE+t7TDQ1ut2K7vCYEx/GsptmtGULk4vySwhYMfcd0eU2zuWe/viMow3azJg4D16+/o6onuGHA931aD4mWFAaKXHzii1LTre6pqglf/PQXfP311+zajrosqean7DcrFmfPKIuKoA37tuPR/Jh2u2JSVWxVpHMtmcnIMsPtux948tGnKGWJ9ZTQN2w2inphWZycs7u5Z7W6Y1pPCCZjv90xrWt2uw1ZXrA4mTN0jv2upYuG5f01wXuqvOD580uCrShLw2q9I24il6fnTOqKDMvJ0YLCiLUjOmKj0CucilhGXYdPU560XlQAPOagnkvriyhfO4jfxlbUYFQ8WLkJAgziimNwiA2rjuPuG4h6DBVL4r5xLUbRJB0W5mgPmZp5r4B0pqhx0qSQPUzJs1Fj94wHZZPmQhyEfkzXj65A9t6TZRyKwgcEOY1G06bdD4IexxBRyRpLa31AEsWKTEapRVGI3VWWEeOD76yMqsU9wblAGFL0szbCR43xQbWuHnxWhccbDz7KI6UCSF64qUhO42RtVBLcjVMZdSiKDzG7IRB0TCifjNLHwgCEaiEc2e6P3g+lRMlvdXaI+7VZJmrbIGj1yP1UqUGQMjuirKTW+TSqVlqEQKRQCKVFxKQwdL2Mvw88T/ij4l4pnWgc8UDtGJsSpT25tgy9jKnQkRg6jHqgdEDic3nofM9kPifLRFg5RCchILYAMial2BmdHB/R7fbsNzuyhMgHpZjN5lir8a7HGEeeZwzOkRU5bugS5UQnjm2k7Rqi1gzeC2qvNZ3vMTYTRC2KyK3vWmmcQsAai9UZQXuc6xh0hyIn0xmOSNv1hL5niJohy/FaE7WmJ0iU9BDwLiRusKDvnkg/dITgKMuS4B0uWePZwjC0Hd47yqKQ0Jsoz0NHoR5VybKv6bxE2iIpUEabFOYoW6+2RsJa4kCmRYTqfEKu09YZoqDL1li8Sq4QOlmMaWm8tBLBqdBvBKF2yTUmszpRa/zh8/Venm/X95C49hh18EMekx0731EY+Tzd0CeUQ0R3UckekWuJph73iBjjB9x5GUOOjTNaRrJ+GKT4V5Gizh9AFYfw9rMkJnUO5zxFXhC1xLDGZClps+xP3uMiYJOPtYqRaCyjlE6pQDai1iSahJCWU5kr9k/jXjLasnn+z0EeMCZ1SeBSogWFSNDidKMjBGVEAU/EpHpaPJhj2qfES1V9IN6TY1U+v588f8LppOD9D9/x+u0dR7M5R9Mp17c3/P0//Ia22VIXinmdcTTJ2XVbLs8XLDd7/vD9a1b7nn/9N3/NT78o+eHlt/zj91e8eHbJR08fcbPccHZ0jD56SnNzS9Sean5MG1bs9h33X/2Bqix4++4dR8enDCFwffWKWWX5+utvyK2VNe97hn3D0XzOtJrw+OkjTo6PaZ1nMZ/w8vVbMCU+Qp1XfPTsOZOzM75YnPL1qzecHi04mk4IfcNxPeHlm5dMZwuuV7c8vThnPlswnU4oZ3NevDB0vGXbluhdQ1nPaFvHzXZHObzn3liCLZnNFkyrkv39PevtlqNpSec981yhsinT+Yx3729x/R5TTTAKPn3xGU+fvCCv59RZoC4L2UNx7EMPRuOCwqlI1APK5lhbUk4i9+9f0d1fE3uPzQuKeoqfHLG+u0Ipw+Wjx3z7u1/JtPX4lP3unaSPDiFNbgt8VHS9g0EcmVarNUePn/H7X/+K/aZh3+0pLi759X/6n6iqCb4f8K6X6WheMKknXL17xXQy5+LZx0zKU4yJVLliNinYtluK6QmDrQhDT0GgUIrZ8QnbszVmfkR3/452v+P05IR2v6FtNrT7Pav7G2yeoxHv+fnxOVFZbJ6x7wZmRUXnOpZtz6PpnJOjY3a7FU1/h80ySpuTZyI6HYLQiQgBbZKNq9S+Scz2ENYR8Yd498P34BJlYWxCgxShysj3xuRFrIRKR9IejEmaowYgJqJT1BI6FqLBqCGFhqVJT5o5RTUaMWoUQyo0rHw9pQyHVMyPNUgq0w/ngjqQqX4814+uQNYmKfcTYjP+9xAxjbg8EEUwo9NINR3aB37kEA/Ir/M9QSmsyggfFKQj17brWmKQm8QkYY8PHp9Mt70ab1WS1dwol5E/xzgeWA+x08J9VkQvC2QspnWymBu/f3zOxhgyKwK5UbjnXfKkTeibc4KsWzuKBAPRK4yRAl8peRyC/F5tH2J+83wsoEPib0vHaKxOqLyMr0ebtzHQRKsoFkyKZHX1wJV+sJYDeEDtS6Ugl+I3zyU6OA4ak8mmgFJoXaGBzFiheSgNwaODp6wrotZYk9G7lrbtmVYT5tMZVZUxKQu6fQOuBzzTeclutyXLIkVeURY5WabZ7QKDj/gYMXkmzCyTI9ugZjarccHT9h390IGCoRfkLGrDfr8nRk3vJApaxYAKLiGWFnBkuSIqcZPQIflNRo+mBy3Uh76XtKfxMw/AMDiKqkQ7R3DhwMcVpwQvIrsILnRYVaAC5NrgjOAZKkSyoBM/WT4X5wM6s2SqRA+JouRjcllRgobHyNC3GKPJjAhB8wNFKJIli8UYIYaUyuS9IBFR5LEheKIOWB0wWqY7Jn32pMNC2STg6scUSZPiumXiohAagVCgVApigaLIsV5sFbE5USdBXkQEdd6hlUyPXBgOa0fuy3Eqo1AqT02sTDO0MVRFxoiaxoTUeDeIqwUa14urjbZiexRSc6u0kdAYH3H9P8EIUmvC2AgjvF+tRCCEsonxoCWQdpyYpTFoVCQBkElj3nhQrqvEZ9Yj+qtklCswtEv0iKR0Vwo/Nu2MIj+xg1I6RWwfUKaYgg8UgiNLU9MMPev1ir/6+Cd89uSE//F/uMEFyPye92+vWd3dM5uW9P1AVUywtsZoxb5TbPeBwRtm8wnN9prj6pIvXjznvg/crNacnU14/fYKU52yODV0RnF/e83//M0fKI7O8P2ex5en3C6XeBdpl3e8/v4t/fKWpx894v52xbOPn7Pf77lZLYkxcAQ8Pjvj/OycyWyOXu345T9+jckM7f6OrMyJNuf4+AQfPUZb6nLK+ekJq9WKwubsuh2z0wtcs6YuK3b7nvXyLVEXfP/qNWVZ8Otf/5asnKJsRh8CbdtjbUbXDSgT6TYN29v33ITAfr/j+PSMRi/QyqNsxaeXR6ihYbdZUxYTjk/nTBZHnJ6ccjorGJKgWfmGvQu0g8YR8FpzfvqMYfaIabtm0+/ZL3eEYFkcndIVLfvNlrvra7q33zM/O+fR06f88N23OJdJcqwX5w2bVYQolorlpKaoaqKRgqrMM4qikP0Lw37fkGeGEDKCMlTlDPAUkxrilNl0QcxLDDDvOsqiIPqe2/s7nn70MV23wbieJ08+IuiaAUvr9vSDZ7trWERDNBmbzYrQNKxu3tJt1zz55KdUJ0949/23zOoCspzb6/eEuGO7vuf46JzZ6bn4ryeRfFWfcHF6xtDu2e4cy2ZFXpWgIwahHWokOENbi9JWzg8CKlqiUpgkjE2qeA5FZfp7jDpNYQ4dp1CfDnOfRF2MkYhLP64e6FDJa1klwEKIjxGtnDTCivSv+lAXyUMkKzpU4jgnZDumRvkwL9MHihZRbDIDCp9EwT+m60dXIEtQgNxTYyrW6H/svcfG5D0YHaQxLIxm26N4aizgkO4sM/gQ2HcNhZI43xhJoSLqEIyhlRTGEaEq5FlGFxxEoTCMKVrOORQWP/ogK413QxIemYTYyM3rkOLCJ/X7OMYer1EAl/52KDoP9mchUFibRs3x8H4Mg0uJYj6pZx8ig0cHg5he1yjWCSGNXhOyKz7O8nNZlktB6D1lnh9s73zw2CwjhIc0trEoThgTIIisHyRZ7vTkGGMt95s1WZFjMyMbjfG42JMVGQpLaTMKK2h8WVmMhSLLGGLAhUDX7lBEjmYzzs9OOT9e0Pd7qiJnOzjarqOscubzGeVKC8XCS7hL14jrRFQGbRWFVdRVjXMdOFEO++gwSkHwTOuCthsIIdK5gSElNOVZKQVSlIQwpQI+Bmm8BscQIlVegBO+u9EK7WQLskWGNhmt62n7VmKXo8OaXCzVYiCzaXQeU3EaNVpn4jZhDIEMEq1BLGwVMTiyrETn4sBgFPTOk+USJhK9CBFD4lwmxgdKGzKjsSGiMXiHoCQaVPAYZFM2aHyQCHN8QPlAnhUM0eNj5FBzhYeocDc4rI7iOoGHKEhrHJPnkkXaKELVxAcevtLC3/aOruvJkSbP+QjmwS3Fp/d3pAioKBQRaw1ZltMPrQRMpWJOwJjUmPqAzgShjVoxjBSQQxPOAwSURqTee2HqeUHo5bn/6VtuVKM4blz1jqjE1p+RvqUOsSaQhD/CT4wfWEKldT0W2omSMTpSjI+AMofvMRHGIjcmZEwnGoccjuI8MpbOivFxZM+MqKSij9io+f7tFX9blfzlzz7l3/zLv+HvfvlL2s2aMLSUheF+3aCM5ux4xtHpKZNa8faHlzTNwKePT9B5joqBV++vyasZRWVxKmOz75kvjnl9fUfTbLlb71ne3dM3G4Z3b1EKzuYVR9MTqonj7//hl0KrKc/pvGV2dIF3kflkys9/9hd8+vgRyu356NMXeAbmi5Jvvv4deR64vr5nMZugtWUxn1OUltV2z/vbK7pmy/V1Tl5kXJ5M6fo9y5sl56cn/Op3v2cymdI2LY+fDbx6+56j4xOisnz/w3ccXz4jDj02y3j/+pWsf5XRtRvKrCQvK6ZHx1grlJXZ4oTFpGK/vWNQBZP5EScnJ9TlhHo6oywtR5OMZrvl1Zs37O5vaDpHHyHYDB807eQ9IWhaP9B1De1uT7dfo3MLpsLYnMtHl1xdRa7fvST0HU+efcbbl98znS/YrW7Z3b9lOjsipLXtnWMym+C2ka7vyKaTw/Ty+z/8I9aWXN/fcXL+lKyc8sXP/hylFbumZdcNQkHrO7Ks5OLxU2ZHj8kyTbv/e15982s++eKvMGrANyt0EblYTGnrj3j79hWmLBnajn63YtjdCcI79GAyfvjuD5ycP+H04pxmeUtRTfnoiz+jyhRv3vxA3O9p9i02FwpBpTRPzk4xauDNu9dMZqecnp7RdC1DiPRpb4ojGJaOaUGQx4CQiFeScioC7VT0KqFWyD5iQTkE5LOMvuKEmOoCJAAkcMg3IMZxhQs4kJphUky18IzHDSRKgy0ohuh042gDlxJA4+iSoZIHcpogqlQCJ/R5nBnGkETVh1/y47h+dAWyFMOkMA5JaRuFYUopUaI7McCW4koUnmPy1qiOB0G6FBo3yCjWakX0IDGRwlmO3mB0IWgs8SD4szZxAlOKngsKY7N0kytR9AaXUuk4dHLyOwV1GZwjGjBqRHndAe0ai/8P/9NKgjxkZJxeMz5xwMbUNXmfbFLYaiO0DoXGWkHLYhqZavNAUXHOCcLrORTMQKKHyOIZ6SN93yeLLpBwBZPEWO6AMI/WNGF0I1ABaxVVWZDlIgKYzqYS3UugrDKybALGUlY5wQ9k1qT3Rh/GRXk5kTz7LKPZ78mNJbOW45MZCo8Nht16zXa3ZzZfMD8+QikIWDonjUV0gc2uw3UKZyBkFo2m8+Jx7YYeYy0uiGBtNpmLB24ccC7gY4fNhDoQnCQ2ZtbQo1FqbEQkrY7oaNuOXFmKLMPFQDc4rK7Se2WoSo3ORFiaZTnKB8IghXlmLWiDVpqh61HekyuF8Q4VA6WCLLNYYxhI470kXrWZ3BdKOyZZjraa2A04xK5Oa42yBmUU2iuCTiiwTyE2cZwwyPfmRuNCpA9yDykfKZSmyAowhqHtZa1ZK8mOic40pgOaFNkaiMQP0OK269Mo78HZRR/4wolmZK24kniZcJR5TlQRl4SIIl70oD3BK2yWp0Q44fJ1XSeUghCQJSab/ZjUF30Eo8jyyBCk7PM+If6ogwAQgkxXRgpJiAd7O2st7p/g/NDpwDv4mJKcLBCutkTUSsGrE/Izso5VVAcasTpU2UrW6FjSqNH+SXiMomBPiHAqhmXTMge0WaVDdGwt9IGmQUKhonAogYARbjc9nba82+zJfvsVddhyMpnyy1evuNnu6UPk7c17zo7PWZwccXF5wq9//Y+8u93wZ589x+12fH+3YbMPFAY271e4GDieT7i/HsirI5r7W64HR985rIK2bwUkyEt+/dUrvvg08uzZUy4fXfDu/Q37tqFqp1jr+PjJY0qTkVUl0QeW24EYImfnC65fv+TN9TVGZ3TRYwtDZiN1nfG3f/8bjs4uOHnyKXa75c333/DTTz/m7PQp2y5wt9ry+uqGJ4+eUxYFuQHvWvzQ8d1334PWFGVOt10zX8xwQVHNz2lWVwy+Icty2mbNbr/l7NFTjo+PaLdLTqZT9LDFFOf0DgwdMeQcnZ7y6OyU3juWV6959btfcX19Rddu2HcDQzR4AoMLvNKavKhSgwdVXtF0e/b3O/KsYDE7wjvP7OgEnVnev/6Bvvc8ef6E928i+12LNTJ57YeGqp5gs/wgIIVIHyLPjy5YLa/Y77ZMpxqjIkWVk+nI3d09ZZZjTMnp2bkkme632LJCx0C7uSGWMz79+b9idfueH374mscff07b9cy1Q5mMmBfk5QRlM8o8x+227K5eYsoJ+eQYoyL9bkWXabzNybKC+zffEbVBEdm1DaeLY7QS28v5/BF5XVJnOW/fvOPq7p5TpfnJ4z+nGSJ361uh2Bn14LQTojjJ4BN1bJykyFrz6iH+WR8oSV4mgCMVQ0shK+flWEBnEBxK+WTYalHKpwI4oQ9K1nSAZBsnAJ1BJk1q5IcdJuvq0BwffIW0GNOpGOR3p71uzGAQrYMnYAjj89T/lWLxz/oaUeCxgAzJlsm5QYotrYUXFGWkP3IDx4jmD50kxsJv9DIWd4bREi2mQkNu7JG3NyLJQ9/jAqjkuBC8JwZByvI8k4SxdDiLD2x/oFgoEoXDmINyWmn9R97Bo3/sIWr4wKGUfHrgEAntw5iqI6+l73vyPIU86HiwABMXBouPLsU/J0Ge0cJFTmjegSsc4yHueEwFHPmc4+vSWuOC+ObmRSFiOiK9H1L3qsnzDG0gtwVFltP7gdnRAnrP8WyBDp5JVdJ1PYPzzCYFVVnTDZKIppRwnT2aarbg9v6OalJRFBmTsqLIJCWxa1revrsiNzmL+THz4wXGWu7ulmzWe+EhW4MbFEpbtJW0tyH5PEbnKbJKwj0Aq0V9b41QdIpMUWRgCqFjuMExOE879EQ8utSEoIkhO3w+4gIiqXbd4BK9Jo3FcxnR+wBFXrJYHNH3A7vNmiI3yY823ZspIjpTBe2+OXhQawSdJ4nYQgwUuVg4Cc+2xVhBAb0TqopSBlUk8WWUoJcheEFOXU9MXsNGW5wX9mqf4rClAJLXlpsMFwISKScNWxAoQmghCglMIcgB6r3Q1xN1yaU1YM3DeiCOUyJ/WOdAaoTdgS7lgxcdgZei2jCuEwVakE9jNN3Qo6PBZpn4XSuNS42c6FSFXhEVOC3hO4P34taRmupR+Cvx0gaUWNjJPS7FMzx8/596qSgHl46K7MAdVOlwUhg1pnmNaE9ykVD6IM5J3zlmhZAUPyltL4l4VML3Q0wIWDyI7xRJv8eHB2oye1IGUjCLVipxFwXVkp+T7+sUVHlJbg377Y7vv/0D99t7Pnp8ybu7DZvtDmVKLs4fM6stX3/1O+7v1zw6P6VtNV1vqLKSdbjj3f2e3eCIzvHq3Xsen55TuSVRW3z07LsW/EDbOxYnx9xc3/Do7Ajft9zd3XN8fM7LH16zXBs266/4V//iX/DlTz7j9de/pyay2rVsd1uOJwWTouCXL9/x7MkLtJH49KFt2LcdX//wjpPTUxSBd2/fUU1qHj39iEIPaLXlh9cvefHlL/jb//gfuDy/5Pz0hOP5lKvr9+RlzvrNa0xWYrKSzfJKaD+6wPlAMVmQIT7pZT7haDalns15+d13/OST57ihpS4WtG1k1bzj8UefMJseg2sJ/Y67t+/46re/pFnfsu17mkExDBD9QOda2t6RVxOG0GJshu8b+maDKWryaoZrt7x7+5KinIBSlGXF0ek5q9s35PWE2ekFZ33P8vaO/b4hyy3Nfsvz559Q2IIdhtnimKKeslqtefP6FfXRmaCOweP7jiF4VnfXDGWBIuCvv8fbjMvHHzOd1LTtnmJyRO8cu82ai8fP2WzWuN2S0ycvaDZr3PKK6eVHECLT+THWGHbbNQMZ+9U90XsmsxmZ1mw3W7puy2R2xMWjZxRljnc9NzfX9H3Dbqcxecnt9UvayYRF/Tknjz7C5TXb3Zpvv/+GT158wcnsmM1+jU8Ftkl3vItyfudGCuYYg+g7lEaHgB8pnsgZLctvXKMRFQehUEWxcpMi2CSaFIy0YxdN8k1WmBTheZjTKqGXoRKtUulkGZfWvRI4IIwTnygUNRn2iddyJAn+8ByC44M0PfI1nUJJ/quLxT/rSyYRAW0sLmpJzRsGVNS4GPGpEDU2HeoH5sPD4aV0ROkgaFRUEsvrA1ZFonlIlosxpihrUMaQZVZQ34MwTg6VIQySNxM9uVHCDTLxIHwjCakOSXUJKQspjcskdDioB//XsRD9MOVOG1kS2iS2XxCrLqs1WtkkKpLf6b1DKY2PbbK8G83GDUob+XpKLNPKIjHHBmUt3odDyIg1Of3QY7TGWMMQhmTFpTBaQiFUChcz1tC7Aa0CSnuslkPTZpEyLynykqOjOUobzs4uWG/XTCY1oW+YTWqOQk1UgWpS0DZ7ZotjlM0RP15H8LDvBqp6SlVN6JqGspzQNHvu729omxaP4vT0BOciDs3t/ZKu3eN8T2YVZZYzuAHvHE3XUuDEYk4ZptM5gyTISHPkIl4N1GVO9APDIAl2mZfYW13l7Lse7yMRi8aIB+fYOPiB3IrYqxtSceYEhvPG0fmA8oZMa5Tz7PSOoiop6goShafveyKRYXBELaLJstRYLXZmwzAk8YbcQ3VWIKEiIsrJMuHVam0BjfNCVbBaNmPno6CuyktRbBQuWkJUdK4nRk9ucjo3kGtpMHzfieA1BnGASJzoqDk0d2MaohSXJlmPyfMYQsDqJET1Iw1JXos1Fl2Il7E2ijj0B+V2DJkEjfiePnpiL8W+9xHnI0ZnYnGkoHcPke/jNESoBMIZjkqRZSYJcHu09Xg/EGKJNbn4IY96ghBkspTQFRek0Q1DJ1MlFSVavOvF5eZP3eOUlL5Ri5xH6eQzEZO/akr0COpAFEEpsc0LSqODYmRpqSh8Q0GkFV5JEIg6cCTFJk6N/4Z4K48JW+KpnKhXMY2N0WJfBRA9aIMKQbQYSglooAyZLTkqa6bW0C2XGOPo3MCrN++ZVAVni2OM7Tk+nmK05d3VLfPjM3ZtYL9bsdptWG53dH3PerPFZIp6MiU2iuvlkjNzCjGwWd2x3u6oihIP+KhZHM1Q0fHyzRWf2Dm7MKBCoKwqNCVFOZX3K0YwOZVxfP78lKLIGPYN7eA4LTNubq7QVtP3HXe3tyxOztlud7x5+ZJ9s+Ho5AxjMn7yF19wu9zhB89udc/Pf/IlYej5q59/yrt399wvWxbTaXIrEpR+enQmU0gC276FoaFr9lSzE6rpCarICd7x0ZNLTs8vGdoVm92KmZlxdrLAtQ3X6zVPn3/E3/0ff8vm7j2YkpDNGNoNWiuc36UpniWGlvu7K6rJlCyfUk3mDEPDfrumKKdk+QTnYL2+oawmzKtj6smMdrthefOW848+Z3J0wm63p21WBO+YzGbc3V3xqJrw6U/+gqHfkxU59+/eMV2c4fDcv33JpJ4SnWPft0wXU6azY9rtjqHZUeU5u/s3uOGUpx9/QT27YL1boYYtV6++4fGTT7h+9x3r+3vqy0/ZfP87Hs2PyfIaXc/ZNFu2+y22yLh/9x6joKgK8mpGPTsmblf0zYrl3TXDMHB+dibnpnU0+x3TYopSPdvlLb9tei6ffcT52Rn73Z677R79/jUfP/+MnRvw0SfSQTg0zskhEqMVLnjRo5D2H/RITErBPlmiKYxEKAMx0cuiTkhyTP9ugSFRojhkNYjThTmIcVEmNcwpsEeDiUEKdpWa1wgmioOS2MmlojzRLFRI6DERp2T9asZQk4iOnhhlWv5jun50BfLo5xtiEC6yF56hGQ9BAAThNAeSkHj2jnZrkRQkEkWM5pNgL3gvhYZ+QH6F25x8YINPyXFJcJbQshGdUel3gSjdRwT48KxGNCqNk2Xq8hA9/cA1fuAejyPqD23jhl5EYcEgYRGDA4RrnGXjKDgh3ozWcolekJw9SB3rIVLap7Sc6A6OH2ocd4/0kGRvp22iZkSSJZ0ELPRNS4yBMomdtFIUeUVVlRyfHJHnOccnc0FVM810WlKWBjuZMqtL6qKW98UaTJ5R1xO0lvSy6VSzbbuDrddkMsFi6DvH7c0dPgTmsyMmk4mggK6hHwaafcN6vZTkOpMx+DEWVCdhjLhWeD8IsmoN/eAOQStaxUPKmlIGN3icCxRJwCaNttwvYyjFSElQUacUwFRQa0NIHtDOC6oa/UBelWhlxM+67XAhjf2dFL/OOUnYi2L+bvIMhTynKhexmTUG13YHNxRrLUNIXt8RvO/TJEDQ85g2U0GwkmgzIX9aKQYvBWLwSiJnMyshOEkYkqVgkFGMaa3YI4pAUTZknXj26FHIGFEpqdL7mBItFSEMZLlJ339YTgxOEvmsliY4INaI4TAV4sE6cWwik1ONBw5R7FpElyGhPfYDZFjrPy4C0aSgICOOFWEgz6wU+AG0MZg4TnxyeV4evIrJhvFPt0HSBEYf5NEjHYw0SFFU6wElQqEPEF5pxDUo4UYrpdAxCXVGJ4rDcT2yw1OQgEr7kzYSYQ0oHKAwKXraaWFB6pgSC1UgRCtx3FYoFlaLJVXQctCrvuHq5RtMEIeXx0cnXN3e8355z2wyZT6rUUrzq69eczw/QwVLaO5BR759+QPH84pPn36C/SjSdjtur5a8X+9Ybtf0XcdstmBS18SoqLKcfbtj2G+oJzWf/+xn/PrXv2F+eUrebDFGcfv2FfW0QpmWdy9fsl/vpTl/dMrHL54RfeDVm/fUWRRHAFVxcXnJ3f0N6Jyb+yXffP0Voe+ZLObc390xK0tCCPz2m+9RNmO7XvL04pyf/uVf4PuG77/7ltcvv+HZR0/4sz//S7xzvHz5hunsmNevXwrNaLshukE+Ee8wsWdSLjh/8jFffvEZ77//Gt+JPmW325PnE5QOzM4vefX2Dd1+g5+cEWNge3tFaDcSCNU3uJCmPiZnfnwERtPtNoRhT1ZWaGVpt0uZTEbFbHHGdnPD6s5RT45ZnJxxe/2W/fKayfEl08mUdrciDDK1HQLEOLC+fsOzFx9zfXtD0zY8evIJfXBEXXBydIzre0oMzX7Hyt9RlxOKvCKzFqc0TdPw/ttf0UfDkxdfcnp6CbHi1bf/mSdPP2Zo9xzNZrjL53RBcXz6mPOzC65e/4BNkzhtM6q6TtoBaLZL3H7HrKoY+p7tesnQbCnqmnI2w8ceEzuqvKDXlpubdxirCH3H2XzGan3HdrPizbu3YvkpY2QgJI3AWCsIrUgfilJ1ON+JKQBJKyI2obpOvOMTdWqc9IyosE7cDAkHiWkPSNz/mFx/Ui0hyZWB0chxLJyNlnh4QZtl3xzVA6hxLiVluk4ocpohy//T70xwXKK2/snb2z+r60dXIEMqRGI8KLazLMOgDoWkMTpxrGSDJ/6xZ/DIP9RaEXwUikQM6A/jkdMNNfL1xgJaJ57mOCY2Wop2PfL0GAthGFnzUqg/eCSjHqgfxDHSWf//UCoOrzcJ80aPYR/E4xfEd9bHgM0y3NBLal6MqADajxnsihCkQBY3Dyn2ok9qRORt6vwgRZuKBy7t6Bub57k8Ly8cLIVicEKtUCPvdFw8KmKVJVc5jy8uyYuCclYzX9Scnh5ze3NHZg15MeHi4pzppGQYOrabLZPphK7tmJ2cURYzXIg06xU6RoqyYjabJs/myNA47u5vybKCUldMygqXLMk26w1l5Rn6QYJOomLTdDKWT0iYjxC1pe97htbhvQZr6JNPbllm6BjZ+8CknDL0krqolKVpBD1so0shnqMpuzp8psLLlruiKEpprLB0XYd3EWMVRSXJdSFIyMq+29MPPRhFURaClLvdKK0Ql5Mg95vVJlmpRVwEFyJlJhHOIYglnXgnS4xtjGI5FIJMUWIIaJt4con2YxPlodBWxJDGivlEaha1ipjCAjFx2jVxcOJlnNxl+q7HKBEWKSXhHkSFNkYOsVEYqhTWaoYh0nUtNjV3UelEoZLxdtTyeoQ2kWO0ZRgEWVcheWSr0fZQ7k2VGoWhHzBWo7XEs3ddJ5ZtqVkWl5lIiNJwOCd+1QZQWgsiFHTiC2pC4jprnRGjlnh4H3CdF0j3nwBh8Q9ulYCI7CwRSyAoLQekGRvmEYn68OdHC7j0venuVCmIRyX7vfH/4wjWaCmZD+l9h5+RZlx+2kgEt1GYTBwoiDHtnV60CTFibUFV5Bg10LiWiVEU2jKZlnz3+i13my15llNVmuB7et+TW02dG8ykwk4m/LwoUe2aZr8lKOGNbt3A7OgIry0+RLqup+16nHMs25aubTk5PeJ+tea3v/k9k0Is8pa3KwiRR4+ecno648tnl/zyV7+mLivmkxllqdmvl+LJO3S4CNu25ex0wnZ9w922J3jFcrliPptQl6cstx3RZNgiZ7laE4Pj9m7N5198yWeffcK0tHz9/YaY5zijcWjqyZz18hbfd/Rdy+npJeX0hEnX0e/XZGXF4uwxf/kXP6ff7qinR7T7JV27pek6eueYHZ3TBphVU27evcF3jqo+JtOwvb8m+Mh6u2bT7CVNUmlsloNRtM0WjyUzlvXmnrLdo01BNZniYs9uu2GGZjo7Zbu8p64DtqjQNmd9d0NZzakmM/KqpvNrmmbH0xefs9luWMwjb19+TT0/Y3H2iL53EHvyIuf++g15ZqnqCdnkiEcff8766o7b269otzcsji/I8go/uaCq5qzv3vPu5Vc8/eSnfPrzv2F5/Z56MiMODecXZ3z3h1/x/PO/gKyi2dwyn9Ssdg2PP/mS/f0dq+U9cwzHpye0m1t2jcMFxcnJCV0/sNvu6NqOZx99TNN0VPkcR8t0fsTd7S0mr6mnkXoywQXFarMi7wzV7Jg8WaSOsJgUjZ5MW3GgiR4YQa1RPyMZmJqxppBUzAe/4uygO4jJS3xs2i3x0MDGlNxHsstMy1R+LlGjRipGJCYfZmSypEcwLwiFTSVfeuUSqq0PBWP4oHlW0ScX5jRA+hFdP74CeRSrhZj4b2KGH1Jh+4AShwdObxA0aURqRweJEFLAhjaoMPLofAqx0KCVnHkqpkMRIIpIASlwQoxYJYXRWPQerN6UpMbF1Ha5xDEykA6/hNSoByHe+Bq6rjs8/9Hqbfye0boqEnBDEAs6DToIM8ooSUwLqQPVRlS6B75J0IfC2NikotWJGqIePGI/5FR671NymEtj5Qfh4/h/jTQDRZlTZJa6qpjMptjMMp9PmNQ1rh+YVDknJ2fM5gtpYjSgDC6ANhlVnbPb7mm2nfBYu466rum94+UPP7DZ7qjKCqJhud0wKXIm8xq0om8HoReESLvbiVNH0HjEy7lvE5KpNcMg4SVlXTOdWm5v73F9EJqI1gyuE+Q5wuAcbdMleo7GO4cHXBRfTZ3iz21V0jSNTCacT/Z6UlBkWYbW4dBABQagkP7cC1/XOSfooPjmiT+zzel7KRiDhqbvicFTlSWu78BLQEuIgQwJx8CYg2WgyTQ2KhGv6cRfF5KtiPucxyiDsjq5rMg9ZbSh84HGPUSjAxRZIc2o14Jyx+T97QOZGR1iJHZZkulExEkQyzehGelDQauVpDXGELBZntB7uTfLUuP6AaVNWsOGdlwbKZjEeZ/EnhLk4rwX3ru2aJvhfcDvO6IJKS49ILHqaQBEJEXigY8MviciE4ZMixi3D2LLqLWWQycKwk0QnvoY7pPl+Z+8xekDcTgdsJC4wSbtNxEV0j6okNHqIfFK/g5pgoFEhOigiMoQtWfUw0vzBMS0/gGjknVUcgMZBX8xphmdjgQdcVHj3UOUt+t7RJ4nuoXSGAoGjNsTQ6SYHFHgadoNSkfqsubi8jmPzub8/pvvKPKcx08eiw1nP7BZ3tLuNqzWW3adZrNe07d7go5kxZQiz+n7ltVqgwPKuma1WlHVNToq6rLi9euXzOqKx9c3vH39houzU6bzBT/57BnTquDZk0eErkO5Hbu25N37W86Pcrr1juXdBpPnOJfzdrminBzz7s0PbLdrXN8RQuTyqGI+n2C84/72CucCn7z4iMJEThYzbq7vWe0aJvNj/tV/+9+jfIPKSiaTCYuTR4SoyKdzvMqJBmaTCeVkTjmZ4Ff3tM0d6+Y9u27Jbn2HCYFqdoaLkRg0Q7OhqgravMJHzbvvf8vbl9+w3+9od83oUSITIJ1RzRaih3AdMc+pygUKh3MdzTZQLRbUE9HThDYwPz5leX/D2eOPWBxfcPv+B9r1LdlkQV6U+L6nzDOW97cszi5oXaTt9mz2rzh9/CX3Nz/Qb9dMj47JbIGyJTfXK1zoaNZ3fPbFzzj6xV/wh9/8PbvlLSov2e03EBXPPvmU2WzGD7/+T1y8+Cnzy6ds37zisqq5WS55+vgZLvRcPrnku9/PceQczab84y//I1VhqeuSzd0Vs2lJt9tTnZyS5xXYgotHH/H+9XcMuzXvXr/i448/4+3b79n3DWePnzGpygSkSAbCJM/wUXF3fy06mONFavC10L8CRKOI+sGiLSQAS6bFsg4V+o/4x+hwsFkUNx9PSFMjQXClHglK9hylHvQ/aJ94xurgcSy6q7RglTpQQQTNdqhkm8n4c4gNrkzXxLlIdBnuUAgfmgAVhE71Xwvkf95XDDHZsvgDwyF9ioeADwBrMogQgksFshzuDxZpUUjoSosaNYAbPDZTCRkucHHAJcP8LM+IXhDTiE8FpDqgzCo9jYOVWhpeSFx16gZjSGMXEp9wHMn/cfrWh24WI7XiQ5TZH5w7RjGNFv/V+DB2JqFdY5qgTuhQZgzeJWFSej8xgiYZZcSVIR2MaXYkvMvEnQ7OJ99cEh9KQixsEi/kWUGeFxSFZTKdMltMqeoSo8ENPU8ePwN66nqGsjlVdUzfNcQ4YTI9YhgG+rZlt9szrStu3r2m73p2kzl5XaOiosxKXB/QRjM7PqI2BqUMg/e4EJIlWCC3FpOQbhc9Ns+TQ4LGZhmT2ZSnT5/x5PlT/pf/8P/BR0EHs9xgrKXvevqulwJps0oWfyN9QpGVJVZbXNsIauxdapbSf1rhBgmGCV4RPKAUWZajTcQ5oXdgxHYNLSEdMtlSuKGnLDTKaIo8l7TBsqB0ReLEwsatUcomviqoXFBj74RzmWWZ3A9RUANtpDjuXRKsOi+fubKJUgNRB1yaLvg42gaOjhSBvhkkDKUQxMFrdSg6VYyH1MYYHc4rvDeJ5iQ8hZiaVFJx6qOsUeFOD2Q2BxVxQ0rGy2R6E2MkOJlO6IR8ekSsB9KYetdLJEYSNWoriLoxUhwqNU5sBA2F5CKTlXiXXFiCTih8xCXBq/YBqw2+7+mcxHWLkFbJ+6pljf9T5EyNziEhJegJlpPcb7T8LShxLbUoUIbx6NOpqPbIFC2deAQVUIwixoQ8JcBbJQRK7KgSPWYUMacJqw6KTEvIBApyJe/fkMa7+I6oAtbmTOoJdWHRfo/CUWaaxdRyd3WPCo55XfHuZsndas3FxTlPnlxivOfrN685KTTz+ZzffPWSu92KZuipJgtOL88wBIaupUnUM+8q+kHTtA3bZs+0qugGT4OlWW0ITuz3tArMFzPevn/Pv37+gsVsgh/2TKY15aJm2Ky4uXpHFyzKGpreczIvaLYb7ONTXv3ulmfPct6/fUOMmsZbXn7zHbezKVlR8PjijOfPnnL19j2RwMefvABbstztODmumMxP2DYR30ZCPqH3DpUVTGfH6HpB52FW1mTRc7e64/rqLdo7rOlZ73cMu4au6SknBYPbk5u5BBHlMwaluX73B3Z317z5/jvu7m7wfc/Qy1lljKWoa0IM+KHFeYUtKgbX0u83TBanKFuilGO/XVFWU9qmI7OKQEVWT2i391RVSV6UtF2LmZ5g85zJ4hjvA0fHR0Sd0TVrwuCpJhNu3r/i9OSYr9+94ub9Ky6efkxhclToMMHRNzt+98u/5dOf/Dmf/+TP+e2v/g+2q3sWiyMG5/ntf/5f+Ojjz1lcvODb3/6W558HTp88A6N5+uI5632HMwW2mvPJFz9n+e4Vq5sbNIb9Zo3NMorJgn0X+OzLv8L5jn7Yy55dVtSzBTfrJW53z3J9y/nT59zf37NZ3nOymOD7nnw6Zbfd8cmLF9yuNuzbFrNb4iYTstySsuXEgi5YJCNFwA0pQB9S8w7Wicqgo+xDI41CluLogy9ntkyQPBAOaXtKOeEaK8Uo0pVka6lnRv0FiK98iJqAAQSEGpP6hHIh4N9YI8ucyCM+9YYHrlsyfEx8ZfVfk/T+eV8xpPS6yCH0I6QY5wdPX7lC4pFCPNAXxmAAAKNSUaE0RicecvDC5/ReGD1JEDcMDp1Q6SHxSEceswSOyO/8sBAfQx+iizIGMRpNwPleIpWR4rnvnIQ5KPHohZHLaQ4WdiPXc3xd8loNMYoY7yAARAqR4D02s8QhJeuoJBQckWhUKnoy4sH2TnhM3kk8tHcek+uDtd1oZXVItht5jQqqsgACZVlQFiVlmZNbw6TMyKzm6PiYzXaH95GyLFBahGRZVqF1Rte1sokHT9v35FXFarthfnZGnpfsNi2dG6QDMPDo8jF9L68tdJ28dgc6WkGx6CmKghgCLtn5FVWFzjMWiwWT6YTddsfNzTW///3v2O13YNSBBxu8l/dwRMejePH2YUgphND5QFGUCb31ONcTgsYYS4yOYXAoBG2OyOsehgGlwVqFMSXOeQbvJN0wQmELtDIMBLCCUPXtXmzSjKUoS5yLBA9N06D1lEOYDZLSp4qM0lp0at689weHEqUlhTELo6uECOicH3m8hqbvEUqQOQAGh+mGkSYqS36/UYnAo7AZfZDiKcZIZjKkAE2buTaJQ5x8vAcnH6U1iWrBoZGNUawJI1H64Ciag5g2dq1Hq7KIsebBNzxGjNKYzDx49JPs1wYHCR0dX48k6on1orCghHpjM/GA9jGC0WKblNs0LQjYAwotjYRNcewKHuLs/4QraE1UmRxaWiXEVzjHlpjipkfnY0neIjWsctDpAw0KJZOdMUXLxAeP5fAB4jz6oVqkmLZKk+U5IVm36RjQUQ5hbZQ4mHgpyHWU2BJTFJxNJ5wtjiEM0EHoLaUNrDdb7rc7XpwuWNqco/mU40nJ+WLG2efPePPqLYvzY26u3vA//L//A33QbHcN3vdoDKaeUdY1XR8ZQqTddhRZJms2yzgujwjO0faBfDKlzCzNLme2WBCV4fzikul8wXFt+ejxOVUWqPOO3/zhe95dLzm7eMzq6prTxYQii/SxRJPTN3tOJgV1PeXk/BzXdaz2V5RVzv36DmVL6smM9XrLZ08uyBcSUbze3vP+7SuenBxRzHoGo3hzd8f8LKMsSnILRaZp2uS+5Dx9u0M3K44Lizdzto3CNS3d0FFaTYwWPT2iKkv2+w2DV9zd3fD21R+4v3nL7dU1g3MYo7FZgdaKru1wmxV5JkmUs6MjHGDzGh8Vy/s7pvWcQYvVl+8bnB9o2p7SB2azOV3XoLMSYyu22zWTk4HZfEG73xN0ho+GzfsfIEaa3Z5+OKNv1+zuJ5ycP0GdnHB/d0sMke12jR86FhefsL5/ww/f/J6Pv/gz/ur/+v/gH/+3/8D6+hU+eGbzY96+e8/V9RVPP/oC326w5ScEHVh1A8N+4NGzObNZyU9//jO+/80/cPv6Oy4eP+L+VoCpR5/8nLyuub96icFD9EyzXKYb1ZTZbEHbbPD9QNe27NuGs/MnGCKb7ZasnDA/OmG9WTOrJ3z++U/EtajpqIsCF71wfiPM6pwuvfdCZ0oJk4y8YoOo2ccCU/4sq+4DP2JMalYljCckOqCsawtqtIkVEd1DuarRyslemQS2hym1UqnR9tIkI5aioqqWAl4Ev4n+if6AG21IKRKYqBh+ZByLH12BLLZZkq42cn7HwtH7h5joEMXnd+j7xH0cebsj0izwiU03pjYjmV2QPx00aIPJNKF3Ik5L6MnoDBASygRgjBU/WaUP3swhyP8V4qdLtEQTidHTD47Mlil6msThhNHtAh7Q4z/mNIvNm0IKH6UfeI/ey6KKSsj6PkVcK8COnEznU/LZKLATqybvhYNplEZZQQRHKsqBOx1Hz+YxBc+maOOKSVXj/MDx0THnZyfst2uUCkzrkulsxmSxoJ5MqeuaurCYvMBHK4VQAGtydG7QOqcspmw2G44WM6oi5+7mHpNZcqMo6pKyrMUr9K5jt99T54WEYbROONhoJvUMoqCe86Jg37UiBgmeu9tb3r19KwhmCMnHOCMvc8qyoCgKtDYcH5/Q7/b84be/R0WhHwxORlMmE/XxaLVmM5vuy9SkxIAnJvGjIhDohw6jMwYnBX1Z1hjzoIiuspxSGYzN2fYt3mjqyYIiKwhhQBvx2t43O7K8AK04OlrgnaOqCna7XaJIRPTgqbIC7x19PzwUSZHUKOrElZbwE50ax9wWZDZLHN20uRopzo3RdK00hz4GhiEQEqLgeicuL94TU/LfOLpTSmhJLop1oAKKMmfoeuEMKwheQjacd0LvSPaCWmlcFK/vmNb3hxz9B/7wSDuKuOCwNpe14FLcvBqDghLSGwKR4TCFUlGKPR+8hH7Eh9Abjwhq/eBAKYIfRGSoRJQ32tQBKRzlT9zjomjUFUqCYeAg/AFwh4GTHKwx7QFjGMioR4dEwVDJ3k2nkbCCMbES9UGAbOIbaq2wGlzfyLBLwRA8mkiZV2QYQTAN0Pk0hq6YzY84n1ecLqb4tqFdbXh1dUdZ1nz3/SumtQTgHC3m2CojDJ7Xb96QFYpf/OJL3r57z1dfvSWqEm1gUhtxUFhvaIeBu+Ut680Wm09oWgnWyYuMQGRwkSIvMDrS7lcMfUs/9LRdx26zpWn2PLk858XzJ+ihwZrIm7uteHlPp2hTcFxbZlXG0fSEq+WeKivYB8XV7ZLLF5+xODrmh2++IfgBTAWqp64qnBuoZgte/PQn/PDqivnRGdtmy3QxJVssuFm23K821PNzTDGnsAEXLTbPmZkSn4vrizI1kScMoWPo9my3G4b9RiZI80sm1RGDb3j78g/kxYxo1rz69luu3rym67YHys/gnQRZFQVFUaJUpGsaaQSNIZ/OGPoO7zxlURKDBBVNJwv6dqAscny/J7iWZm/IqjkhwrQqiEOG71pihHazxNZTVqsdoW/xyhJjoNncEPyA0xFjLygmF7x98wbFiq5rKIsJu+2SydElTev45re/5Gy94hd//a/55ncFb779Lav7axanz8ksfP/VL7m4eEZ9eklVV2x3K55fvOD+hzecPfkIY3J+8dM/5/71V9xdvURrOD65ZL6Y8Ydf/u9cnp/QdAPGWhanF+R5SVE7JkcndDHQe0f0PbMqp9ssceWUZ89e4L1jtd3wybNnlEahhoHaZuxCx+AC1kashioriMrggpdEvSDOMCHRLHU6nzWDnB06+ZingjimolNFKWwfDAB0ouSpVOdGxLECiGNgSUgeyOKCIWtY6BrJ+wejxAZyVMpopTnshKlRHh1shKqRaquR66wVkWQbGx+MBH4M14+uQM5y4RSO9msj9++AHqcbzwPOBbTJJXI2jX1V4vOGIEI8FT1WKwnwSHLurutEhBM80SWyOgaUTUV0oHdOTPa1UCdEsDaKW8SKDSV2cjHGlPjVQ3rO3gdCFBs6bbQUEN6Jk4FzHHDwaA4o+Nh82ixLSXY6pd5JsZ6P3raJahzDg42cVWIT57w70C2cc7JQomyqgZDs3DR9Lww2owRVL/KCEAN924HWonj2A6W1VNYwKwtiLHl++RibaYbditm0JLiB+WRCnilULml8xJqL41O22xZrLEFFmsZTFBnTiSAWVV2SaUW7a0WcOHjqssLYArRlt2vZrjeoCO2woyxKvPLoTIqcvusgStBGcA4TwDcdDD3Dbi9hMkZoDVZrJpMp508uefL0CWdnZyxXK377m9/z7tVrsbSzlkJprMvpu54heOGl9hEohOJjVPpcZROq8oK+6wleREwuKKzRZDYDZTE6J4Re0h6jFNPToyN675lWc1CKIivZdeneJNJ2DjBMqgl1WYJyaAr22wY/lCgjcegdLcFqsSTLNb0DjGziZVmiEKQWHwlxwMdA1wodRCfLOmMUTS8R2yp4+iD2fj4kLo8iFZ8ar5DCse8ZbYdEHGTpe8eQvLd1Sh10URLrlJaDIOrkPZ2X4DmsR5XGlSFNf0Yh7vif671w51REWHkaYwp5z3XAEIgqYgrDMIBVBmUEXSMGlEnWRi75kQfhHSo1PPh+e9DWolM40aB70MIBtoW4N4wNbp79MV3qv+R6SKPUqVCWRlje08QNlkGKDHnHuLsDOq4TShwlGCGKWFKhiEYOWSmaRZcg2vYx0EjuW5f08DoiDQ8ShqNMcrbxGXVVUBUG7wYKC3UmB/B2syX3LZv9Hp/n3K3vuNttKapj+sHz6PyU5WYpKXpZzpvreyaZ5v/5P/57BlUSvSMqy91yhWs7iklNBPq+YwiB3WaNzQo616ON8PcfPX1OM0gKpd/tKXTGartjv9sQ/cDvv/qK2gS64Rnz0zNi24DOuPz4J1TrO/aNoz65QBU10Tdobdm2nqIsWByf0bQ92+2GfnDEEKjKguAm1PWMIos8vTjl/n6HBpb3W3LjOalr7u/uuF/v6PctnY+ofmCICrSltCUqz/FZRrdv6PY7vHN06zVuf48PPTafMF9coDK4u3lFu7vDBUcfC969f8XyzUtgFF8bAiKk9jHgncP5QD2ZYEuZim3W95xOpuRFSbPdgFUMMTCZLuiHgbIopbnKa4KKElgRPJPplIYAbUPvHOenZ+zvbzFWzot27yhnM6w2DM5RlFO6bkcYegaVcXx+SbteMvQdRVFiY4cKFj/0tC5w++ZbmvUNzz79KWeXz/jqt/9As7ni+MkzfHzM7d0dj/ZrJjmc1lNcv+L++gfefXfO2aNPWFyc8+gnf07rOkKE+dERWaa5/OgT1tevcN7z5OlnnD95QbNZYVZ3tPsNH3/+l9y9/Yq71ZbZdELfNESbs1ndkJUVL158JlS3xTFza3j96gf2+w0mP6HMK+pS+MldP6DwSLSQUC9IxaZX4gshtCaVWMokRHckN3nR3sZEx1T6oJ8XCpWX0B7BwokSCSrCYKJYq5KS7iRFiCgErASwCRdaQkxAXCmkHlJBPNcPP3u4DCMnVB3oHn/y9vbP6vrRFcjBe4y2ByT5QHE4uDHITSPWRuLRKeFuIvzRRuzTQkjFYHJ1wNiE9krYQ5ZpCcrQCu8HKSyjwlhN9DzceGmEHIDMJPVoFA9EnQoIEUv5A0JMWh7Ci5SFZKyWwiEd1CjhziolPMfR+UIhaHOM4nU8os0RsIk+4ZxLQj194DOO3qrG2AeuMaMV1/gYAqdFpBHp+/4QEOK8Q6EoigLve0ixupm1gCfLDEVWUFcFk1mNigMnJxNOTk/QKIa2xZicuqohz7m7u8MNgclkRt/3zGYzrMklgUspVqslm9US5aAsy4MYaogDq9Xq8B5mRUa3a2mbjrZtCYNjINJ3LTodEiEE+VoI5HmeBGUR54NYK2U5q+WKYBRd3/OHP3zFZrtlv9nTNi0qIp/PECi1xdhAqXLu9xuxT/JeqA1BktVCkES+4N0B8fRKir6YunYQFDPLiqRkls/cE2m6Bj+ADyL6Ckm4udmsOD+/4K67Y7NZo7WirDKsNdRljXPCV+66jiwvMQayvKTfb6mnJd4P+NALchxkc3bDQJaJeM8Xhu1uKyEaxKTG7oEcYiS3lhgVphARaQgh0Vw9UUf80GFS2h7p9fZDkLSoD+k9MdL1rTRwYQzIUfSdI88ycaU4CGof3FtGHjRwSNrTJtmYxXAI/LFWJiyHmNXR7g1N3w2ypiNpHCruCyA8+7woiImSNRbIQmkJqQhOTYIP8jjDIEWxUv9/9QT/JVdU8eEgUoGoQkK4heog6I40BfHAH04o+IHbLZMNUtOgVCQql3DplBCorTxGCnIRvY4c2Zm2FIUEQRgtLh7YjAGhpswKQ51p6iJjUkwSNapjvdozLTRVFmnbHSeLYxpjKW9XXN8uqXXB0ckxs8mcdlAoCzYGrq5uiBEWiwl4x7vbO/LMMrge5wamkwlD51HRoeMg9KfcUJQ1VT1jvVrLPjopGdqBfr/CDwNYjc0rTmYVs0xjho48Rl5vB2xRYeuM9X3B/OiU7fqWwXm26y3LdY8uFmIlNynYrW548eIFP3z7LdOy4Or6muOTCz7/5DN+8ZPH/OGHdxxPCh5dHLNZviF6eP3mLVlRUeYlVkk62u7+hrYXcGUVUrGDpu9ahn6HIZBPF5TTGUPUKTm1Yfn6DUPf0AVF0zboQTNZHLO/u5aGIS/xSRCc5aIZcF5ca3yaGk7nR7gYaJodWEtZ1/T7jUxyyqk43xQ52/WaPC8PAI41ima/R2WFoJkoos1ReUk1OaLf78XL3feStmpLQuioJov0uloun3/Ct7/5O/K8xLsBrcW/PEQlzc7Qs3n7iu1mzenjj/mX/+bfsdk2vPr+a6aTiM9mNPs9fj4nNkvug+L8yces7+6Zz4+4e3fFX/z1v+Htt3+g26y4v33LcnnN6ZNP0GdP6PY7IjA5PuHm6h1D2/H00QW73S2Pn31EZgqysub6zXfs1/ccTR8DJaWKhLLm6uqO9d07nj57TO8a2q5jPj1i1bQUeSX1BR6TeLsuRIxOYTqykBkTMUdP+Kh04v+LGzEkb3NBLuTcjhBUspkVtSxGS5BRCrNNg2UBB4P6cH6UCBvjJBqPTtqEkOqWmOhYQrVIhTkheSVHRFSox+qAfxqVxT+f60dXIEdC4ijKTTMenqOILUZk44/J90+DGwasFU/AOI5QfRqJpscaC9eHlL14KKi1yhgOYqsU/misOBmo5OigZEzh02OJSlyhVUbwIgqSxxZe5sijHO3UXAogGWkV1lpCjAxeUBkT1eF5P9jZPYiTRJA3er+qA6I+WtuNnE1xqPiQnvLg+KGRsbtP8v7RLWOkWWilCc5htaHMS+qiwGpDUeaUdYXNC4ppzcn5Od3Q8vjZYwkwCVJwaVOQVZVwOFF0NIToKKsKa3LqasJydcf79+/Z7/dYI4h927TUZUme59ytNvjgOTo6YXY0RxO5H25ZbzaURcEQI9oqlMvQyGffNA0hBMqypK5rQohkdqDZ78FogpEo1Bjh/m4pv9dFbFBUtqSuJmgig+rxLmBTSEaRZ/g4BlwUjFx3kwR3XXQH0ab493rcIHxz54UPpmPk9OKCptlLmqAfyPOCbduhc4lwDtFRTaZMJjXb7fZwfwj/XsIfRq9kYzN2u32ix2iyLGCKmkBADZESiQx1yfsaHQ/ivxB6dCn+zkpFiqpEDYbgHR5PpnKabpCpBIqyKAlDTwgeTcBkBZ6IiyFNJyRu2ydR1agBsFqTW8vQDx9QH2QxDs7h3CDcWWVwnTu4V8DIhX7g4Wsj6mpxWAmYTON9l9agSQ8rlBKxuAsYa0RA6Qa0sQT/QL84JPeFcIhZN1rEiWIvKYV4Zq3QtoxF67GADxjzp0MsaSeSPwnnS54TQhsUVbmgSsFEVPzA712NaHE6gIkoPQifERn5KjXiSPKa5T4kcR5hiIGjqgbnCTaj690hFdLgqesp50dHaN+gomI2mVLmNiU19ixyy3J1R13lnM5Lfnt3RZ5Z3K7ldz98Qzkp+PTxY4p9x/v7JeeXj2jDwE9/9gvevX7FfrfClDkFOVZ7TJZTTkqavmcIjrou0dpisxw3OG6vr8jKiuPFgqv337NvWsrcUJU1xhpm05r/7t/+ax6dzDk9W3B3v6TdDZx99Bmb7R2hX9PHwO3dktJMWK/3vL/b8vjFMUU54bKu+e7rr+ndKf/u//Z/5/2b1xw93mFV5G/+8qfgPN++/BWLP/8JrTPkOvD7716y3e84Ch4fFU5Z8myKMaLNGJQXXYvWBKuYzOcodURhMomF7ne4ZqAfdqy6Ldv1irZtIGr2ux0q21EuTrn85HPefPc1Q9cRsNhM9CcqiaaD97KeiLTNFp0VZFWJxJYrdFZiYxTqQ1XR7FtCUOgoZ0wfNTZ4Qt+yqM/Addi8QGlDURZslnf0bYfNKoa2YX50TsxqVHQsb96TZQY39ChlKKfHlGWPT4EXXd+RZwXd0FFkBm0LotJcv39Fs72jmh7z2Wc/ZWjWfPftV+STY6azI16//4Hzx88py4q9yukC3K/usNMZn//sL/jf3/yA7zuKAvLoqU5PuUXz5OMvUNpwfHSO2+6o6hIdG+rpMevb92zW9+R5xrJrWd3f8fHnj6krw67p8dFR1guWm568Oubm9RusLjFFRlCBKq9Rwwad6I2GgFGGGG1Ch00CoARfjlqJD7IarRRl4jYWzwcLNwUqrdbwRwE/spZjlJC0VM2gR46xfPqMUdXCO/aAF0E4yc51TNFLrhuSyCkOWWix0xj1Cg8+OT+e60dXII/w23jgtm17iGUG0ghQRCejIM+aPCG+geDk8Mis2GKRUCpp/D7wPh45jkFuN51iaCWCORx4uyqXZByVUCptTLKhCyloQIj7MRWt4nzxIDga+7LxOvCpk9J/tF2LBORLD3zkiDxn79Xh38SOLnGPjHCStDIH0Z+OQkFQqaAnjWwVgj6FREvwzhGDJ3iHsaLYd4Mst8wm5DgEptMpx6cnXDx+hMkNi+MjJosZn9SfoE3AqgyFZvCeoqoo6xoA5z1lWbDf78iLEq3h+++/Ybm6wSrF6dGCzBrevX7HMLSUJ0e8ffeWaiLiCptn5EXOZrWkcwOzxRzfDxwdnbDc3DHGLmsrCKSxlqquBTX1A4P3dINj6D3kGWWVSzOkNQweHSInxyfyuQUF3rMak+E8GO05ni7oBsd2s8Vq2ZJ6L7QV7zzWCBXGq1QkR7FcUjoXfrzvMUFzc3vLi+fP8W1H8D1lVXK/3XF5cU6WGYzKGdqB6XTGfG4OQsmu69hud0ynE6H4KNkUbWYYBk+Imq4PRB8k5ckHnHfUeSb+1iFIlHSRo0wGcaC0Jb3fk2eGXGf0rhMuXEIZy3zcUiJWKTyaPLcMvicrCrpmj9EPTjEKjbUPyZCjwDXPMnFSSc/DGpuoNE4Q3whZnh+axxACOoqw1BiZpvgUZ10UGb1z4uMbQ3quybpM6QNn2ViNmF8DXsQ1uVYoo1AmkzWWvNNHnr1wzI2spTTdyJNVnlKKaBQ+OEJa5/qfYMcV1EhkNaMf6cH5LcVH68QpJOqHr6mYDjER/5AeRyZEIlySrxvQiWJGTDZRcu5qwIVA13WczGYoo+ndShClGFBRU+iI7zuWzZ4QFYNWnNYTPjo75vL4lP3yhqsejheX3KzXfPfyDTNr+Pz5M252A2/evUH1e3b7ltZFbu/vBNgwhhgGLs5OMOWUu9WW+rhC2ZoBaJuep88/JnqHHzw3t9d0/cDp2QWL0wvevvmB++s3gtgVNUMAoyPr+ysezx9jMzi7vOTlu3tOzp+wvb3nDz98x9DsuNleU1Q5d8tAPTvhaXWCiZ7YK3wIPH36iM1uDUPHf/Mv/op310tc1+B8z5s3r3jy5AVHx+eC8nZbou+4ub3m9duesqqYzRZk/cC+dRT5BFsa6mpCjIYWD1Fisrd9YBhamu2Kvt0yBA8qwzvNdrfHtS1976jnR2RG0bZ7Ti4esbm/Q4WQ4tQV3vcYa9OEQQTRwTvCbgfBc1zUoBTV8RG7m4GuaxJdcaAoS9pmS1WV2Lwm+IEYB/p2i9bQNzv63RbXd5LOhmJxdIoi0jQt1gqVz3U7DFNMbvHNmo8/+wnf/v5XZHkFMdDtVuzur1mcniMuOgptc4zOCF4z7PdcvfkeXSz48hf/LfXZGeenM97+bsDEHuV75kcLcUYpCzbvX7I4PeP00Ue0u6WAMM4zz2q++OKSxfkT2u2K1eo9n//Zz3n95hVus2a7XrFrOlS/JXhPVk9wQ0dhFc5rdk1LUU4o5xn3d9dAwaOLJzTtmrMnn9Fud2hyMHmiq6WAMZWmXWn9RWIKwUzCB7QQLxSoqNBjSp8ahbkkYoZEV8vkKIgIN2lfPAKQaCU1glLhA8tamTJp5JgXxwEJHpHwEn2YMzFOlVQKFUphY1JLBIh/bIDwY7l+dAWy0VIcjIjxqNIHDn8OQR3CBj4U5KmUJCNuFU48bc3oRpEs2dI4Iyb1kELcHARdksNZIzZQ1mbibawSwhXGdB1BuuVABqUVwSmyXJBenwotiblNxP1U5I8FsrxWGUfHRPUYhuGQagccrKXASR+YuMXoKMXtiEinkW1wwgFVWsa2pGQ2nQoJFcE7B+mA1UY4oFmmsdaQmQwTPJU1VKWM9qt5yfx4ysX5Ebuu4eTijNl8ymbtqcqKuqxYr+4EAa4rsqKk2ctmvN91guLpyNW7d7RNT11mLKY12/WGV2/ek1clZyen3K9umCxmZHmBzgzT6ZS7+zuurq6pq5oQAvOjI3brNd2+pW0bprOc3XYDKicrC6JSNG1Pu2/Z7feCZCojrgGpXT89PaM0htA4lts97dCxu1+Ta4MyKsU3G0IcKIoMYmCwGX3bC6JvDP3QMwwSM53nufAWvQzZdCZ2dBmGsshQShCh92/ecXF2SjGZ4KJE4ha55ezshJvbO+FWpqS2yWTKfD7jhx9+SBvt6OmtUDGwmAuPu+s9wQs/jjQ2MxH6dB/EqDG52Pd0fc/Q9Fidk2OJvaMbenwv3N48K8iMxhDEFcUrQhrjhhjxSnO32YqvdoRcWxGNIDYwzj/cu0VR4KPY4imtsXkmcd8pnjrTuaQ6DsLH18bINCeAzsXuyPm0gRuLd6RJDGQKlM0OHueD9+nnxW0FH8EHjLYU2mI8YDXBePp2gJS4KRMPNUrlMMkT2QdPHAaZrCR7ub7vMZlJnt5/OoKs03zUEwUoiuNx+SDGI+1TKkqxLAVvatKjUDBGGRDJNlBHEeQ+KBOTAWUUQCqkaZgKsO89lfNMqoJuyOmdpJ0powl4Xt3e0HQS7rFtG3ZlxsR2DHvNdrNlvdmj84JvvvsWow3T6YKzxZwsa5hOznh3dc1mCJRFxWJ+Sgw9f/sPvyIzGa+vrplNa6rJhKZxqExDsqeMoaFpW3a7luAGjhdztNZs7u/ZLO84Pjlj17RkWU5hLVVZkBuDiZ7nZ6dkGoro+Pf/4X+m2+/Z9Y7VesvZo6fkeiLCuugY3J7N3R1Nf0NZl+x6h4+Wrdsw+MDHLz5mr3r+869+w2I+YzopePPuGpxjWimilulD7yLNesf9dk+V1WR5yc6u0VHR9SJwFEM24YT23UDb7pOg7DmFzbl5/Q2buyu0CuRFDZnH9w27u3umZ5cMsWdxckok0l5fyWeepod5UeKcCNQOTbEb6LuOPM+ZThe0yyV4QZmlGJIzykcwEbSt8X5H2/SEqEVYHSOzxSm3N2+p6ylkGcF19P2OYjJl2O8Z+h7nHX3vWN7fc/zoU07PH3F/ey3rPNPEsiSvpuT1Ee32Hu8G9l3DrK7Iy4rGFzw6PaZxjo+Oj9L5pmmalmrmYRhY3b1jvVqy73pOJwvOnn/E97++Y37xnGcvPmHwmjrT5Dpyd3PD6fEJm6ahtIabzY6s8kwmFfk05+rNO04vLri/fg8mByN+6gyOyayirefkWY6rNE0QEMLkGevdlqPZjN5tElJrxDlCe1RM3vJIJLtipELEVHiGRLmQNTsSGkbmhOwJEiMfY6JWIWLwmIrsscwl6MT/FI2SFL3J+ULxoGdKu4PoDsZifQwYCgSTPNCTBkonmqbW/5Vi8c/6GpFiCV0QFO3Dr1ml8VpiJ0eKgYxIPXluMPGBC6rggGxpbRJaqxgT5MQ/dhxFireyUmL3FVHJpzQZcqdNQ4rWh/AMkA7eB49OEc55igcW3qSXOOL0O8ci2XxoXaVTIEf6/+F7jIzZc5vRR0HQGHlJyUXAeXewKgPEvi1wiMQ1RqekNEVI3Gl5fWLpZbVBeREzGgNlYakKy5PHZ8QYOXt0ydnZGdZazuePqMqKYQgcH59z4GNboRzkhYRAlGWJHzxVVbPe3bFabZlO58ymhrvbG7779hVaw2effcFkIYVwXubEkJFlJXle8fbNW3bNnvPLc5EYhYAfgghN8pxuF4leuHdZnhGjYrvb0zYNru9TBx4PRW1WVChlaNuWcjKlGzqUiWTasDhb0O8b4fc2DbPJDNcrjuYLuqInDGIWrzQ43xNjODQ0KonZCIEyL9JnHskyw8lkQVFWdHWPGwZWt3dgNKcX5xhtxKbPWGZHC4w2NNs9ZV5we3ebePNaomODNHp1XQm3L3i00+SZYd2ssVYsAYNz+L7HhUhmc6zJDvctCuq6Zmg9ymisyeg7uee18gcKUEiNhEdsEr0ODCHgY8AUFQBD16O0ISZ6kKQPjv6dicmWJho+JTWaNM0QjrvgJook0EsR58Zm+NjJ+5JoHMFHXOhlXWXC8/SDaA9i2hN0snMjBLSWyGx8wPsxQWrUE0DUmiE1uimvBGPkYBh6KejzFIoy7jl5lsJBgoRo/MmXeihgOewhcSyR0/A14jFYNaLLY/ZWwKuRjpLCY5VCx4jXcjDHJPAzcfx7erfT5zPyELf7HcfTc56enpLlln3bEVVG5wZu7pf0uzXB5hibQwf/6f49Q7MH4Oz0jEVdcDLJmVQl83rK4HoeHU1oux4fNdnkhEenC4KG5aalMJaXN7e44Pj1t99TGsPJfEYxmXKzXLHebBnaDq01J6fnnFw+ou168qLk7vqKWT0FZbBZTts36EHxxcePmR0f8+Uv/oz69Jz75T377T0nizl7m5H3LZ9+8SXbXcdJnVFqT2jXhMFh85J5ZXh/fcfQ9FR1SdSW1fKG3++2fPbTP+fnf/OvuX3/mnbXsWv2xK5jl5cMvuLp84+4uV1xt17j3EDTNmy2G7wKKAdDkHTHkBqIcrogn2ZMoqPd3rO5fyfuHFmGvXhK6Hes1xsWR0d0vWe/XZNVNWePH7PdrJkdnxGco9ltyfLyMML3Top1m+XE4CmrmhC9JBjuW0xR0TZbSmNwXY8aFNPZnKjEuScv52zaNZOipqgmqMFJwuluhx8a5vNT7GTKbuWYTub4BM7MT87RWc3ZyQlFrsiyyKMXX7BYnLLabsnoafuegCUrpgztmmmVc3JxQpHn2HxCntfcv33N6dkp9eQYuhvOLy64ubkixMjToxPev/2BqBSLk0fs72+5PFnwOnY8e/KYs7Nzrr9/ydnlE0IYKG2Bj3B/c0URB6ZFjikyotKsbu84e/QYZTMun75IVC9NkVuMsjS9Y7Y4ZzLLGYJjUhasVhuq2YSsVpBlaGGHycYh2fSSAmsN7Tjli7JeZStVwOijnkS2aY2HVB17SCLdsbD2Dz9PFJpG0Ic1HxgpFGCTSHnUFkWl0GE0eEy841Rem4cnjkJCiRJl+fCs/klGZP+Mrh/Xq0GszIy1WGsOHK7RAzgGOQyUkSCBB4syyIscqyN1WdI2DYOLhDDgx4NOIb7HiSc5XqLSl8My+DQmCXKzDXhyY6VQSKEMI5IX+cCKiiguC+GBc+m9SzHBiRP4f0rKE3GQe7C70kK1GC9jzMG+qncDJrOHQz54T5bbJBBM74NJQrwYMVp4UT74lEho0nmsE7Lo0sjbioo+QmEsk+mE09MTHl2eUhWGfbvjyeNHnJ1dMKnnbHYtWhuqaiIIvVK4MFDWNZnNaNsWdE5E4wZP2+7JsoLMGJp9x9dff8/Z0Sl/9md/QfANbd+x3+8JAerJDO80RltevfqBzGY8eXyJzSzNfk8IkbvdEpsZVG/E47ofZI+KorwPwWEzQ5FV4B88cQcthUjwntvbO7rdHu08eV3x0bPn7PZ79tudOGPkmqzIpHZxnna7E4RqUtP2LQSV/JfFdcRkFm0tfggH/rLNNEZrXNdRWsuszMjmE6ICrzRaW4qyFjqB1uR5QZYZ5rMZKlFnrLGY3YbBeyZ5RiQnjGIrDVVV4Jyi6zParqUqCoI2oDIyrchNjtYyzhy8OHJ4J4byWolHslLC2zVoQS00DImD7wkEBX2U+14FJa/XaJSJGJWcOTRkNscNw8Fm6sNJyYdju4e49ZFnK++lC3KAqBDRmcW5HtDkeQZolE8HSfDivKwEGbHG0Cd6hkJJEIjRQn/RRpxtQkT5KONNrenTIaYjBwtHrcQOz4eADoGYybaa55lQVKxBaQNaEfSfboMUFWSpgYtREZNuYRTbJGVPotQkSyiVhqQJFY5JlDsWvwEZ447l9SjqifqQrYWOKjGu5HV7YNMHqkyzqCxPTuY4D+9XW/b1hM5EZlWNVhllpmj29+z6QNc11M6h9oqL86dMpzUmePpmzdQo/uHqHhcNnzx/JBMtm9O4gefPX+CCY7nbMzk+590Pb7hbr6ljpG9abNTU8yO0Vri+Y7PbcfH4BbvtDtDs9hL3PJkecXJ2ztnZOc8ujvnZTz+mLHP+/te/I3c7TieBdremaSNe5yyvr6inE+HLup7BCYqq/UCzExvLEBW7/Q6VWVT03HvD3/3t/8pnP/mSx48e8/bNG/quw6nA3foWFSMff/klJ5cvaJzC9QOrdi8ew02L1VaQ08WZRD1nls39LXfv3kLoMcpQ5AVde0+7a6inR5SzY3RWslvfovOaejrj9u0PZMag8wKrFfOzc6y1rG9vyaoJXdsmnrxOoE+G0hlFUYPW4rFuVGo6ZZSgbc4QRfjru571/VuhJDKy1gOZhsb31NUEqzV1nuO0xlQ1up5SzY8p8oxJPcH5gIqOrmsYnKcoZ0xNwWwm7iT77Y7MVMR+Q1FkFEWFizE19Q2Pnz7n6U9+xvlZyavf3WGMEi/l+Qw1NJTzOTevXzK/fMaz5x+x27X87F/8O/TkhLbrmR+VDK4n6AKbaZabDXlmaHvPYMRuMqsm2KKmOn5EYYUulxUVeKjyDGsUgw+Y4Nhse2bTimACKgw8P79ktb5DKfDGEIbkUa5J4UuOZhCu7wgLjxqg9A9piiNTXZHFSXMbYsRg8FH2Y5MExSSylEIEgX4E6hgDhmJa6yrhe2PxHT7YN0hCQOEmjwJMnShuIsuSBNHxOesHrPpHcf3oCmTR6kS6rj0oxg+c3tHRIY6CtbToo5cUmRBoupBEC0DUh9hoPXJyg/y8UiYFkGS4KKQDH4WvTBTxX6Ef/IgDgRCly/NBbiU5/MOh8JV/szjXJgrSQ+jAGATyoSOHSsWOIOFONgYf4ZCuFR5U/VrhvcOYTAgSPv184iBaqz+gonBoKpRCxkBakLoQBjnwlcIaS52XVLlmUlcSkbqYMZ1WoBQniwmXT5/RtAO+acmqkiyz0ng4f4ihVZpUgCkijtV6A3gpVoucb775Du80f/M3/4Jms+Tdm+8xVpOXpURp9wP7rsVYSeBqm57Z+YSiMKw39+RZwbt3dwyDxztH27fSKesClGcIjvVqTT2ZktucvmkwapRBKXJjQEOz26OVomnXVFVFnpUslxtW6xXOiaI7JEpDZgV5tllGbjL2bUNmLJl3ZJOKtm1RRAY3oPGYzNIFT15kFEVGbXOqIiOzaTTvRbRRVlP2qXHQ2rC+XzGZTlBGgiL2TYO2lm5w2KwEE1iulyhgNhMhX9N0eB+oqgzvJ6nAc+TGAppZXaNiZL/vabodSmsyneFihzJSLCuliDrgXSS6yDA4LIkKoUiOFBqLwxyKuYgZvTtBxnRaoQnkmaEf4oEPHIMg7KgoCC9jsayFm+wfJiVaSyKmTpQjpa3w6UijaS3TDmMMynlBbkIkDl4s/pKIVUaFFoyMmpUVi8GxGfBRYXR2OLqCekjFDEkhp42B4CDA0EV0ZnBRySEWImVW/sl7XCRFPSfRrCZgYpLdmHEUKkIglZAiRTiIb9ByfJqYpHh6ZINLEpZSD1ZSiQCZwnWSqC/xJH0IbNs9y03Lcq15cv6YTDmmNvKXnz+nyBXDvuHV1YrlekkfPGdnl5QaCAN977hd7/DR8fnlGUdPFvxP/9uv2PeBooBJqblddeRZz9vvviHojCcXJ6y+aZiWFRfn56ADzg8YMtbbDb3rcc5xcjTHKCPC5X7HfJKjKJlWE8qqkhRN79Eq43S+4ObNW/7jf/hfafuBLz9+RNcHijzn+GTBxTTHR4Vv74kG1r1Gh4rbzVrcMfKK+WxOdAPd0KJNoKpO0Sbnt//4SxazYyazOdgSHzuy0hO04Te//wOFMcyOHzE/fcrpo2fM6jmaTOgsaJwyrLd7fLenmMw5+6jClhVKBYbdjqbZEvqe5d171ssb5vM5i+MT7u9uDg456+WS2cmZNHw2o5odEXxgv1lhCLjo0LpCm1wKfw1935DXU5xzWBWxeYFWkFm556y2ZDZjs7plNpsT0HTDIA1+McGTUU5n5EbTDYrJXBL5Pvvic47PL/FK9kA3dPRDh42B1vV0+waGDqs8TbNlfXst0eRljbWa3b6BfMpsdoSPcHR6yeXjFzw+OWJz9Yqu2XL15hX1/Iz65IJt04GPzOcXWCO6lNXdHdoYKqtADzhb0AVw3Zbb2/eURcXgAv9f9v6sx7Isy87FvtXt9jTWeRtdRmRTWVUkb4nU1cUVpCcBF4Kgf6s3AZIgCdQLKVJFZjVZmRmZEeGt9afdzer0MNcxj+Kjkg9U4B5kID083M3Nzc7ee64xx/iG0pbl5XOG3T1Nt+Di/ApVteTjhnE8gJ9Y1DUvXjynXnQ83Dyy3R3ZhcTV88/wc2Z1bqgbjT0oFosKP1VMPoCy5aAtG+IUJB9w2i89cco5uZOlGv40FwiSTfIEsWQDcuZHh2SDSllsc+VJFotVQlSy/GT1KHV7ZTiWQ7dRsmGW+40vLqwiGeWEVuI7TvBUQ5+z5lSV/VN5/eQG5JNtQhW/7SmI91SqwadA1On/ZZ1+gmPzpKrmE1atYKhilLS21iWQg/iXcxmMnpReELB7luCfUqJEPTFa5YlV3nCi9CZVCBYZFOJJivGU7udJOfbF35iLtUMpsUWEWADjShr4QjwFBUVlhk8DhTolUv8LU/3p44YYnpTznCLS0WMlees01hmcE6rExXLJonesFj3OVSyXC1bn5/TrFa7tiMpRtTV13ZbWH5imEe8l7CRe4x2zn7G2ZbfdEuNIXVVUdkn0mhfPPme5WjEPI+/e/QlSYrk6Z90tmUPgcfORD2+/p+56snK8fvmSftUzzANVVbPdHJhL1bZ1juVqiS4kjqbtUcawtFIfTdRCsghFzQeMNhhXQZTtQWs0x2ni48drohbMXFaJtmuZZ0PXtkyHo6y2tSDsSBIYM1oRQ8T7SSwvOeGcZRx9+bobcnZSvODlACPtZKaoDor1esVisWQOnu1mAyS8s+QY0NrKej9LOY2rNDosOOx2HPYHUgrIOUgRIozjTOUEbefHAQ0MwwhP71cZsqT9SdNULT57tFXE4Ik+kLUcTLW18r7RJXGdxNerkQZEhYibVinmGIsSIreg+CPF+HTIs1ajrWxTbLmOQwyYwukFSDlAzMzzRDQa6xTWOkC+DiknjBUkYkqZSiuMtmDU07UpN/3i1g9RQioK5hLIwyhMufcbUwKM0T9lGIw2TPP8dIBW+hRoTcxe6B3jMApNZ/Z/9j3O5Cz3LFVqvMthDl1S5mV4FpsXZcaVH7snf7EmKcrw/Ek5EsuxWKlUwUamk1yk5Vqg6Fspnarlaw7jkW8/fGTdWM4rze3DFkvicNgylypxpzWVUjROsH37cYZkmEPky2++4PH9O7764kv+8pc93333Ldl7/vu/+RuG8YjWmv/8T38km4q//st/wffv39A1cHu/I5cDvtKaxjlsVbNar1ivLpnmA2eXV4ybW2Je0DQNz87X/N0//p4vv/yCl5+95G7zyN/+/h33uxlF5J/ebWi05hdfLTivE05nrm8eaJuKYRaqR1tr+vULDt6w328wek/bdthcFT5wpnYJsmX3eMPhsEXZCpUy03QgZlh2PQY4bG7ZbB8xTctd02Fth3YVxvXYZo1bXXF18ZpxmgHPfnfH+PCR3d014+GeRX/Bxflr2cqEAY/h1Ze/ZDhsQVuOuw0hzkxTwnUdylRoV9Guzxk3D7St2FqMlvdzisXXTxaMXpxxTUvwQijKWdjJMUaccVT1guG4w9maZISr3XUtxzxD9vz8X/4Nv/qX/4bLs3O0MVy/f8tmCPKeTQldLVjVFZfLBU1Vo8JA0IZpf2C/2XAYDgyHHSFFLl9d0C3OWDjN+uoZ3WrNN5+9ZD5s+N3Hj9w/bJiGI+3ZM+7vH59KLdYvv6EyltYqFiZh10t8nPGHAW2EtvTuzR9Jhy3j4cDF2Utu3/6e1WrFxXKN6lacvfoZ6XDHzWFLwBH1gjFmmr5j9pnb7ZFsFGeXF5jKgoLKGnI6EhVE1xN5FAFBJYwCpco20yShd2TZSmcVn8KzGVXEviw3oXwygEqWCnWic52wcBKgJxeyTckVaGHECTROQ86qtGzKveRE6kHxxGJGnYg4ItAYVUK8BTNnVLFalPvRfwkV+P/3109uQBYqhaxilRb17cnXeEI4IeDsGAQvo82nIN+PV7xKKaqqevKFnnBo4o3MEmJTZdVaBtWcw9OA/WPF9/RxYlm5+jk8fU7iOT55ncVrefITn1ryTp+PfioyOfmRBcNFFm5kzsI/Rim0ORWknBTkMhRnJMFcylBySkSVn0gWymixhYSARXOxOmMcBjlwOKlkXix6+kXPatFibaSuDV3Xc/XiFRfPrjhMA85KOjtlxTTNfPz4ga6rpdHKiLoxzyPGOPw8EvxA3RiGQ8CYhtX6ApLCmpoYEnVX882vfsVwnPFeUXVr1DyzWs1sb2/RWvP5V18Iazd4nJHAn7U1q5VhHmdUShKUq2aUTrQuM80TLjjBimnLPPkSfpThNYZIVsWjbgwpJGLwJAV11xGS8HcX/YqD2rPbbck+Mo6jBKq0Ihs5WKybisM4Y61lnmf52sdMDLI9EM9tYopRVOyy9pymCVdXjNORMO7ZbR9ZLhZYDXd316iUqZwj5izMaOvYbx5YrNaQESqE1cSoGMeBtu0hZ6q6xk9HqdyO8v1OSmGLncE59/S+i3VFioYQB5yR8hyjFckkQX75jDOarBShsJ6NLmhD/WlDkbMQKKwWDzxRgmfGnkp9TIFJKPw8UtUOawzOOcZJPKaaT9dozlES9siWZZ5nea9qKVshR/EBZ9n+xCw+epRClcOltqZ8DeJp2/iUZxBLVSzXlgz6p3tESjKEO1f9s62IHNKlxe5U2uOcFZvXf4VXVjIY23yagIvFImtMOmVxCo6pHHAiJ4+illS8+vQAzQpIhc1eVqzRyHbJqFxQelLTnlR6+n1hnujbFts0+JSpjeZxu+HDZistYgaU7Vi0LX/9+Zc87I7cb3ZcrTpu40jUiq+/+AW1blCq4qvnPf/57/+RRb/grKs57HfopufFq89puyXv3r7j+++/J84j4zjjY2S17DkcD7J21pbz80sur6749g+/5/z8jM3hiI0jMcuB8x9+9wfOVkv+9d/8FSHNvHl3z/dv3tL2LS+uXtDWke1mz/X9ET9nHrZ75rK9MM5S46mqClX1DIc955dXNFVLDAdWTYMGppQxGVzXgq3KtT6RssaahtZWrM4uuLl5h59nrKlROpOtw9XS9Kltg60V8fieu4+/ZdxvmP2R/XikUjKmnJ2d4WzDYbfn+PBBDm7IEI5xGFdhreWw3bBYLYnDAdc0uMahJmjX5xz3O6q+J04TMXhs3eCMKOxOZXwKOKVJRppB4xyYvPD4bSV/t7rcJ1LV4A9biDN9v+bLr77gf/d/+D+yORy43+yZY40X3RplG0GAonDGsmxrNJbl+RWNc6AdcZ7Q5fDuU2TRLZnnkUVb0dqavR84PFzz8eM7wrDDTwOpXlAtVqyWS/bbR7IyGKeY5yM/+/pLxt2eq+WCP37/juVywbvv3qAeJ+KwxQePrSt244Hnr77AmkzVLelXS375xTP+/jf3KF3hugpSYoqJt7cbwuwZpon6bM36fM1+c08Y9tSNMNuttVQqkeMsAWKjRYVNQp3IKAnh5U9cY1VIEpK1CBLCo2x+U5YNFrKxFhFDykHEaSmlJOnp3+WeQP5kpZI/pNgtsiZjhCNeLFeczBzJFttFyX6cLBklk6WLxi3V2D+t109uQD75aZIq69YiW51UWIpybE+r6yxeUEGg6KcwnHggM9ad6oF/FIE5FXIkwT4pozFWOIZGaSF9F8VWCg3kwWmsIeaEdHBojFWo+CmAp3SxOzhdOKuzDGjx5KWWtbEMGqrYROTzOjWpqdKSoyTYXRL8CqUNzkiBysmbrK0mFawWSjyTZPFQG2MkcKQFS1dXUrFsnObVZ69oqpqqspxfLDE2UxlN0/Ws12vatmU37Hm4vaZ1jncfr/FBAmnOLsg5s9/vSClRV420cikhYtR1R9su5MQKTNEXyoCcpG21oNOJEBMxZ3xOuH7F13/1L6FUFh8PB5yradoe6xo2D1uijxgtX7tpHNHWcPXiinkeiI+PHI6Hos5nrFWkkETB1AqQVW1WUkaCAmUMYtvO1FXFNE18+PCBnGSophx2xBfrqJyj6TpRWM0REx3DOOL9TAqZIc2EEKldQ+cqnDY0dYWzMkTqMlzNQTrMqqpiv92xWq2gaoWQkhPTMLALkbrtqIwlTCO2MizWV6AK0N/PYu3QWvy6qgRTJY2J1oq6rpjnCWOMqEHHQQbPsmYTqL0MmiXrDMiwWNytAqsvdI5cpMyqruVWnkqA1VgSMM+e6GcATCPlNyFGocKUIdhoR1NJ/bo0AiriPMt1FbI8XJIEIGXlJ6UslM2OtZo4SwA3npTUmOV7W24fSpUBPf3ocBpLWLVYjk7X4SkXILmCXO4zsSg28rU8jaeiBqUn/+6fdYvTcv/QWdRdrYRtmrBolZlPGzEVn37d6e8mq9rih1axeJElpJfKx6XYv5KikHvKVyzHYispHy9D1InjuC+NhpnJize5aWoqbekqxfY48vrVV/yLX/+af/+b32AOO1Zdzb/+63/B4+YOv73hd/+45cPdgdYqrs6WWFfxm999y+X5ge7qOecvXqK9p3+95t2bwOevXnO9OXAYv8e5nB9elgABAABJREFUmvV5y8W5YvATV5cXbB/uMVrJer2tGY+BdWc5DHu+/Obn/PVf/DW6Mvzh9//IetEyHPc453i4/0DqhcpxSBNb7xkeb8hUKGNo64rm6oKmP2P0nueffcbjZsuXX7zGmVmKZsJIqzVWO3abW7T31Fqq5afZk0Jg9DPxbqTSibZvyEnJ8LS/ZTftmDfvGWfPNB4IMTKPE6p4TnNKpByZQyCGhLM1y9U5/fqCkCLDsGN7+5Gq6aj7nm6xRpuK+Xgghpm6qumXF+zmW5JKnF89YzzuUa6RYJ+ryNqUmvmIMjUhzBKcxVC5ChUDbdfj4wgEtOtoXMcYJqaUWSzPOD+74n/6n/73bHcjh8PMuB94c/2BKh/AB9A19XJFyoEhBabtI2H21DV89vo168srFl1NxmK6jhRnQkj0y55hv+Xm+MhwfGC/e8TPM8dpIqfIy8++Zvv4SBg9lGewCjvauubj9YbVs884DgeWy2ds7/7I5v6DkGes5fz5c6rKMUwD1tW8ePUZWSlWZxf8u//wd6R5IM1HNo8PPLt6gXEtm/1I8pE5RXrn6Oua79/8ibYy6KpjnjKLdsEwD1gUlZZMko9y7zUUtKq2sj3mFLOFUxi3XMllnhCuSdmhAaawzk+Hb7nOZZhVZTNU/iEVVb3gYgFBxIXTXZ0ToSufZgxO2+rMpxFY7nVPHmnFj+wcP53XT25AVsqSlREVJHlUFIU2hvwU/NEF8Sb10qlsFiPG2KeQnATpUsGMFR+yyXz6kpVfk5TgpVImGanZNUqXwTw9qVwRKTBRpib4TGU1ENBiVSWHVEJKoJUThZpS21u4ruJ9lrUMWRjIxvCEs8s5PQ3/8vkPpCg/N80T2kk4MRKJUdG5ugTvRPGzSti1CYR3rMV/q4Hc1iyfXcpQqDVVU3G+XnCxXpFz4nDYY21FTJ6bjx9wruJxuOfutuXu/kYCihnquv4UDNS6MKMtMZdK4iwUDVLCbx7JWqGtEZtD1hyHQQajmAn+QEy+lDyI4l41FWEaWa7XGOU4DiOHzRYVEybMvHr9ko/X1yyWK1zTcP/dd9T9GYeDx2AEQeYqsIlEwhfF3zj7dNtKOaNqK2FHVFFP5ydftkUTkMKZiBRx9F3HPE0cjkex8mixcnjvmMeJrqrRKJq2onEOnSRMSUjUroKitlal+CbOgbrp2TzssEZD9FiVMMFznDyTl2rSxXJF9IHdtGF9tqZtGrk5e8/heCwEB42PmabpqYxDZV/el1JDHXOAQhrJSXyGJsuNPKQAxlDXlkwkBikeECuFAXNiDUuYRGHI2qBjFkUtJhQ1tWvwBGKM+DzjXF0UdCXlKQpilMpzrS1gSCphKhmgyRCCxhUG9OmaONWyi0fcoU7++VSqVwuxxtmKOAeMTgXfhtA3YixbmwrnjCjQKZwWkAAYK6FFY0XNiVljiqLtrCUESFG80iH813iAGLlnZSUoymKBsMV2dbJNCAtZ+KWfgjdiD0skSrTv6YGcQIZ8wMo+VQohxPEiqnHZmul8onRUaCMkhU4nusoSMeRkqaqevrJUrubXX74mpxmLobIVmyGix3vO1z1+GLg+eP744Q2vXj7HBYXfPHJ7HNkd3nA5HbHWYFJgzoa/+pf/C/7hn36PJvLzr3/J23dviDnRNh2X58/403d/Yt0vOD8/o3Ydrq7YHQ7E7Pjr/+5f8/LZFcbV3F5/pO96bNNz9eJzPnz4yO7xgWxfc9zusDaVoT/x6rwhqkS/XOLaNbOuaBdrzs471mdL4vGRx90D95s9YRxoF73UeCtFCpHMTGWseNKV+KZTzOQQSSoyBUhhZo6eMQTiLAOwDxIUDyGKRzUm4fbXVsLoxuH9xHb7SNOtSQqquqduA8fNnRzqmg6MQRnL4fERZXc0OdOfnfN4f421jsXlS8bdAwsW2KYlUzYxOUsgeB7x80TVLjFVwzwd6dpGikRcRd0tGI8zpMDnX3yOdZb/8X/zP3L0idt9ZNxNvP3jt1Rdz+r8DJVgVdfFQpaZY6SpOyCS08SHD2+4e7jlqxcvuXj+BZGAzZHdwzX7406sgPOMH0f2x4HN5oE5Gqr1K7b3HzkeD6g4U/drKtvy4X7L5bMXTPPM51/8jI8ff+BPv/kP+BRp+wt07ejaFo0iHHcs247H7SNJW1599orf/ubvaWzmw80th92Gru2YMWAroh/YbWd021DXLfvDQZ7LXY+2FcNxZpj3TP5IqyHkyJxkSxxzelJkcwwkLUU+5sl9LHE8eSpHoSEBsfxcOoljxZqZc0Su+iIXgyjDJIxKpWhEtj8yKJd7BvJxBSUXOZWPCK+mgOIyT0Pyky2LWBr8PuVvfkqvn9yAnFLEUmwSBUUSczGe/4g+kYpXUE5LscC6pfXs1FSj0E/VxqYMEqdwm4SJkpRk6MLgNOLxUSeWYD5lyFXxBytCKMGZlHGVw4dYykekbCTGiEeGcosj5VgUrlxUyVNBwclvHYWpW1VPgTypgC5DvRYPszTviSf6pHCP44DRhhTl502WwgODqHdVVVEZQ9XU1KsVXd+TYuDqxRXrRYfTiVRWMn2/BBSHwxZnW477I372HI4H1msJhWSlmLxntVqSU8LPnuAzMU1Ya3FY0hxlHUmk6xrSHPHjLCtN66T5yRcFPWVcZZjnCaU0VV2TkmKxWGGM5bg/cnd3h7GWaTqK2qkt5xeX7PYH7h42xJAJ40TtWjzFd1xqgsMspJCoE95P1HVdFERIXugHUQW8D6hiV5kmURNCCAQryLCIQk2aYRiYZvk4tTYkJcQJozUWOQTk5MlaMU4TYZrl+4Mo/cbCPM6kKBXUfvLM08h8olOohNHie4sxMR4GmAJ1VeMqx/7xkdkHaWAMQWwNWbYtxpqieH6qK6+qCh8m+rZBa8NUBVKQA0JVVWAoPNQkMQ4lSCHxNyfq2pT3tiH4SErIMK8UY5pBSSAvlYAsuniOk1xb1mopBQgBVQpurLbirU1BDkpocopyqCITQsaYxKm9Tnx0MqDO88yJDZ7JrJdLpmEgBC/hIMDYsmkqiujJIuX9J8/xiaABcv+oXMUQhuI7lmtO8IjCba7qmiEM8CPv9J/z0hRu+SmUWNaw4ubJTw+2rKSRUh6TsgqNCmnIKr/OJMG7nVryUAadQekk72lFwbqVvEX56AkJ7jqV6Yzl+fk5Xz5fE6eR7faBrk84XfE3f/EL8nSE4NluEo01VM5yv99xUUGVW8zqioDi8mrP9f2OzW4kxIHrmzu2mx3/Zrng3/+7f8eLl6/pFgtU8nz+/IKHbcN2hFdf/IzN5g6tDa6qeP3511it2T5eE8LI4Cc+/+Jn/PwXv6Zva+bxyPGw5+/+4R+4OltzkeXwPs4zz59/hjKGy+dX5ORptGF1tuTFsqFaXnK/3XNMmvXZOS2Bh7ffcrfdkKcBcCRbUS+XVG2NRkv+I6eyOfTMD4/c7XbsjzsiFmlzzIzTWL6HitlHyJnJzxwPI9ZYhuOheD41PnqsMbRNjXFWAgDK0HVHFusVymjq2qJWCzbbDa1SmKpGKSN10n7EHyE7z/nVS7aP91ytz2maCr/fYfq1WN5mQSaOxx3W1fSLK9p+hZ/3WGeI0YOpqZolhJk471ldXFK7lteffwZNy2Z3YPd4xx/+9m+puyWdiRzf3xF1TXV2RgwzCceEQoV7wjzQLTq6fk3dtlw/3PHD+7csFguurq5ARYbjgf32ke32AZ0SXlX4ENEK7j58h1ZwcXlFSJngA9vb7/nZX/73LM8usK6iqgwqBDb311TLM1ZnFwzTnnFzy+Gwo+tWNNWCr375a15/9RW73cB6teLm+h13H99SVQ0vvvwFOXl22wd0Clw9O6M6e0ZKWRoaz5/RthWb3ZazswvU5BkeZmKWEHPSou7GInSpHEg6S0aAU0WPDMuoVJZdEsSGU3jvpCPL7CBQnVwsFenpuldIOZVK5T5Rrn2pnpcteipAA1I5+utiIQWxoiE85tOfqMrHlv+sEV7zib/803n95AZka6TVjZRRKZG1PBQqa5nnqVgr4tPQG5MMW4CslnLCByFgaCVrZufk9JRiFpU0iiqjtSjPKSMWC1WS7WUFZoyE/E5rSWsNKSuMkbAG5Kfg3cl//KnyubTvFV4zpqyzSwGCKSEopT81+53+MT9ivIrXWRffplQIK6UwJ6VZiULXaIlLuTJ0O6txBprGsV4v8GjCnFiuFlROk/PMOI5UZgnWsX3YEHVEGWjrJfOUOOx2WLdis9mgUPT9gnW/YH8c2W82tE2Nsy3WWvb7HQrF7OXjnp+f4ZyDrPA+st8+0C96YgiEOFMX9dtPMz/88D1/8et/QQiBvluy3+857Ae2m43YUVIkW8OzZy+wXcfbj9f4ccJpSzhO5CQDnzWOlCLaQk4B11WkFNkPR5pWGL5aS0tR9AFtFCkEclF6NRLYm/2MBsI8gxHOpVSgpzI4RVKMNH0NgJ8T2goSrK0bqd2dJMwVAT9NaAUL6zBRTvfERCSWw5l8XGcdMXpcKXVpqpopTMxhxnrHyizFEmQrFsuOx8d7cpaAW4iRVFlM02Jyha0UJhnm3UyOmUXdMdczsVKMY8I6xxQm8bL7GWLAWPG620qKPjKlac5AZQzZyHs+Jo82CVUqSyNy6pChVzB5Mcifm3RRiBFeuQyrQVTpJHSZrJTU8/pYqqTDU728q2xhgrtPHujCZd7v95LTLgG0U6h2jgFrK9mmlK1TzlnejwguLkf5d+cc8zzjXMWJ0pRylLWlKsN7DIi9MD19vD/nJUtVjX5Skwp671QvqxSfQE2UoViG4ayylBeUBs5YLGiyQjWYXAoAKHmLH43YkIhZlKMT3WXZORwJP28JU03nDJOxGKNY90vm4ZHHx0eOc2SxvsI1FePtBCpzcXHOH968Z3nxksfb97z9cAPaoNyS7XDg6vKSFCN//OEtv/zic9788D1V0/DLb37FcqXwaO4ONzw87piPe1zb8fBwS79YsN/PZOP46usvefn6MypjORwOfPuHtxBH7m6vcdbxuD1we/uRX/7qLzkMI+/e/UDXdWglPPpXz6747Ou/4JvPzrm5fWCk4aK3mDDy7e++R+c9KQT2k+RQLvuapu2o2powHdlu74iz5+7xkXGeMaridndgnkfCHPAltGmMlobCcSIGOQwqbXBVDdriqoZ5GvHJQxasoEJRleeXdTWH/T3DsOXi8jlKVyhlhTu/36AXF1S1KMNqjgQ/c9g8cOkqlusrht2W5vyKtO7oux6VFeFwJISRcTiwrhqqpsXVNVYn/LSnrizDODBPlvl4oOsWOFOxXK1ZP3vN9Yd7Pr57w/X1R86fv8RYx7i9oVuvGEbP27ffY6qa1bOvqV3msLklJc9xuyEmRfSjHASL8HJ38x6lDM7WjMPA5jCh4oQzlpvrG1L2GFczJ42qB9r+DG0dL748o6o1Xdtw8/57fv7N52htWD97wcPjhsaPzIeJ5bonxpntbkfXr7h49TOSduwe37LZ7Hjz9prjOAM1bWPJU8RQcXn1Sq67HHh5sSZ6zzTNTPstQ/ScnV8x+yJaZaHanCDqJ3ysQbbO4vrVT4xh+b9CyNIi0on1SzIR4k9OxTKmy1X66Uh8EtbQ4lFWWVRkucbFd5zzqXSkZBA+VW+Keq2iCDd8at3M5el0+nfZrCr+Z4rFf+OvmBIm5Sf8mbTjZdAJY8TLqDUldHLy2ZxKQFLxExb1hyh+YCWBOK0UPgvvtLxzsUYTvcdnKT9AlcVH8SpWriLmSEQUGaMUmvjJ0lyG65QTKp8qbD+pWEZZ+WU5ieKnZZg4tRURxeqRytr8NCB7H9A1aOfIsShBxbN8qrFO5etkjaGxTni9RhOVwllL2ze0bVM8sBUX52fUTUVdtZBnunbB4XhgGD1aWaYYaBc9gw9YV6Orhv1hVzjEid12w263ERVOafn9hyOi/Hk5nMwDoDjsNjR1LYqcogDtJfjljAWViTnQdy3f/PzndF1D09SkJEiv+7s76rpiv9dgNZ+//JwpzNze3JFChpiYpgNCOhEVN+dMioGsFTlrmq7msD9QN428J6Ickk5+6VRaEpXSspbPwv91TU3wYoeJT15UhXNScqG1orGVcHinQNt2pJioXMXnn33B4+Mj292eo/fYSuwki6YmJvm8UghUrRV6ROXIU37aMlgngc++brnfb0vQtAYUfvZ0XcccM3EOqCQWF1WIEWRpfMwhcjyMEkSMmZjgbitM5a7tZBuS5UCptSJFj6vkBh+TcLSz9z/ajGiyRYbzQkiQawzm6MW6VHxxoQz7n74fcvO3SjGXgF7fdgzjJAG44EvgU2wGobxHqqqS6x+5HpQW61OKCW2kvseHWLYQllwS4CFGnK2KNeM0IKtiv9IleKiIOUhzpZZHTYwegy2qq2aaQznkijfBmOrJrvVnv5Qm65NOLKtWXdacUg8rqm/AoHIuD13Z4BiMKP05C/atrF3FuyU+xtLphUPe10lCGsWKJrcuYywvlwtenC9w1qCdYjzsyFVFNpbJe46HPd/+cEtVaT7/7Av6yvD4OBHmyLjfcFw3YCtuHh552OwIZFZtI9uu0ZJCwhQe9x/fXNP0DXNI/Lv//J/42eevuHj2klff/BofIAxbRtUwDBPLvkVXLbvdFj8e2T5sSCHzh2//icM089XrF2IhGPY8Pj7y/NVnvLu+49e//hWLxZK720f22zus1fzsm69waeCffvtA1/bUKjM8PvLuhx8wVnO7ORBSpluecX52RudkYHl/c83d4wPTMItIYS0ox3E8MA4Du90OPxebBfkTqaY8E0KMUNj9TQMpeJyrsCozjSOA1McDkJhjpKpbdEy8f/M9Vy8+p6oN3WLBPkTG44a+eQbaME0zKSdW58+5+/iGi6tnXLz8ku32kedf/iXDwzXj8QHINO0Z5ERWhrZrGIctOSbOFmucNtwfNrTrl+BnMiNn/TOmw45xOHD73fc87I6szi/Ybu5xlWF5fkEMERUjtAsun7/GB8/uMLI8P+fNP/xn+mevyYcNDw+evluirKazEENkHPc0VY2reurGc3jc40Oi6hbYyjCHxBeXL7h/uKdvKjabDbp/Sb9eUbcV1q7wKKrlElX3VIvI9Q9/gKywOkOeeP7qNX/zP/xvURp++PCReTxy/eE94/YGqzLd6orNZs/V5SVnvVRtxzmyrCwPHz+y2e5pDEQ8q4tLDsPIm/fvqeumHDjLIVSdcg6apE3JdZyGW3nmp5MtSuVPBR7qk4ZcdtVPnuGnoRjRetWPmvgSCpQlKlApkrXGJEPGS9CuYNvkLZVQqpQjZf1kuTj9yaeOgJzNj/ZK8eTq+Mm8fnIDciYTkqyPq9pCyIVDfLJUiBoUkwCu5QYlPldQTPNI1zUlkJRRpnADkYd1iunpWaKUEs6mjiUII1aNpBLWnPBV8VPqPksRhCi9kZjEzpAL7ks9nSjFM6iVpPml7U6jbQlIGUPM4k0zShKyKSXqumaaZ6SpTxFixlpN1uXCyvkJe/eUfBUzo3jVrCFFWRG3bY91Bh8Sbd/SLhdcXq05Hge0MnTtkum4Eb+Va8jKsl6do6yECneHIyEpulpWjH6ehchgLMk5tHHc3t2ToxxcQvKEecRqMfufr5+jTWYaRkJB2xmtmCbhFtvKUbc1xrmnMNf+sIOsi8VE1PW2a9BKVl3zNPJ4d894HIinP6sEH+bgCT6gjcYq8QoejkemU3CsrM1DCPgSjlFOrCg6ZvHbanF8am1LwhgwkvSeZo+fg5SwFGJIHjLT5HFWBttvvvmGylqub284TiND9FhfRqDsOB7lgeiUcIBnP5CtKE9gsOiCSxNSBeRSKBNRWZOMtFv5JLg7rQVLpq1mmmaatkahaeqKZA05elLwMqRmhQ+5+J0z4zgVVF8WZJ0pK3iZxqiamhAisShkoVTVyi1cGhiz1gQlCe5pmqRq3aenVj6leDqwnhS2FBPRe3kvzEGGxSTX1okXnnMqhxd5hMQQsM6KjcqIOiPXsUZZjY+pHMIE55cz+DmUohF5UIUgyDfJAMjGxlgj7rz8pMUUZVuu6Vy+z64E/LQqweA/82WyoN6yKlNreewmpaV+Wp36O+Wlldz8sirhyaIKS1ZDqCWOH5UIKIXVRjYSQAwekwt7VWmMNnzxfM2/+uolKgXe3zxyf7sl58TFxRmX7YLV2tEYzc00QZo5W5+z/fgR5gM//+Izbj6KX7+pKvRxZHA1L158zri54ds3P7AfZ8Jw5I8fPvDi4hlXZyserw/MPrK+WPGn79/iPt6zXK5Znl3R1oYxHTkcjmzvbsgKhmFgzorrN98R55lxHnn5+WdsDgciFh8yl88/x7iGMA1cv3vH5dULzi+eEePXLLuaYftInRqsaxjGgewHNo8PGGPYH/eEbFj2La9entHUjuvbLR/fX7M5HlBVRUDhKsdud2Q3HMk+oG1NW9e0VcXkZavR1FU56CVyjoQYid4z+8A0TygEu2ido2075mksfHSxumQ/o5Wmbhak5Lm//YF+uaZdnlMvzwnbW+bDlmwcVd0xTnvG6UDddhx3B/pLz+ryJdubdyzO1mw39/RdQ05gl2tcvWCeZ7qmYfYe5VqO+w1V1VDrxBgj7eqK/VE2Vt39LcOwZ9V1bN/9nnp1ybMvfs5mGDlbNuj6SLROrFEase9NO6bjFvYLdttbmvULbj78gLOabfT0Z5dUbcuwu0cBlWtxl8+J2WKsiDrD4NHW8dXXP8dozfrsGdlV9Isz8JH94z3f/dNvuf34nne/+3suX33GxRe/5rh7oF8t+fWvf0l39YrHx4n58SPX795yf/2e7AxNvwLXsD5fcXi85+uvPqfvG64/HDjs92zuJx4PO1aNoe57XN1xcX7F79+8IyrD5rAjaCPsYyuHdacFo3YiDicCOp+AAXDaFwGlSrpse+DpMJWwJZOQRZmG0rJ3CtbJMK2R8iaV5dercmiWwVjEhFxsGhRBTYYfuc+TTfl48mdlpThhQKF0SvBfQQD4b+j1kxuQiwUdHxPZlxCdsiUs9wnPFGOiriuiisQgQbYQAlVR4J48hrGsxcvJriokiJDEuxNjfEKunVa4n36cnxSjE//49MDPnFa9gC1Yt5iKRaN03SdJ5TtXYUuAEEqFbkq4qkLF9FSuMBcF+VQ88mO1yhhDSOkJYxfmkq8vD0kqS1AKZwxdXdM0DbaqCDrTLJf0raM1Cq8SzmQO23vG/Z5F37JYn5GUIeuWYfYMo6eqW5zN7PdH9vtBAhBGvNopJVwtynvtajndRo8x0NcNzmT2uw0xS/2pMZp5nqirlmkaOTtb0y162r7FasvZ+ozNZoMPI1o5pnHi+bMX/Om7P1K5iu3mDnJmHgcO9w9SMQ0Eo1EqoJMMUdlqbONo2p4wB6ZpLF87XXCBxZ8VPbWRFUBQYiEwVr5+bdfJGFiU7ExkGMeiZn7yn2al8DnT1C3WOj777DVt2/Jwd18OZ4q2bRiGkWeXl9TWMWwH6qoWBdRCZxsCGe3nshpXJVQmN8e+qglefMxaabz3+DARgavlM0CGHq1VUehnvFHklLCIh9nqjNJCN8k5FUtPoqpLo6KrngZ+4ReXQ8SY0PZkiRAMXiylHDllORBqaIBIJjkjDwzrnq6ncCrxyJk5ZDJGGjJjEmVeSaV8zqqQZ4oakyLzLNSUppKa53ma0cbIg0Pu/zJMK7kOskqFtCIHNmMlJHkqF0qpFJb8iFCjT9SbnMixhHFDJiWNrgpXXRvJHSjBL/7XwLxlhWw5yhisSn7CUGqgs1ioogJLlsCnKeG6lGX7QknyKdmkGdnXokxFZTVOK0JWpTTp5LkW/N9Xz8/5N3/1DdvdPb/5+3/i9mFP0zRcrtZcXV3xq9evmQ873tzc0lc1pMRv/uHvuVxfoHPi8xcvWNWah4c77jdbDvuBm82W64cty9pxeX5BvLlhZy0vz9fUdcWbt+9Zrs7YDQe+ffuGvu1ZrZaoDH3XcXa2Ipua9x9+EA9o1RHGwN3DNcNwpK1qlusVRisednseH7d0zYLjbsc4bOibmtvHSLY1TmVWqyXPrpa4g8bgudvek5Sha3sWbcPN/SNRWbRWTMMBf7Q8PAR2E2BrlAnE4BmnmWl/YLffE3Mkx0S3MPRdh1KZLp9oQYoQPSEkIU7MnlC2PzHL9sVpzTx7MtJkWtQeYVMnsRcGP1FVlgwcDluqukM3HW2/Ytztqdcth90WpwxV5TiOI6t+TU6ZfrlG1R17P1MvVjAaxkFqvzvnyFj58WrNsH8kpolq+ZLb21uWrSWniXkeaZue/XYjI5kydJcvGIeZ249v5GtTwt7nlePDw5Gr8yWrRc3f/4c/chgTf/z3/5a2qrj60hHGPd1yRTg8kIxixTmm6pmGPaQ9puowOmOVhFLP1guiD0Q/U3dL2rZlcXXJbveATZ6mX/D27TvCNNK0Cw67LatXX/Czv/hLri4uaLTh+vaB7//we/Y3b3h8vKNZrrj5+J7LyxcoVLEdLrm6vGTzcM/N9TuUcQzjQYq0XEe1WPP69dccppHheKTqhOzkw4Aftjy/uKKqWhyyJdBJ2MQUy0IClJIDuAyxthxghaGccsIUQU3lVP45WflyCfKrJ5Va5ywWLLmblSlJS86Ckj+QSYUT7QKlUEmCwCXSTI4KpYsiXe6JKZ96+U4hv5/O6yc3IGstNbvaZEJKT998oxVNUz8NtDlLECkVWkRKuVSJCg82pVN63RCChHPEBvDpoSlvklgwcLkE+WQYPtXfnkgNkfy0Ws7l3SgfO6BzqahGqiSt+XRSNIXgEHwQ60SYMNZQVxW+rOB+nNrPKZG1KGqxDPcKGcbrupbQWZILpKqc8I4pHFgkGFXVFVjNYR5Q1tH3PbVV3N/corTieNgSppG6aWnahrpyTFFUBJCb+jR5xuNITpmry2eM48g4iH2ibqRq2VmHtcKHXS57gh85brd4BSTNmCbmvOM4HOi7FavFBc+fv+B43DNNIzEHhuNB/u5I0KzvW+5vHri/fWB7t8H7mXkYST7g/SgrrMK7VcY9DWRV06CaiqptwWiUlkOHK197pRIh5OLpkvCXRtE2DUorfMxopYVVPM64upJq5rKeDyFiFMTo5caXEkpZgg9UruY4DOx2W457qc621uF94tWrV/Rdjx9mtJtICNN3Tp4YPL6orUZbtDUE70ugQ77fy67ncJzwZPq+w7iWKXgOhwOucoRZBn+SDHnjOBJD4HK9lO9T8GAUtauYx4HZz7KBiZGubxmGgVPhjtg5hIeqZrEitXVdFH15nzpt8CmUlXLxYyfEemSdNNypU2mN1FTL+19aEH0I1LZ8T6zFR1nraWOKep6pm6bwieX6FALNyQohbFFtjMSjZIcoARMtA7Ypfv0c5KDzz9qiyE+YN4Awe5w1KK3KQVtsUqocVK1z+GlGHkcIsubPfGUtoTmtFCpHCc8UhVhRtlBZkbUElCmHfU0J9iUZsA0Kq8rPaY21FZUWLNycMnOYMcj3Jou9maurnn/1y9d894dv+c0f/kTVL/jZz77hy9cveXm+ZN23aEb8uEelzKqu+f7DPcfdHZedo11fcXP/wP31DeNhz2a3Y3uc+flXn/Hb3/+Rw8az7hpevP6C6c0bamBz2IOr2O73HMcjZ6s1GsXHjx/lsHinmP4wYWzF1z/7GqUtNzc3HDdbpvmAqRtU5fjqi1fc3d4zHA44rRiOj7RNzdn5MxSw7FuMTVRVw+sXz3i5bLmZdtzd3XGYNa7r0PWS7BMpao7jgbbraZuK/egwVUOTBw77LWgYd0eOw0zKmssXXxLzxPbujuNhz1Ep1uszYecD++PEOO6YZy+UnAx1XeGqsokJXgKUWuP9hDUG66xc7wkoQsfsJ7RpxEPvLPPxiIkJ3biTQR7XtOxuP4I19F1Piolh85FpdcbhcOT8/IxpUHhjqGqFrS/IfqCqV8yHDcpp2toQ3Yr9/o7aQFs16OxB1YzHI6vlGdMcOFs1XN88suhr2tWCenHOYbvlxfMX+Id7vv7sJcM0YhopHgk+sH+4x/c9/ofvSPOes/NLsrK4xnPc/MCLz79Eu4auqTgMR3LyROdwdcMcMuvzZzRNg3IVRhnicU/ymV1MdK5icf6M27dvef3zvwCjhEQxHPjjb98TDxOb3QMRxW4YiRic6Vktzrj9+D1tf87zz7/is69+zjQFPry/oW6WRGaqZNEJ+n7Ni+cvIAX+9OYtWVm2mw06QVtV1KrFpIAKE8bVTGRC9rgsNreUNZ/w5pqoTqVesk3UWVbYUgGt5XCLHHxDIVOonMi5dOhJQg+yIRUVOaGxCZQKYq378b2Qk0adyzAuhzhO95oywGdlxX6RQavIycjxU3r95AbkDEwpoLLCFv8uCJB7miZOTXLWVGhlQCWUFXUspigYpqzRwsaW4dg4YoQwJ7FtyDiGYNXAGlGpJMQnK3RRjCmVjoJ5Swq0VRAzla6eVGopGEmErLBGyhIoISdVVhxKI2UVdUMMEZtE/Y1GlRCSKYJQGcIjOG3QSdbxWYuvbZ4mtJKHIYDSGac1pERrLZWxuNqSjHw91v2KME34qPDTkb7rCaNmdX7OOI9QdWyOM8M8ErLBaCfD8BjRiHJ52G4YjkeyVqwuzuj7Hm2M1HTPnmmcOB73hDijMkyzJ/tANc5EArMfOWx3JB9wtSS31VZhneXq6pl8Paxhv99ze33DdPCkkHi4vhF28DShMhh9KjwoZS85SWmJc5jGoZQmTDNYy367w08j3k/kAM44fBbiiNRta0wJFxrn8AlMK7xgsbwgA2uayTExTQNVOezMswzOOSfGaSSEieNhJ97kukNrzfnZJdZprp5dcfPxmuA/hXmUzrS1KO9+tydnjS/rtKggJAli+iQ+6LapmcYJP06C51uthUOsNbZSjPNM03WknBnG4xPxIYdAU9cs1mv2O2FLkx3TfCCmKGqs1sR4GoDFr5aSDNwmwzROgvgr2xvt5MCmsiaHhFEG2xjicAQg6kyOgXkcsdqQ/ETWQgLJRggxyjhMufPrpy1NRhklK2ofJGdQBkWfMlXlykozkVMkhYgy5kl9FiVOyChS0wqNqwghFJ+0BO5c5SR0p/STXSlx4oXKQVyV+w85k2OkscLJ1lYzpz+/SU8aGkGnRCx+L7F5iCqsUySjsfmTV1AatmRYTlphs/iLf+xXTCEwaAVZl0O/qPQ6i4Wja1v+8vUL3rz5jv/0u7ecr5/x9Zcv+eVXL+mM5v72hh/+8T33j7dQLfnFF69JQQKmF2dnPB5n3m/fsrm5Yz8d0AqerTuUqbnfDbimYxzumYYD8807Pn9+xc3NLX5/ZJwn9ocNGY0uQWntqlL9PlPVHeTEH779A3XbY6uaBNR1h7KKr7/+gu++/56EHN5Nzri6pmpattsdz549p+kWNG3PxdmaF+dL9tdvef/mIx8et1xePWNdVcTpwPX9nqOfOT/rWfVLsLXwX5NnP410tePx8RYVM87UtOueHALHw46zszO897RtwxwiTjuGgzRcGutoXC0HFC9cdK1FOcYaxnlCG1syJxFrXcmUCNWGGLHaYLXGz7OYmZrMcX/PurrClTKQummZ25YcItFn2s4wzRPbhzuGww4dZyrbiRWqXuCHDZWtmP1I03fstncQZ7rFmuwHbNWTkgzqtnZkPHPORH/g4fZ72srQr5dstns6anT0pDDimorlsubLL17xb//t/5Obd9+xH/Z06ytAMR8e2D3ecdxt+NV/979icfGM6z/9jg8/fEvbWHbWYaqKeRw5v3hOu1oSZI9CnEaGw47oPX3bkE2F1YYYRk7UynGeuf/wVmgns8c2C2zV4ip5Hk+HDecvvmDcDjx+eMcQjvzir/4Vz66u8POe++tHHh/vWZ+d4XRNCmMpZjHspon3H79nN85oFNvHDTWZxYtn2LZCh0nCs+LnAn1iF0t1PEqXf1dibSiUIFfGUGnAK85iLQdzoWalEsRVT9kEqY7PnPrxFPrkbCYjM9AnsFx6uieAZB1UBlVoYEklVKG+iK0jle160ZA/SdE/iddPb0BWqnhzZT1hS7Kbsl44eRshSZA0f1J2FRrlrMDYc5Aa25Lo1Eo/URXE9uCerA48rc5Pq9RcAk8a5yp8FExVJuOnSYJ5VUUuRImUkii/RdWWBLOwVZXRxZZhnqqgT5QLraVq8seWCqWkvjmlqVhATp+jqMhGiwoha3fIPuDqStbF5NK4VhGVZ70+59nVFXkOGKVolksOhz0XVxfUXUt/ccZ2f8Q1DXEehe6hHdY5FqZmPE7sHh6JQfBaqijdptQvT3kkpfikWlpnxWYyTRilqBtNGD1GQdaZprZcvbximAPO1axWa0Lw3N3fMY8Tq3XPMAy8ffMef5wgZaFMZEFtOSMKqzYWCpe6K61zD7sH2rYBMof9Du89IYtNYE4eW0n7WN+2rJY9WXk0MBwnbm7vUcaxXi6p+56Hx0dCCIzTgKsNKUSMcUibYZDNaErorHFQWN3StNe00rBVFaTc/rBje9gS/YzV5omvm0LGOMtqsWS3O+CMqJ5NUzMMg9BJ5pmsMn23oHYV4zQwDANN39E2DX3fc319Le+pFHFao+uKUUmzYiqhu3kYaSpH6lpUlkNg9pnD/sDZ+gxvAyZn+XN1UZCLzehU180peJpVKfsQu0aMAR+DfG+SbDxywaHlGEvTFKAsYZaHzZRP1oWAsae1oVBZQih+9WIlOpZgXwhS264zoHQpCeLpYaAL71sV37JWME8j1jrhqBcLVi5bG+UMPvhyH/BlvSgRN6tkCxRj8eelXDCSEtL9c182Z/EEawrhQ1yKqfgBT1W2cpSX1WxUJRecNVmJvUXUooiOiZQ0SWVUFhuKywmtMlpZqXLWhl+8fsV51/EPf/+BaBSr85ZVY9jd3/D9zS3kzMPjI3/84U9UZy8hz0zzQMo1N+NMTDsqA8+vzvnZxdfc395QxcjD5oH3mx0qRWLOHGPGjgM/7H8AHM+urmi2GwyRSM04H5+qwxeLBZ99+Zo5JA6bB/z0IDXxrmKcZ/rFkr/+61+yub0lq0p46dpglRQHGWCxbDFVxeL8OZbMomv49p/+CV0ZHvcHTN2xWp1jFdzcb1DO8fzFC5a9w84TN483nJ+tcdZwfvGC/W5HZXdoC8t6yRwiyViu+tdMw4itGiprIQ883N5itUalyDROUGxuKEXMkcNxpqprjBbfvrSdWmmgLO/bEDymEFTqupXDqoEQJrIXEWAeRtzqnDHMGK2wbc+w24JS1I2itjWOyAAcHm6xl89QKqBwVHUrDXs6MwVBMCqlsVqxWvTUVUOOE9m2VNWS/fYDrYI4B/x0xF69IibD/PiR5WLBxfqM4eGB7vKK5uKKYXPL7//u79jvdgz7LbvNA1VV0bYd7fKC1dkVyrW8+/6PhGni7v0PfP2rX0GI1IVXv93cczjuMU7Yym1dkbNspfx4JMXI5GcWZ5fc3j2wXp3xuN2y22+lmyCN7G8/8PyLb1ApctjIPdz2V3z/d/8PFq3m53/5P/Di81/h/cif3nxPDJ7z55c83H6grlqUa1j1C6q259u3H9gPWyKazcMDeZo45pmu7+hUYlEZ6qZmiqHgPstmqdgkNBTrgkarYt0soooqRKSnYo8nB7MRh0TKUpCSS9pAKdkSarGpkZUovuXeodKnLJLMufl0S5UBXYkVT2lXsh5RNm6FmkGOSLpB7HI/pddPbkBOxYOpkihqIUsZh3U/8n/mwlk1TpBsqbRjqSjpbx/RWjBOKZbgjYBWnx6+n1Qn4VhmwFiNteLbiRrq2oldwiviLO+703o2lVpnUbRlhaFzoSTkRMHyS7WuM9TKCtdVCc4rT1Ee6loCdvL3Kp9zyljrnoYAbUzpZi+HAaWk90GBdQZnNNbWNJVlfXHOQMYqy/nqApUNu92W55eXgOfFi2dUvcN2PRHFYrXGzzOLxZr9fsAYg9OOeZrY3N9jstxE5xg4f3ZF3TXy9w+JeZzEuxpk4EskGmehlgGerAlxpl3UdKbGhz2bTcVh8tTVgnH0uMqIlUEpPnz4yMPdDdM0lxu6pe4kZdy2LaDAWKqqYpgGVssFx2nA7/e0Xcs0eeZ5KDxpRdf2QGa9tpimYnF2Qdd1HIcty0XF1dk5b354z8vPvgBj2R4O3D9uxIKQs1gUsgyJdV2TwkyMYn1JMVErUQasFrKJqyuuXjxjsbpg93jH3f0ju+0W4KkS+eCP1Fpa9ewstoIcJmxdYYwouvhAiJl+2ePHQMrCDm2ajqQUwzDSdh0xRs7PL3jz/h1Wl+sielZ9y5wUu2kiKkMYRkxlcdZibM3sZzBC3TgejphyMOu6DgnqyUErWXnPisqaySEToyZHL4UHTgtFBcQOpTRzlKIRk8sGpqglSmsp6kipBGwDPhW/bxbLxqnU48QrzjmXg5+o12RpkZTDbkUoXuhTI54mE30kKbn+tBVco8Y9kWzgU8ZAUIvSnDj7iROLWGnxnoMQYmbvTxEYPh2m/39/6aw+/Vnl4RhLxiHrTx8/Fd+wjPxyINRaPI0JGbQzxZuYC4cd+X4ICrL8dqtZLhZ8ftExT0empKicRSXx12/ut1wuOm4+3rAbjrRNw4ur57R1xTweuN8+MgSNzQPN+SVdv6RrV6jlxNsfvmPVN3gUH+52tMue7Aecs9zdPvD9mz+waGtePX/B11//gmn2HIcj2+PINM80bVfa0jL1Ysmi77m/v+X+TobWr//i19TdEt1FKpewCoZhRGexVaESVd1ROwvzgWfPzhke7wgx8O6HW4yrOD9b0y8aDseR/uwKd3hgN03cvrujMhnbLTi7ek7wgfOu5R/vb2hXK5K2VHVH4zO73YYQPKvVmrZ2PNw/yD2gbZjnEWcMlXWE6BnmAW0sddWQYizPNE1TtwyzHPiccuW9aNBavrdVVWGMYZhn6rpl9iMqJnLjCCnR1w1+HuWw3bSY457gR3Zb6FZnTH5k0TVM+x3TNLDoe8L+QL1Yc9xuUNpJUFFVVE3NYZi5unjJtN/gjMatVsx+RwyReRoIUVTwJiV2d+8x88jx9iNVjnT1kqvLC56fd/zf/l9/zzRO3Lz/gUpnnM40VUXI0PYr6sWS/eMdyc+8+vwrhrbl8e6eumkgJrIWtnaKgcPhSO0s27sRYqLperabR5q6YXV5xe2HiWkc+OHDn5h9pDu7YuflPWCUIaaATzAc9rz45q9o+zP+6n/5v+Z8WTHZlv1xw+76PdN4oOpa7jdHYrZEH3hxJR7l79+/42F/JKnMcf/IcDjQKKicxhnFFDw6Js61lIxlU4mXOEW552lTonmFVFXsFSadvMGiMJ/IEiqfxuSyDSrXs0wQ5ulj5Ke7gVg5Yz5hMuXnJJ6RnvbWijIwc2rNEzUbQlGNI5/AcsU3/T8PyP9tv4QYAZBRWpiCMUUxrSNYs1hWzzFJCUcqwRsJYYp6i2yJiSmjCr81pUixPMpg/fS2KDYJMjEn4R3Pke12S9u2Rc0ShNYnBrN5+nxTSd8bLU132gjGzRi5ESptsMZwOkfGsv4U5JSwjJVST5i3XNbOMUUZVFICbYhR8HZSFOFL4BBCChhlMaYR1mLy1FVN1VTcXN+w7npmP3N21jP6IytXE+ZI1oKnG4YJaQmbSTEzHAa22518fpVjv99xdnWJD548wDR5GX59EqxYUoWvqbFG4WMkIV5wpYXZOg4jTdOw2z1yHDyDnlDaUDcVu92WNAeG454YI5WxmEVLCongPcooxnmSEGZVEYqivN3tWC3XoBTjOMnnnzPLvme5WgrLOAUuzs+puxbjKlarNavVN1gVuP7wnlevXnF9fcNmf08IiUrLkEeOVHXF5DNxmojzDDkxzSNaG5Q2pEIEiDlwGCbOX7xgt9vx4cMtw373ieXrHIvlSupTp1mqvZ0E53RRE4fdnm7Vo5Dq0mkcUHWNqx3kxBwmbHJklRnHmXGouLy8JKbEi2cXPD7e03YNTb1kHKWcoFovSF4avLyf2O1HjHEEPzPNI0ZL2Gg4DPR9g8uCKJzHGT8Xtrd1pBSksS4LDUQhh8y6duScqIwmTxNgMcGLypsLTzzJAQIQNTlLte4UPKeiHJBr+clqZAyh/HwuN3mxWMQntVzq4q1gz+IJyC8cZq3lgZFCLIHaKGEWJbG4GKPg4qyThrmT0oIqCrEUliilmfyI1g4/e2KQpqw/95UFpfEU/JUfy8NJJwTyjyjBpqxsT8/ZnJFgXiksyGU7Y3NEp0+4QhmpFRqL0xWX5yuMiey2R2Iswbiuxw9b6toyJoMPmatFDeoMlxVXl6/56vMvGccHtvsjv/vj99Kgd7dlESOPNzf0yyXzNLLsKo5Hxz4Eqf82GtuuePb6Cx5vr/ndd+/46uuWqq5ZXC5I1Z54mDnOR/zNNWfLBX4cScqwOr/i9XqNMZarFy9584c/EJLl8eYHKqupmyXTeCCHkW61Yp4Cy0VkvVpDhiFr7jcjikTVrvjq9UtyVkzK8O7dn5jnI3GaaOqafn3Bi5cvMTpTm5pvv/0ji+UlagXjFNjc37O7u6Ppel68eEWKkWH3SJpm5ulUL1/JPasSprb1XvIupTXSugpn5Ptx1nXMk9S+pyhr9qbpAWFvRx8kHHzKJWiLMRVoT1s3qLhg3G+oFgvScs20fcSPI2op3lVjLCFlKjTKNthGPq4msewWjIc9pl5A1dPbDTEnmsoyzgOX7Yrr67cYa1EpkbLGmkxjDcfdjr7pMFWNa5bkqsUYzfUPP/AP//k/cbz+I60F1/RUTU/MjnXj2Dw+UOlzbn74A6uzKx7v7vDDgXl3jz8aHhIs+wVtK+x1bEMIssV6uL+l2u1QRvGwO/Dx/XuqRc80jqzW5+x3W47TxJThar1CNT0+O56/fo1FUznLtP3I/d0tXf2Splnw9ocfCMcNVdtBtcBpxaq/wFQV+/2B3eaRsWDxhuOR/eODbHzbVgLx1nIYkwyzKWGVdOJJqPYTqC0pU7bdJ76EHHhFRbaiGuskXQ9l+BUuvGxHjYrErItlAsjiO5a6ciVKMiIQqCLipELDOd1jRK3OgH7yJ2sisgtX5WPKhzmFBU+//6fy+ukNyCiMPvFL5Rsmq1dBlZxqjk1lMcqSQijhtSj+vHQKCEVJ+Bsgx+L7oqyuohjhNSgrzWvyVNX/zOqgtSDH2lIy8eOSgBMpQ2gUjnmW1YU24m0UBazgpSKksoFRxbhPJQ9FsWbkokZHUSyNBAOTSsxxhijDvzH2E4khySDvSvueqxyL9YKjH1mtVzRty277SE5i0ajqCuMMfb9E65qq6vApMgXh+IZ5onY1+93AbrdntVoRp5kYEqvzC+q2I+YoXtosqn3TNk/FLnKYyeTgaRY9tpbSlnlQ1FbRNjU5RcJxIo5efLAiijOOApQ3VhOiDAM5zszzjPcTIQvRoG1adoc9MQknt+s6ttttWaO3WGfIRmEqR0gzq9WKuq5pm5bV2Zplv6JpGjb3d2wfbkg5UDmF0oGmMtzeXFO5nq6tGDSM04ypaqoqM6eRjIQurTXkJHi6lDNhklX9uzcfmaZJDg/BY2vHL375S3b7PQ/3N+yPO5gCtu0FD5gSRkuzlg+evFc0raz5jjEwjHv6s0uGcaBdthinUSlhk4Hs2WxuqaoaRZCg0eFITrUMpnGgso45e3lvk6hry+XlFbvdjt0OQDGHgHGm1C8j9drZY50DNIdxLEqEKLfJS6jQpyhscq0IXvICpzasylnmSfB61oiP3ZRHB1oR/Pw0BOgS5lMFrp/LexttBSmYZmIMjMcj2ihpMEQRveDMchnGpRlslDeUksFa2icTMc5PA6bVFms1tiixWWmxU6SCR1MaFQNGaXRVMfmZpE4rT03Ofz7mLSGfoyrDr8KW0MyPVWVVJmJRhYT1Jp5CU9Bap/vlCSuZToN2EmxlMhVYQ9tZVrUmjAP7YaRte6qq4vbuIxWBrq24uf4TP/vZN5iw4R9+eMMXX37N3/zNr2hqx2F7z9/+5g98uNtzu9nwsF6z3tYYFHebiReLmg/X9yy7FYTEh4dHDlVkf9hzPBy5vHqBq1vmGPj49gNT0lxevuCrr3/Fw2HLcfOIS56lqVFWLHL96pyvvvqCv/uP/2929w/0Z8/pmiWmWxOnDTZ51nVPYzX9+Tlf//xnGFW+llWiWa6xY8XF5RVGZzb3jxw2G2yamWOibmqWfU/TtZwtWpKCm9s9pl8yjJlpPPJwd03ShstnLzg/X2Orirdv3nLY7zF1jfaBWmsoSquzFlMpue6CJ4UooStVUKQaVAy0dY9SjpyCrNOtQiupnG6alsq2hOjFsoaCJEPzcBzwUXz84+6Rrl8ThiPKe+ZxYLlaME5HdFVTW4tT4tPNusO4hmEOLC9eEv3AfLjFVw3KjxjAGcPt7TvZUFpXlG2w2jDNs/QTNB2VsYTtA2bpuVh2/F/+T/9nDve3hBCpql42oGHG6kycZl48u+K4faAxNePmmuP2hvX6jOX6DK0Nu809fjpCDlRVw/FwhzGWhGa1vuDm3Q9M0x5lK7SyXN9dc/7iMz58/MBicc7Dwy1nly+Y58wcHtFz4C6OpDHwkD9y8ew1n/3sG/YPdxy2O3Tw7B/vWTuHCbDb3NK/fMnbH97w8eMbMonlxUu0dhweHiFKbgYMKSmGYSKFxJDg9nFHXUXaqkLcxYIyPVVxJC1Zp6TkkF84EnLdng67WsAAqVzbwkTWhCzWCnKZTaI895M+taVGdAnYieCXn7Bxp6ppGYyzkLbgaUCWO8xJUZb7RkpJwrw/LQH5pzcgpyihOgnLqYJ0CxJGc46cxdqQfSSXOlhZA4uaqRLk+CkVqqAk4E8lG2VdmzJVZQtWn4LWKgNr8Ts3TcOp3e7EKj4NxqeAXkqJ2Xv0f6EqiyIsuCprbBnyZcBWSvi7p6KCk3Imv08/rZr100pZ1t/ey7pbFCdNIJHSjHEGXWvhCzsJNj7e3z95rTOwPFuT8UxzpEMCYLP3GKPRumLYD1x/vON4HFku12jt0LWmXzR4P+N9IquTyiffh5QCgUTdOE6MANs3AslX0LQ1ITpyigzTxKnyQKeMNaL0KwM+SqPeNEloaZ5nVMiEKZwQkhKUG0dOrMaQPcewQympp01tpu1q9psDi65DuQprK7p2Sds2NHXH/f09zjksiq5b0HU1PsxcXJwTQmL7sOU4euZZsd/tqZuWMHly1jjbEvOM0qca0bIOS8IqVsB8PJILYSDmzHq5QlnH/X7LzcM9Kids5qkUpqulxEWaHF1B8WhRgJqOFGbZFFTVkxL9ZOvRmt12S9/3dIsFm+2WMQTO2ufcfXxP3zagYH2+4vbmFqXEdnI8HrHWluvLEOZQinA02mSsq1E+yAM8iv0g5YyOlGr1hNgnI1MYcdYSYqJytShPKsMMlTupv8VzHyiqmAzrIYTC8S2s52JZ0oif0yGEhwrAWqx2iNEjMXmPsxU5lmKNLJXQsXj0AXLWBKwwZnMkp/DPNkAxeLKSAd24lr5qnopGUFIRn/yErSzeyzbEGOGu/7mv04NMc1qPRiHhqBN/Wcs7IRc7oS4KUFG5o+GkHz3hAcv/5HCpZVtllaaylnW/pKlblLUMfsvm4YH95pbXr5+zbBrS7sBnzy/Z3L7h4qzj1cUZSsOHt3/i/Yd3vL+5Z9x7Ls9WzDnx7t0blp8/4+uf/YzH7cxuPGK7JfebR0afWV0948PNrahqOXIMia5S3H68EWHCKm4+vuP6hz+SCVR1h1Ka1XqFjpFXX/ySs/Nzfvt3f8dxmOnOrnC1Q1vFNG3oake/fEVj4PzygrP1ObXRHO4fcX3D/u6G43HL5WrNRZfRIXAYBnKc8XOisQ2mcZxdXnF5tsZUjsP+yMfb90whcX93T1U1PDu/YNaKrjujrw3ff/8d02EkBbFZWQWBLIrp7HGVpWnPmMPMPI6Mw4jNcqCcU8ZqTZqlUKltG7SqGY4DWPGIn1j52oo9KRVKgZ8ndL9iPO5Ynp0z+IHd/Q11f0Z38Zxp84gtjH0VAn27BOXIQZpjm9UFMSzxw0DrpIxJERiPG6rVUqx9VcuEISahMEwFW+aMw8SJrm2KHSxyOBz4/MtX/Lv/+/+V3//d3xLGDTkGYvR4f6SpG+ZwJKFYnl/R5Mhmfyzbncxxv2N99iWH45FufUHX1WwfNlx2La1RqLpnd9iTk2e5WqK2gWGcmFWk7xriNGCc5e7+I+vzc+7ffkvKiovXX/GLX77i44cPqK7j/OXPWHRLtttHHh9uiMcHNvd3LC6e0/c9u8cbPvzwLZvdPT5K6NjjGcaDoC7nI8ZqnKlx1uGnI/e371DWQozsUuSzF1e0VSfP5BSg1MOrcqCNsgMnqZM9uBRznGwT6ZSRiqSsi11KnvE6JQLSvqdOW6OsoRzSTzx0uZMEObxrOVSlp4FZOhwyoRy45f4Lwk9XnAKDWpr0floQi5/egHxir34Krqlyo+Apfa6UtEMJlk2G3lz8OFHlEpA72REiOWQq60hlMDVGkGgne0RGsFcq5/IQlZO9MurTv2dp29LaSnmAlTWQNRZlRQ07obCAMhjIA5wkCfWTUq2KCt513dMa/tSgJ8EgwcU4a/HzjDaacRyf1h+6NGZhpP0MA3XfUHcdq+UClTObzYb1ei2r8KYmpkjdtOicRaUlCA4OuLu95/b6jsPhSNcv0NpIbbPSoDX740hVG1LyNHXFNA34kJ7CgtYK03N5tiITmSfPi+fPsa7QCbzHb+XrcZgGtsMkYb7oqWrLHGSVb5RUikcFyib6tmMcR4yRcJwu1AGjKyl2UDDOHpU1j8MD+52irhum44BtLO/evKNuHmjbmi+//BJXVVROqCB+DthVT9s1+NnzcHtD165IaU84TE9hGaUsWSnqriEkQzCaw26P0xpnDIf9nsY5rNLMuRAWdGQqCLff/vYfedg8SGWyPw108v6e5xnrKrR2WGdpFz3HcUD7BAmapmUOUps8J888e6qqNDeGTNcuOR6O9P1K2M955O5+i6tahsMRbxNaL1iuVhwPozTIFYZ023XUVcU8Bw67vXCESyuerWqSF8xiTpEY5oI09MxevibG1Xh/YPLTE74whBlnHRqDMlnqWYskYbUqNIVM1/UMfiacMiVKAqeqBOGsAYUXko0GZ6TBkAzKObHwGAQpl4VhnbMMwLmEd1XhnRtjMFYLgpHCGS0hKKVky0OMcu9I+dNgghJrifSjYLUpB+4/fwV58htKMFA9rV7lT/0UiswlDa/yqeAkiy9ZfTqgqVychOp0+DYY6dxGdAHN3eMjKs6ksyVD8a1eXgg797u37/ni2XOOYyZ6zX7vuXr2Ap3hP/5/fsOHu3sOs2c8HMjKUVcV5+fnPH/+Cl01xHnD7jiyP0wM+5n67Jzbm1ueX5xxe3fP81dfoVzF/cM9dd8zHDaoGMR/aQyrpgVr0daRq46rz7/hct3z/e/+Uaw/XYdrVuSkmMZ7msoyH3cYbzi/uqRtaxaXF+R5jzMB4kQTPcv1msWipm07Hm5vsBqOyqGbTEPi2YtXnF2umKeB4zby+2//RMiW8bBn2fUo1zIctpxfXmGt4rs/fcd2vyPPE/MwslidM6aERYbeeZ6IcSbGSNNULPqOylaoUufrgwxJ3oz4FDFkxnnC1RZTNVSueuLop5hpqpYpgHNiH+qWZxBHusWCOA08f/k5SSWqvsdGj3auIOMSKQbWF2u0qejOX3HY3UOMJL/HLVu0biBeYIYtbbPgsH1k3S6oreFw2GIw1FVLzJr58IirK5ZnFzTWst1vWC7XvP32D/zut3+PHycO2y1GaWkC1BD8VMgdFeNwoNKaxXJJTkKTqa3jsNujFCyWPY2rOP9iKfeKZNgfDzhjmKeBs6vnPOz39MuWzfaBzeMWY/dcfvFzWqUYdzua5QUxJZxx/PY3fyf5o3ZFVX3kw+/+gaQzw7SndQbb9+yOe6Y//YGYNdvdHdQt035Lt1zQ1Av8YSfIxMUSbeQ+r3Mkk9hspCHWVjXr5QpXt/hksSZCyaJkJbVDEV1sUaoIOyIbnwqCxPYlh2OxT8iskHXxTqE/he/Kx1E5Pd0pZOskHuasbDkhyx2GEjjWmU9ot3xSr6VcRIrGpA8i5U9205/S6yc3IKtysjql1jPyMIOiAKfizzKyArYnZFAZdk+GGqvlzamR+mXx8SqMcZzEmBAjVlvmwlxVfLJXKJ358XFKKaQsIeqClxNLQIyBHAPWOigkCWMs3vui9J0abv65PQMoF42EM3JKYOShaMo6WLzVmhjBWUE3yQUTSBRftrb0i57xMLBolzRNw3G3F+905VitV7R9zfnlBVpZ9oc9rq6pq/rJ07nf7YjzRN/WOKu4WC/JKTP5XIoGorSuxcBxmuS0qRVP1YaTx4eZiOfs4py+70kpE4MkZUNWJGNZrVb0y4i7e5B1jxHs2TRGdocBjaKymqvFgsNux/Zxi04R5yqccswkrLXUtiZFL95SY9DW0miD0sIOVhnu31+jtaHTFUlN7B7vZF0cpbGqX5xhdMXxuCfngKkTf/mvfs3dw5bHhx1v33/g/v6ByjligPvNFsyMUZDCjLIVcwxF4XWMfiakQMiJMI5onXm4e48PHqsdNktBRsiCU1JJidcZsFozDxM5ZyY/0ZyfE8g0dUOtA95nYtAcj0cqJd46XdXErAkhs90cUUrT2AoSLNqe+2ngOI3kPZyfrbGuHOBUEMuDNTgrTY77jZebepIyEqM1xogq65UEkbTRxJAwSVr9SOBsLUNjCdgpFYnppGgYrK7KBigy5QGF1L0fxxFjK2KYyoCsCioxn9wghRQC5ET0k+QCYiRmj9KQkhJCDNJelUmopJ8sTCkIj1YTSTk+Xcs5nw7e9qn0x54a0AqKKaXAiZHuCj80ZlssTn9+05TihJosRSH5n/uf0+lZWlQead4TZVhpXQoFjHgddSqDu6VELygt1kQF5EiOcL/bUacJnTzOKG7vNkzjwPn5OXePD1zfXvPV519y9eyM3/7xn2ibM87Pn/HSNdzefURh2U+Zedyjw8Q8TvzHf/wDx+2Ow3hkDopIw8pnmn7Jm9sHrs4uyNpxOOywKZOMZn1xWdjyMgCk8cD24R5VN/zi5/+SRVvz3Z++ZX8c0Naiq57HhxusUlQmQZTwW1s7+dpphQ4D++0drUmYnFkve/qmoVkt2d89kJUlhpF1YwlNzflixWrV4o97psnz8PAgCEpryrCuGaeB9fkFrbN8+PAD03GDVYopJ1G6naHXCw6HrRBHjEVpx+w9x+G05bPYkiVRRrPoe/RygQ+R4zCKkIOS8iDnmOdI0zYIpjDRGkNVNVKbrRK2X5Gyw1UdRE+2hqqqaM4umXzAOUVQkaruaRcL8aS6jun6T5gU0Di8zyg/oqqWOg7iFbe12KNMprE1VbekbTuG4UAkUHcttmmYD1uMElzom2+/5bh9ZL95YLlYY6uG+bhF+UClleRvmganMvNwwFgngk4KHPYHMrBYriAl4jgwkbi/vePy6jlNljKlygsD+ersnN1hR9v1jLMnxMTu/prViy8Z0iPd6gzXrbj78D3TNEOcyHxkc39DUDCPB8J0EBybEQKIaxr8NNItzhjjTDSZox+5WJxLO+I8Y3PCE/FKUVcVddNTaUueJ6rGoauWqDWWIGJYVidoFpDQWewwOovSmygZA6WFSFGEknLUlV9xQryVXISoxoqUVTFF5FJLLzPK6b9Jt5QIX/IpmHJfkV+TKUUkWpXt1Sm/p0umoRz+f1oW5J/egAz8cyW2DJeSPE9lRZAhydvlZHU4Bediac864ZNO33EJxCSsKqE+dTqdUSoXJUz2iW3sUE/4lk94r1O9c4qZWPAtJ3tEKkl+eUifSkUSMYRPZQtKms9Czk/NfafPYy7+3k/vUilEOK2gc4xCUyjorMnP9K0QEYyxLAobc7/dywWsFV1fc/nsihSF/2srWygPMvC/+f4Htg+PmCyFA6vlipCjMKd9EARWSvhZ6oFrV2GcBSv+JoBKSXPXOE483N4xHEeauiGGQAyy3lZKNkdtU7NeLhmGI86JgqcbKw98JYE4P05Ms6dqahbWCQnEGlROMhghZA9b17ROeNSVE09hiJ55mlh0PU3d0HU9sx/Z3N5jrs7oKsPoR+4fPnAcd6yWKxaLBYuVJQQ4DjOT9+x2O7HbpMxxOFDXHZXVzONYXB+5HKYkYDYNMz7NgugCnJE6UKcNyShSTFIqYpG1P4GmqqGENHMSAkNT1czBY+uapAStZ40cDrumBz8zDiPrboGfZkLw7I9HurqmdpashBvdL5fsj5IKb5yha1uszUyjx7qaECbqxtA2HeOy52G75XAcsc7hrEWTGMehhNUMTsu15JwjzqXt6bSByZStgyFGKfPISj8RX6QJShfiiVShO1ehKsv+eHgK852uq6x0CaAmtLZoo1BGfNIo0U6MkqxCLOHBU9W8n31RWRRGU9ryAG1QaEJIxS4VOQV753kqCk2xT6j8lA2AXMp4wMdAzP81VJZIVlaqZ5X4EfWTd1o+51juCUpJ8UrUEt40GcFKZS1ZAC0HdlP+LqgoGxgcKIdRRk4bMYhnfo4MhyO77SNN09I3DcPuhhAzTVcx7A+YZPjjuw9Yt+Tu7h3H455lf8b5sibpSz58eMvuMHF/94CrFywuzpjGgdY1kDN3o+LZ598Qhx1h8qRsyTHI/RSNnz2g8fPA5mHD+bNnfPGX/5qrdc37b/9AyI4X3/waqx27h1vGPYyHDabrsU6xahcYraj6nvPzS/YPtywah9GSYYgxkAlMh0d89KQYaauatq3p2pphnAjzxGHYc3u3Z3+YUVUDYSTniZwczlguVwtub69RStNWNYdhpDKS+8hojsMBFQNV02C0xcdA0/Qo5HOICrAGi6Opm/I4U1hrWS4c4yzYrbpfUvVnaFsxbO8ZDzt0LR9n/3DDxbPXnJ2/hLglKsP5Z1/i6gW2rZmGkXDYEbwgIclA0KRpYnn1mnZ9QZ4PjPtHlO3RfsCoQN0veTwkPFoY5ylQ255oWrRr5L0XI4vFmrZtGfcbyIm2qdnc3eC6nnjzgcZqCDMhzegkRVVaKYLUB5LmIwRPjCIYVdZgksIU+lIYhetM0tSu4vbjOy4vriBbsnUchw1dt2K321LXLTlv6BZLLp+/pl4tafqOYbfDHzfYtmEcj/C0XxGqRI6ByjmUa6CqqJoFRF+adxR5v2EMA8vFJU3VcthtyCaTygbGaItSjhgi43FPnAYpaUkLfKwEcamtkFWyBPSEKnGyQGSUxInByKAqnGOxUkUlP3cK5gonOaFUKra78nNJApcJU77XMgCfOMmnnEUqh0+NqAxZ6TJSyMdFFWBAPrXwpR/lHX5aE/JPbkCWh+Inf69s+cU7I8gnGVaNPXl+pTLxVDV9wkH58uOTVeOEjIol2U4ZYFN5EJ7Uqxh5Csyd1ChTAgsxpvLmlxOcFBmEkw70tD6PUW4IOUvtLVm4mBiNMlpaxPSngT6WtFpGkG/KWlkZ6U+eZq0VgSweSaRZzBbeprMOpyxhDOjWYLWlaxtWF4tCwYCqakURHAdCiISU+PjhIzfv32FRjIeJqy8/Y5gDs99DTFAwc8QMIZGMYtIBZxRhCqWwRDGEmTCMUupxnMk5cRxGKucwZRtgrEXNXlKSJAieaZ6oqwodIfsZjMOaSvimSj9VPLddh9KKqq0ZR4+fAqiMayqSUrx6/ZrWVdx+/Ejb1rS1E1VGG7QyNJ3DxxGtQdsKR0YrcHVFNhpTLciT4ThunzBuTdNRNy2JTOctTe1kLZ8SVXVFDIJea9uO4BPCipD65lTec6cGPmsqQhkAUVk823EmK0/wQM7CstYKYx2qcmht2e8H+Vr7jJ+ljtRpqcsNw0AMnjlk9tNASJFzu5RvV4p4n5ijxtQN0xhQzMQMzhnmeUKpJH7kVcWzl1cEFUBnxinKtZMzOSlUVGQPGUMKkgUwRqw3SUmRxuk6S0l8uloj4ZA0kxQE/KeNUFFNQpzEkpIzztqnhkxX1YzTIBXzWuOzvM9yjFDYxCZnaieDZYryCImzJ4j7r3iZMyoX5rEqiqVSKKefHg6ne4CrHKd2wdN2xzlRA0+EHMqBWYX459/kspHAH+WJJnc7shIyis6yfj3RLoCyKo1FOVYoZOAUf2JJwucsYUjtxN+dsti6FDS1IwGP4wiIom7rlq5fsdvccwwTj7stb+/vQTsGn7m/v2XZNszec7t9YA4w+EgVB5KtuOiXhJwZwoTRiuNwYIqZw/YBkw7i572/x5bDR0qZeZ4Yx4kYE+uzNZ/97Be0589orOIf//Y/obXh4vPPsM0Kf9ySk9ScX1w+R8WZrmnQZM4WPRfnF/SVYhxHusVSGL8hs2xqurbl5u4GXXU0RuMUBD9zf72lWfR8vHnkOAR8zlTLFSl67rdH1qsL0JkXV1dcf3jLcJjRukLnA7VWaFdL2UzOBKfQrscWZrM1DnRFJuMqQEPlamIITPNAXVdFyYPgPSlHmqaja3teffYlbz++p6prmm6JMjXD9iMXz1+xfvU5tXUs1ldgG1RzwbR7ZJ5ntGlZPV9C9IxDgHhk2u/Fgqg0cRhxrqN5eYEaB5pkOQw1KR7RrqLSFtd1ZD+TE1RtjSLhtCI1luVyRTweMUbR9Qvur6+ZD3vu3r2l0pponNCWlAVnwGgqrVHaklCYrLFVec5qCZU551AGrFIcx4m2W6GJrFdLVPak6EFltKto2pam0vRdS4iR1aJjexy4v7ujCpnz5y+xveKwvccZy/r8kt3uUUSWMGPbDlNVxMOeqBOurpmnPWG3xRhH3fekYFj0l1y9fM2YRkLyNHUjBB+kAtwfDuyHDZXR1FXDfrfFVJZlW5NdxamDLmiwp8Ec5LCtyrxwArmpT9d9RMkB8ilAYE6rM1JRfU+DcLkTiW0HoCjWgrLUxVYhOSay8KXlzykiBkh7HqJEZyXqc3F+PHGVf0qvn9yAfFLlQG6q0QeMFRVEqRPz1EjK1yZ+/D2VGs9TY5l5UoOhqLTqk4WCogaDDGMnBekTK9WQUih+Y1Gdp2lCaSerZT51mWujCSk8BYVsMk+DrNFix/DRi585JanHzJ9IGCfuq0kylGQKEzNLuv6k1lntJLyehKbQtBXOWuqqZtE0zPPMcBjkFA9crNccxonheKS7qBnDBHiMaXjc7Hi8e2DRLcRHbCZZ4TcNMWWc1VjbMo8yTGmly9qsxtYVVVY4V0m7Xc6M1nHYHwiTBxLBz0Vtl4S0LV7u4XjEWjlkxJAIuoS0Zs/yYkGKovIHZ3FVJV+vwr09zodis0os12sSmcvLCxpn2W03WGeZphFjLFZbohJ6SVu3PH/5efFiwfF4RFcObRwhJO4fHghBwpZKafq+p2l2hBjplwuaRmgdbdPw+PDIbrMh+RmjNL54jbWWc4Qcpoys+cuh7cQQPgVMK1eBipAt8zxDCTPNKdIulijg/cc3LBY9VxfnVI2lrlpyDHS143DcM4wDddvgc8CnkTlO3GwDy26Jn2WwG+dZPG7G0OgWi6Jf9Dxu9oSYsEraCzPCvp3GieMwy7oY9eQJnqZZPP1Gk4M0gKWUxKNMJoQJkPezs1Zir0Zu5ulHGEVdUt1S7V2CToViocVlQE6BpnJoZYSBbpFDbWFby/VRtksFIZe1Jvok9pccZeVoNSnkomrLdTb7GVtVT1Ysc9oGFQX7dGA93UdqVxFiRCtLTAGrjZRA/JmvbKRGuhCey/ArTREWiopEebgVhF0uLsUcy8OMsirNEtTTlmCK/Qt5QKocS4A0Mw2J3c0WogQZnbY01tFWhqa2jMHjp5nr+2swDc+ev2Az7OnPP2d7vaOuej57/Zz//I9/R71Y8uZ2w7KN/MtffYafA+8+DPz24zXbeQJlyY8bxhhZrNfMxwOPux2NMawWS86vXpKrhqbpqZuKq4tzPvzp9xhtWV6+4NmLFyQ/E1TLw9sdRmWsylR1RVdbnFL0bV8URYWrKyAzHvcYW9H3S477I8ZUnDWWu7t7vMrUdU3VOPJctoHKUlkH2nC/2XC1vsAoy6vXV9zf3nDY7jC2IWeotEFVNU3dEGICIlVlywERqrocyG2F0hVtLY2VzlX4MOOsIpT2PLTFuYa+sijb0DUt03HLqm3YJU8qHt71q294+fpzjLPUdc/q6orN/Y7H44Btas5fvWbYbHn48J5he8M4TRgdSAHIivu793Tdkq5tCeORzhn0Eaha5hSY6xa/e6RuW5IS61rTNPSrS5RReJ3Z3t+S/Uh/fs79h7fUtuZhu6GrKlRWxELaMMj7MWswGLlXqCylQYLtlWCpsErF9hglrN12FSl4Kizd8pzdfsv5WSueXEQ4WK5WDOOR1nfcbh7wj3d0GXJKnL3+Gbia4f4aWzn6syvmw4iPco/OdYe1NVhNZWu8H3CLJa7uqZcXVOcVOQQRgbRmdXEFMeK0Fb68Fyyks1WxWWX88cDteGBROfoXr8FZ0qlT4XQvE5OE/KOilAFlXfCLqZguKL/GShYhh6LoyrCcCUXoljZSdeqMP3mayZADWZ+UarknlL4+mWVOPzoN2wpOpWgyPpfPNfPkU/6pvH5yA/JJYYKTcnqqVJbhVgZfK4OJ9zinyYl/pgSfVqUnK0EqHuOcc7FYCLM4RXkbWS3c4lPDndg0FBSFOuZQGIUOlCURCalUMccAdZaEvc5PKllOJZBFImt5KCniExrMaIfkSwuWDll3WOWIWQgXnE57ZaAHabJLJIJPqNZgTxdsCHSVZR5H0JGmqRkPgyh0RuHDnpS9BKf2ivfv3pMzhBiw1tAte3xp9uq7lhgCw3YghoBGMYeZxtVSL+3Fc22swViF05rJzwXvFgg+gNKElBjHAvW3BmdlIHFNi1EybKQonsu2qlCngSlFfDwpjonG1eKNTbDsOlbrJbZtaLuO88WCN99/R9PUVLYiJkMKiVMl9XDYM457Yhg57h9ZLZfMUdEaS4wQQ5C1nzW4SrNYdgQf+cu//AupMlaKx/u7si4MPM4e5QNhPEpCWSlBpKkTSbdCIQi+eQ7FM6oxVnBuaY7EOdB2Dcf9JN+DlEg+UtWO/WZDPrUuAlOYWa8WnK3X7LcbxuFI1AaqGh8TlVWkqDnsj2hrmCdRsqzSwsV1hmQhW7HqRDLaaaYhCKrKWLyfaLuWvm+Zk8YPo/ik0WiVxLaRA7X61NiYTjRNBdbJoTMnuXFrJZSUmDJznNBaYVFSX63EG5di8dUiQ7FUiZewWYpUWpGKxV1rmbaVll8T5lmUv2LDyFqTjcYqWR9qBSH6cv2JWpNTwBUEU1KKaOSxcSoNOQ3Kp62Ss07COUrLkFyUvzz/+Zg3k4VVLENDQmdbUHJwOlaokxqexTpyQtJlVLF6FQVI8eTD10qqt1WxBolqJLjIYdwzDgf6uio5DsU8jjze3YtH/Hhk8/jI4TBSdRZLYh8y+zGyrBc87B/5IT8SInR1w1/9/ILvP97ymz/eYZKH7OiXSxb2nM32yDwcUH4m+chqfcni8jUxeioFWMc4BabDjudf/AVvv/s9YRy4fP0z+vUFx/0enSPvv/sWS6TrOmLwtE1DXdcs2x5jLMZatNI8v1phkmFvEt3ZEkiEfGDddRwOe6racnZ2zv1mR6YSbnx2oCaUE1V8fXaBJfHyasE4DjxuDkTtyMELi0BbaqdQ2uAwEBLKOnTVyNo7G6rKYez/l70/aZIly641sW+fVlXNzJvrt4kmM5Ho3qt6VUXyjxfJKWfkhEKWUEghWRQQxQcgE9lF3NbdrdHmdBzsY34D48QgJQQKiYzAve7m7uaq5+yz91rf8jrlMJX93SvEeBDL6VmDMiodYThOhDFQsNzePFBaoaUzr/avWPOFm7t3TPtX3B0e+OZXb9iI/Oa3v6c5w9//9/8Dl9ORf/p//U+cnn5Upn3VSWYtUE0ht5lyyeRceIiDJituQjADu1go/o6aM3hPbhZMZXQB5yM1ZY4//kDwAmnBu4GyzIxiuRwfCU2wNtDyNWhCp1ZhGPXwVjX23RrYSsF522lOkeYspgnGej2oBYc3sNZCKoUYR8peaVbBGgbvSduFyUWqr4xx47C7YV420nwiTHs+f/gTd6+/ZXf/muPjj5gmrMuRvOnUcNjdUpoiKG0qtFxpccDvdjgB8krZFuw0UY2l5g1TC9u6YOM1vRGVC6XEbhqxPvL8+T1/+uGP3B3uuD9MNJEu7ZTuI1DZhPTnN3f93Yt84qoz7vWuoM+zMbrviSgNqUl9KXyvBjsoVOmhDsa/uKWk1f7xV9gcNHJPkBaQytXiqxpn9To0qmog+Y8C+S/6uoZy/LSbc924rt3d1hrBRy2EuzThp1rk63+nlF46yba/Dq1j3kRfz4iQ0kZtX/FsWuBqR4kKpVZybVoSXMNJaHhroApp27Beu26tXukOhlb0NeqWkaA+dQtY0zXPVlPklBCgG2+jaRe66xNfvp/+c2oMtnam01qJwXQNtXA47EhpYXdzw26nJou4GzFWu5XPTxdoji8fP1JTwlnLbhr7CBpKSYjzrGvqHcLSC+IVGxwS1DTprGOeF9Z1Y5wCH56fmU9npnHEiGG5nGlFjX0lbZTWKHmlBs/93R02dPNK1sAPBMawxxrD5awdZpoQYmRZVy6XI8F7Hu5vcYMape7fPOBDwNTK/d2Om5sDy6K822GYcNbx+fMH9oeRcTfSBNI2sGyZXBt2Xcnpsxovx0RuBRc80z4yjQfO55nz+URaF5b5xMP9Le+/fKSlI2W74ES0y+4HBh9YtpUlbZTuMgaD3m5qpHvzcM+HH2YaatabjCMOjpQ2lsumEZ/GaIIiwhQi96/uiaOj1MQP739AWuP09ESplRi8sr9R6oJzni1viChtBOeVkGHVaDlf9LAU44D3nrv7e45fNDVLKQ86Nbg77Pi8bYgx5FYoZkNEi1E6j1q5vF0723dIERT03xdx2zv/oR/gjFUTWVqT6gHFqPymZN0gKmx5A9GgmCaNbU0E3/FSXDcKfXdbraTWp0XiMOYnqZhFI5cV69i67Kmn9OWknOyi05+rxOmKaLwekDGNkrXrV9pVI63v87/HpYa66wG4voxMRa6WnU7eMMo7bUIvjq9cXd18g2hhLK0hNeuGiqEZAwU1oLqvOkM3jpyXRRPfLs98koZYixjHn/7we5DI7c0DvlZux4GHh9fUcWD8LJxzYduN/Oa3/0IcJvYPb6EZ/vinHznOmsbmsmO337O7uWWbT3x+ekbyigkDl5TwTlmxrcD3f/uf+fjb33B5/Mz9d7/k9vUbBh9Y142Pf/gXbFvY392zzUd248BhmhTxNnhGH8jnIzf377Ct8eXLM3GIvHv9wMf3n7i7vceUSpt2tCYs5+XFGlnahogGZ1yKMLCyD5ab/Z7HL488n06UlJGKHrqTpqGK94g1LOeLSrisQ6SzaBsdCRYQ53Axdm+BJmESA20YVAbUrpNL4X53gw+W58dHdj6SMexffc/Dw1te3e54+PZbzpvlw49/4t133/D93/4n/uX/8X/nn/4//zfycmG0nhKEZdbpIFanV/tpj4sHxv098/ELDkN0jt39DafjZ27e/YI344H5+ETJK+l0AsBL4/Lx9wxGMMZz//oNdStczp+6/2Dt3c2CsxbblBxjDbS84UOgeYs1Dkpi8B5jnR7YjWWThqlVza9Gj4G5GyRVK2y4rOgEJAZG7zRW3DpwmgQpBjUp0zgdH7nbHVhOzww3t/jxhuXpM2EYmC8nOB21YWKFYA1ZLF4EEYusG84Z5pwZopKAJF1YSmJ7euR4+oQfRw53bximiZxXltMjVhrD4YbT8RPn0zPztvAgB10Dcdiu63b01LymNIkqjtYNw3oeVrlhBZCCrRVpSY/G5vp32kV4CfG4Go67Z6H2leDaGdZ64Uqdz1zbNkhD2jXaur7UTgWDtIyRRu1BUT+n62dXIAMvBeG1OPyKfDOqZ+14M2u14yRdrnAthvUErwWwmnXsiwgdGmKvmknpN6nFGl70ldbo6FyajuXmbcU5j3FA0ULaGau3nr0OSuVFZ6dTEHVYt9oIYaDWggtB5UfdvEdrXwv4l9hqgWqQawBH72xdJSLU9nVDb4KV0DvIBRc94grWepzzuGgoZM7nM61apKlzP20bwXmOz0cNSSjKwS214G80DcoYy7qt+J2nVcNuNzFMOy2KnON4nhm90joE7ewtywK1Mp9ntnUjBk/NBR88zlpiCPqaJitAv8HxedavZU8Ea3qsmWPt3OSSK4fdSBwDh/1IMxBiYBwFYytPn584HCa+fP5ALQ0fPLe3N1QqpSwEI4goYWR/c0upilKyRrWe3lqGMTLsNdjE+ZH5kriczhzGATsN7IcAtRJo3O5G8qK4Iusj03jDl8dHTfaqGWMVt5OLJtFtqSDGsawzLnjFcpXK5bLoBhMEl4RaOoKtQmqNbV3IJZNrIifVxFG1ww46Gsu5vGDbtpw1VbEljDOkKogNTCGwrQ0XRkqp+DhxOT2zmya2S+L0POO9hZaJ0RG63jeGgbTMlJZpFXajZ9tWjHFcXfbOO7ZtUVOsEWqXrLfW9Plo+rwg2jHesmrta9Mo9VYLVMG4wNoU11eLJsRJUNPfvCyEEHWSWBsuGOhNXCMqb6pNjXSmC/+M9S8To1orznuuoSQi5sqzeOkUl1KoTWVEKknQ8W+hKEIuF64+l5r/fJNeo1JejDx6ODH8pAgW/Q2r+cZQjFFNJvLVTCM/WWOoUOg9fQ/Ga8ytUZqCFUszHpGF6Dx3ux3HTypHKVQGOxB95NPjB+b1kSqFh7/5Ff/f3/yWc5s4P7/n9Y0SB+5u7zk9PfHl6ZH/3+8/cne44dX9HTllPn36CAh+HDFxwgWPGwLn05nteGJ/e4ePE8FawnDDp08fuTx95s23v2R//y2fvjzx7s07Pv7pD2zLmcPNHc7ouP5mHIkuMA0Ra4RpGCm2IXlhmnaczIU3r14Ta+Wvv/+G8/GJ5+dn7oaB5+OJKkGnJesjg/fEGLFmgHXDT569ET5++cypGFLR6OspeGppqqu3HuMj2zwzBk/0gSFOqInLgA1fdeBWTcS5r7NbXfCD4hxxnmocuWxQhZ0LPD3+yKvdDQsGH0a++fZvuH39wH/661/x4csX3v/uv/LNL/+GV99+w//1//C/ZXn/Bw5isHffUmoiL484d2ZrjVY3ZauvjvHwil2M2DOcnt6z/8WvMS4SxhtCdNzbHenDe0xNpFJI+cLN3aRhUtKwLjBfHrE1MfrAOp+wRWWI42GvzZp6ldQWLQbNlcpgEBO0AVErre+5thV9HrUl2uVbtSfpWYIVYjCMzisSzljitNNkzdo4xMDr/YEfvzzh/IiJA8vlzGAMp8dH7u7eMNiR+fiJsk/MxyPZa6IhKXH88gP59Jlht2d//w3WvWV/e0/aCj/87p+oNVGsxYoh3tzx9OUT+TKzv3/L/et3pNtbltORyXvNC3CGwzRirRbsuTVSf66bMXjqS1NWj++2F7U6haM1nTJUPfiK6DoH6i+wotzjimCpiGToa4XpPorSroFDQmmqgW59ndH1WNnMjYpploo2ujQASskZrXe8288M9fazK5DVJNO7KD8pDq86QaSyrCvOOYw4Uip9nG46hi138bnG2tqrphh5GWu8jFVRdBqS0eALg3WOVCqIg1p1TI5irUxt/bRsEFHtJGgEdG0K1nBWb3alyjlUxtnRb1tS+oJ1bCX1xL9G7sZBQU1HpqnK8moYqn1k6r170S6XWtkNvp8GDUtKnLeV7779VjXPNLbzih8d1hien07kXDkdj1hxrCnx6tUDqaozf14XvHcs5wvb3DWlNLDCOOwYx4l12aAVSs3UnNgSxKid83me2daV6HzXUap8QURwokxLg8CWiC0wjUEX1Zo5DAMto90Caxj2E6fLQIgTQ1AZShiDGibCDbvDLSEEno+PHPY7Hr98VjalcyzLyrLNLMcLLmuxkebCuIs0a8jzgreO3RApWY2Y0VhM1lO7SQ2bC4HCenxiiIGWNtK2Kr6uFBCVQJwuK5dl4bJc2FrFOF2ISi2kpVJ6WJGezxrjFCjLSs6JdTXMdUGkMY2OVmBLVSkJJSOlsRyPGn7hHNlkWikUSf1wpM+IYvigbEkDSmrGG08rio9qfbQ2xJ2SSYp2tS/zRhwn5nXjclmI4y3zmsn5ggDzeiG3jPeBkhvrtlFrI28FK5XYudXRa1ckRM/SKjn3QrjLL6Qqr7vWHgRiPEIl5RWx2iXJzdC6nKJWQxNPzhq76r0aHa+f33LGSo+lES1iAVrRzql2kXXUqSEbalYLnVtusCxbIlhPK0k3imaQKpp8ZR2UpnQOMfr5pum9QmH9d6BYKPW0lxFNlFYiHd/WNf3SnyHT/TyasqeHASMaQV0xpCvZsk+1jGgXqmI0tlYqBteNzoWaNg77PXd3r3g+ncmtsixnLucTucEwqmHrxy+fOQyej3/4B9ZUyJdnnA88nk8EQSk1Xx75+OUja515uLkn3d5yWVbWNWHTE2UY2A975rDn4PWwRgisT1/4+OO/crh74ObhGw4P3zJfTvz13/49v/un/4UpNKwc2N+8Zj0/cntzy+gd97sJaOyGiXHwmFYZO4N8fxi5vx/ZOXDVsGxnDlYYdgPOZj58upDWhWEcMbievtqIfqCVxA+fNU5brEeyHpac90qtEY8fRsWEEjDGMnrPEAImjiABMZW8FaQ28ELdEsEJIY7EFpAxU6rgbMR5R66DpqWlC/sY2N/eYJuwf/U9b9898N0vf8HlcuKf//EfefvLv+O777/l//i/+x8p58/sDw+M+9ecvnzm8eM/s84zKc8Y7zjs7nDDgFjHzoAcPyDzM/fB8RAH5rTyej/Slg0JO1598yvaesGdPiO5ITlzc/dAWc8cP73HUXFWyEtisA43CLE6tlqoTps4ThymSZ+0JIwRpZYYXVOdvZYpOvVo1iJYjKt4pwZ4i+BjpNTc8XYjKSWGcQKvuQB2BzlvPBw2ni9nTusM3jGGQG0QQ2AujenhO7I0JmlsNVPXFW8sTSzDeOC0XTBxwAwjVQwff/9btvWE0NQkPe7J1jMNkcP9t8h65uOnP1LKxuu333P7zQ0tbdxkDTnxPuj7IUDHtNUur3B4jOSu8VXkmmBoUmlXGkXNXU6semUrldahbrUzklUp/BN5Fe1Fgmy6Jrlcu8q1UqT7SF5awlr6tq6Npk/79K+0fJYK5t8BY/mXdP3sCuTrde0Yv6DbepGMqFP+Wly+mO56R0jHCfTRqmqNr9rir+g49KZe1VxlRDr6TYtC67XzWXLBi8U5DRhxTuMmTT9pmc5VNtfuNsrsRZqOSwQNAeluUmsVvWYEvA19s2tUUfRUSjp+zjlrkd27VsYYtrRhRJSZ3LqGSOhOdiUyPJ/OPOTK/mbicjmzLCun5cTd/T05CaU00lYQpyEVpVSNZnaOGJUP3YqO79dt4+Z2z/2rV/ret0bZMiUlWs6UknHF8fnjJ0XZFU1UqKX0EJCM9UF50N00510gBE+IjiFYQjAEK4w+MrgRqMRB09isDQzjnjEUvAgEhw0juTrW9cS2gqH0rqZhGEcES6looS6w3008Pj6ylaLdSiOsayYhlOXMfrdDpPD043vtSk8HUrlwPB0pNeHQe+Py+QvDfmRZVnJt3N3fs8wz8/yIjTuWnNlyUT236YVYUySaGDVMtbzQamK/G1Ry07SDaOqGd2Cj7XIfnSw4I9p9Rrssgo7lt7zhnCdtyl9uneBSi9InqoA4gxPhdD4jKZByZtsy1qp8RsSSUqaWShwGlnkh96mLt5b7+xs+Pj4hVukn5+0MTjVtRoTotYtXURlO6JOEEALOGVi3zgcvvYMEtRaMaaoz9A5Tqx5Ojf5MpTWMbV1SpVgz002C1nnIuoibegXdd/2zs72YFSXAXDuvVQ+Z1llqyZg+dap5RVrDttA3HuVQ16Ya33VbCVZNRKWhneXgupSkEsqfXyA7utFQQMiafCcN27qpR1Q7DBaMUaMTfWOTa0KWVVG2KBdV+u/GSNNO3lWqIY3a1LQ5b5nPT8/cH265v3tAamVdF93cawXjcT5yPF/Y/viRv/7ld+ymwGXNPB83humAvZyxRjhfVBufs8qajksm7m+obmF5flZE5Lxg3QjWMIwDbZl5/4d/Ic0n/upv/zN+vMX6gcdPH/jV3/0nnj78icFUcvO8evsGU1aGwx5bYQjgpOGHkcP+gDOZyQ+MwwDGcIgeT1X5znJiGj1tGhFn2JnAh8czu2liF7TQddbxnJ6RWnm6LBRgmG7IlzPihGBGcl4YglPtrDWEEJBxwrRCsBDCXqPSKVjxZN9/S1LItjH5EecGQoi0tpBb6+xwNauV1shmwx3uqNMdPoz8+q9/zbTbI3nhf/nHfyDeveVv/tOv+T/97/9H/PkTt3dvOa2V4/vf8OHje87rQpXMGAI3u4lp2tOc47C7wZTEPnjKwxu8cxwOB6bm8XUlp4XL00fy0zM1b+TTMy5qmuTT878QnMPUhGl6CA+tEsIOAmzbTKIxp94BtU3XnBaxEpCWSVnNp8YHMhVLoVqHdB+Cc56lzcS4w9AYvKfhsGLIGaII3lum4ClGA9WdGN6+e0eWxn6eqZeZtWzMj++Z7h4QPxIGSyqJV9/+kkdp3DZhfX7UNNftjDjD7dtfEpwnrys/fvmvpPMTRjxu3GEkkZ9PiBGOVqVA0VnwjtPjZ+qWuHv7Bh8HhumGw+EAeGgVa4SMTrIs2iBpLvTOrvTCJqGFrnQ/R9FALul/hiaMdrGyFtbXWGgMQumNOZXqdDGpyiwRaEKjh4b0lL7rq0j3cvQSqUs2rhm4+pHXdePncv0sC+Sr0e3KCb4WtiozsP/GWON9d9T3biWAqYpmqbXSkiawmT6avmoNc9ZUPNUTG5xVrY7vKXJb0Y35aq7S0ZnRrHXzNTbaqNajj3CF2hJDGMk9fU9B7KoXFbEvkCbnpKfobT2WkpefxRjl35ZaO98VBcjX9pIOljsb+oqOc05NIrVWSlaOcS4ZcTq6j8OBTx8eUW1sZb8fKbXqxmyh9BG/Ff2eBxcYxqhFiHXkNVHWxHw8AZUybzw9nbosRahJC6KtKS5IRPDWYKsl5YXDYcJbYRw0FKUtGyUL/m5Pa/r7C1FTCcu2shsitzcH2nZk9BbCQMJwWc6klMg144IDGq9uDyzzwvk842ojdM7wssw0Vrx46pZxfsC1Qk2F4/MZu81M4w7vPMvjmXS6MB72hFY5n89sNZPaCanC/LwQ48B+v6e2xvl8JnjPEAZME41taKbfP6pDKzVpcl+FVhIlZ2Bhcupst6Zgq+AKUAquKqzfiGPNBSmF6EdoibKpdtY27djkXNBtQxc1Y0SnHEY38mvKXBXtgJ6XjVaqptRVla1sZe0atcb5dOL2Zk8Tw3m+UEXYaqGlinXhherSWsN6S0kZ19F0xjQF/ucu9XERAVzwGjAjMFlPqoVmKktVBGLJ/dk0hlqKGlmNpW6ts2zri8mutqw6xArIlT4BrerzVMtXLrpohQkibLlo5LJV40u2ojKSZmhFNyIR3XScsVRjMRSGGChV2HKmJX1eW6udB/3nXtJNnbrmmG5WNH0T7NZCughDJyfad+IaL2JofbPt3HUEK1dmiOkbp/5vFdM747DUzMnODFZTvPK6UI1DXKDOsz5HlwvF3LKujV0oSK2IWD58+sRlXdmakHLFT5HLmtlPI7kk3v/uPfvDgbdvXpOLsDZDMLDMJ/7wX/9AK5lxt+O7v//vkf0raIZcNv7m7/6Wp6cvBNuwIXD36g1mXXj39g2X44nz4yPORswwsI+BwVSMCC467u9uMTnz4+Mjt28Cps20rXIYPMUO5JT48nTifghKHKow3Bx4enxkGiaez09QCsEHSmm4MUA1LNvK0Bnl4gziPH6YlEkgjcFUXFQaixMNcOGK6N8qIQ6McSCGCecnjLvBG2WEb03THp1UttUgw4Gy23Hz6ltuvCEEx//7H/6BVBr/w//6v+Ef/6f/M/L8iTB4/T3bma1lGivRJO2uH265udkhZuS8JtbjE/txwrSBcRyI4wO74RabVowPpM1T84lX+wPzOlOdULaF9fyEs9p5vL29hQbrcqG4FQkG0zw3XpMBg9EmUWqC8VZZzE275CEM1LTRqhD8QEV1ruLUtxOjxRCQ6jC1KI4U1ffbvWXXjXHR6ZRUYsAbj02Z9e6etRrapy/ECqfTE6dPP5LnhFiLdzd8+vjMONyQt0QtG8syMw63lHWjLhtf5o/UsrG/vaWEyOnzZ+xywceIM47mI9Y41tMjc0nEww05RGrOXLYT27bhrePt979kKwvvXr1iZyN05KLQ+lRMBVQitZNT1HytxuHSTXOaRNv6x1QdGYH0iQQvYySVt0lByjUblE7AUZ2xGvgMpkvvtBjuEq6fnO1fQkuaSmJKb0iXn5kI+WdXIDvvsb1gvBbIcGUiy9f/7h3lbdt65HTtW0h9Ka6/dpf1aq1p0Yg64723LNtGCKpNLLk73q8ntK4VNsZ0uYWiy4K/Ot6Vwdlaw/vwUqRfykXVgN6/MJp9iLSiO2EplRA8YPFh7LzV+qK59sFrMEhT5RF9pHyVIIoIQxiU0iF0FBwsy6IIM4fqiEWw3nM+zdjDgfmyYUxljCMprapfLBW6kUqLjMqyaPHTaqNmHfs/PT5xfjoSneVyubCcZ4ZhxAgs86zouf4cp74otKZUj7Ql1mWlecXTBW8Zx4laNnLK7G9vOUw3itQLBhcD07QjekdpI94aUm2UsumBR1ofU3fM2LpA3tg7YbtsHHaBEgfV1EbH4bDHdfPhsiys60L0kcPomaKSH9I6s80n1vMTy6poNmmNMIzd2FcxzmAkcp4vGKuHs21VSkOrSio5TBN0+Y6znoY6zJ23FFE+bzQQjaa3IRCdI5fM6XIhTgNGMrZVLJb1srD1gIy1NXJSI5b3/kXJdkXNiaj2UXXqDVomFw2peX56YgieNWemGDmfzxjJIKoTtNYyzwvDFEilsjvcsZUnWjHE4NlNgdPppCbCciU5NMQ6Uk8n1OJUD1it2i6LUn0wxpGlXetWclXZAEY1siJCyRllh3udABqLaU3RbT1eTpzTjabpz35NwAR5MeXpmVX19rUWimghYztLzlpLyglMuzZhcaIcZyOKk1R9b2ctV6UY0AzG/Dto9HrXVznHpvNJtRA2L3KKa4nb1Fz2sttp0WykaCdSh6NdstHd7k2TLqVd3ewGZ3o8+LqwpQ3bNMxhSwsbQoh7rHek+Uxpidoyj8cjz08ZFz2vHt5w/PGJbUlUP7K7u+Hx+ZnDNPD+T+853N0x7G54+vAjjx8+EPa3pFLYzkdicBgb8TevuXn1wBBHLs+PxLjn7fe/IGc1hyGWm7ffc39zYHKG54/vOZ9nQgzsph1jcOzHyGQ9pSZuh8BoHVvauLkbiLuB+dOTFoBzIrqNLRX2AaLfKUpsN+CnyHaCy7JhcmJ0Vo8lXkgO8trF9N3WZ43FRYt48AjOOxw6EfSmKZKwNBwGHBrJ7UdCHBmmHdYNRBexTthqIqxbl+YrOmwNjvFwy6udJ4TAP//jPyDryv72NZc//ZGP//QPYAvVDGzbkd1+4nyeuZt2DMMr7na65pwuJ4psHKZ7rBkwbqCZgeAnvNnYBTgc7mBdeL7MYOBitLvpK0hWFKlYnW44PLkV4rhjOzVcVWqREdVjx2kgbSfyuhBRP8dWy4spNO4maqq0lnWiJmCsKCvYW7yZOM4b0/5AiIOa+FJl8p4gHiO1G+ugWYMXIcaBNO3IzVL8xB9/+JFxt8fnwjZ/4fwxMZZvCWHPls7cvHpD3U98+uH35HnhcjpxOX7Ge4/xjrTl3s2FlhNZDBI9VhyCI+xvKfMZa6yiM9NMCDoDWtLCx6dHnp+emU8X/u7Xf4WPTv08zen+KkbN7wJi1V9Ue7KdMd1QC/2Q3K51LkXqV2oFPVCLbtTrYWPaAdbgoCvdBnT61Hq8dOv1g06rryuEYHqzg95dbsYiJXM9VP9crp9dgQxftbdfQz4q9hrDbAKlF7nOK1tX+baG1rx2WVzrr9NeDHDQA0ecdqfEQJWC1pi6+XpnoVRlGreKDw6aUNNPJR6aYKcSjh5mkDfWsijLlR5/Kj0goxcstaqkwTlHbZmUa79pbeeyqjj/mr2u8hLYtgUXvJqQ7HUcohixGKN2mqxlGCK1auFyNW+JcVAMT09HWn3ifD6zm7yyiL3FdxD6lYgwLwuHmwlpsJsOGGfxwXN5vrCeznhjuJzOrFvSVC+gUYiDZ137oUIMMXrVZNeGcxbvBz0tgxYHXghjIIaJ6DyH6aDYJuuYdhM1L5Qt4ST1kbOemgc3IrvIeT4ThxFn4ZKeCM7hR09aVpxXXbQfJs7nC1dvI1JxtjFERxwmSio66m6FnGdsK+RtJZeFWhq5GVLJZCOc541pt2fajSzbSkqJx8cvGHHMy0ytm6bVDRP7GDnNT3jr8DRSylhgCo5iKs64HkJjoOn966UxTgMlb9SSGYeJ57SQ5MqvhFw1SdGHwJoTuTVyjx6/rAs0wRlPTYWlzTSM4rForGlTHnAumKoHoTUL4+RZs9JGWm1s60xjxNqg3NCmnd152xA2hsHz8PCa8+XCPF/U6Y9hN90gRictruUuATKAU/lDVUOKaZVYNa63AM06MA7ypka4qh2MLFnfn6zFtpE+6akCvqMOW2NLK9SKAhPlhX7TmiYXUgQrOknKqWKCjjtb0U6w9GlUbYqpolYKmSqNrWQNSpGr4s+QSnkhh/w5l1zHoShNR5MG0Y4T+aVTdNUb9n4PTRpXGlxRgXV/pK6sZOkaw4I03RrUra6v3cECbGIwnebhx8jzp89cLjMVyFvC+ond4Y5lK3gnzMvC+Xe/0cCbdWOeN149vGJwETGW+9ev+fzpA9uWuX94YJ2Vne69IccBMZYwDOwOB4bpwPPnD7gYiTd7/DCQtwu73Z5mLLc3B97eHXj8/JHWhP3tPa6sBGO5CR6DJVcIoyd2Jnvcefiw0mrjcHur3oumha6IEKIjNqGEkS9rhqczqTS27czoPKsU0mXGDDtsmKhtpg6ehiE39Z6IN0TvdcpAxVmD7eNpaxslV1xn+IdxZPQ7rB8Ywg5ndK0u1jCYEQZl4D4fPyOHW3LL7HZ74jhwWi6clxVTM+/u7vjX/+f/hWALhIFmd8Swx6QTf/3uNW27o+WZ0+XMsswUAy4q2917TzCVaDdCfMXN3rPbjwS/J0SHYcM/ZX02TKVJYbaGLKPuX87QUmbwOqUMd/e0NONdpJqqelUaMe5w08R2OWky6LYitWiAUitkB2IGXFMTqQsBUwpT6GmashC9J1rBWIh+Yl0W3G7ClkL0HmpmKwXjIYhwO0Ualrk0lrsbPj89st8d2G5uWc4nzu9/R7l7Qxh3pG1BquB85PT5A0Iml0SthWAOqhX3DjPsSN1kXkqhnJ/UiD0Mak53ltIaKW340rDjXg+SZI5PJ36/rtzdP/D21S2bqYiJRHvNb0CDezBYkxUN2zcmffYzcIWtdR4y5UUiDL24bbreS1MNs3RjnZbY2jBoWKVR0DXgrZv0JGsoCaYjJr/SL5qALV9Rcj+n62dXICvBog8Kf5J0Z52hda2cjip0ZKAPWdcs0+UP9asB7vqP62ld3rnO2q1AfZE1iOlGny5YNwLrsuK9+zeSjtbJE9d/Xy9n+ms2Xv5etYI9g11EwxKspguFrvO90jdAn5lSysvneh9xrjOc4UU/dL2HrwEjRoR13bpGGsCQK8QYSCmzrRttn0h5YV43JA4Kaq8NJ1a1xVvi9esHvHecOetC7wNb70q3mlnXhTWtyvZFDRPW6+9lW1c9lVsNWdCOnxZpaVsZgvJpxzFye3sgRsfNbs8YhpfOn7UW7w3nrbIf1KFcNu0ANmNp4hDJuB5Rvc1nXM0E02OJAzgxeK/dS+csr1+/plI1PQ5Fx6WU2PJCsF7xZaNQjEoQxDSeL49U8TTneT6dGHZ7sIYfPrxnWWZqrcQYOR5PbGlT3Js1jMHgTOFuiCrZTZkaheAiN/sdl/Mzu92EUHl+fqaZRrOCk4KznjF60tZoaUNqUjmEqCyhFgErLFknJmrOkx604dRE5jRRzlaj6V7Lha0HXqSSCCGyLBvGKHLt+Xjp+ldDy2oG3LaNecnMS3oZ70k3GV4uM2t6r++tMQSrjHLlYmvkubMe27V79UqgsUY160Y3Gd/TKGunTLxIDJyjldoPll+lVq11Yg1qFnTOd9mU0EpTw2vnTZerRrhd+8qKM/c+9PtMyLV2mYbVg1yryhCm02K6kOEa0mOM0UCXf6erCn0K0v8x177NNQSlYXokbOuT1RdmNNc0vb6VtdJ7xJ2k04tvHarqiJf+WtY4vPWK68oZI45puGEdFx6PR+Zl0YOEDJyfn4HGuNuxbYm2XrDGM+4PfP7jD3x4fOSXv/wrRITj8YmHN99yWmaenr4wjTuWZcGHgXF3i7Oe/S7irPD04Q+EELh//Zb7+zvVjw6RbVn5m//mv/Dq/hbJiaenI75WRhHuDgeCZIwoH7u1xMGPTD7iTUFawAP7acQ2wYoQDFxKgdRoa6Tlhc8fHtndP5CWM1U0sKclqKhMQTtpDTNO6imphUylFb1Xo3UEH3TS0DJOGliPtWpYtWiASHSRYMF6wxSdWqzyjLcDwQSsh8fnJ+I48erbX1E//ogKDIQffvt7gtFJ0Yd//p8xbWWME9FPWkLlCyXN2DByXJ6Zz0eVm1mHd5HWFIvmxTDaA2O8YZTKPgRMLYwGrI2Y+zfUogeiFjxUR62OYD3VVFwYKEl57SltVNNwEvBYnA8qO2kG8ZFlOTK3icFFnEYWkvLMbtROr9ITMrkWar2wHw+Mw47Qcwa2ZWUYB7aS2Y8jJiVFA7pA6ROmUQxjGJXTXyytFTaEJRfC4Q5xmlEgzvOv//wPPH/+kxJTxoNKrJxnf3/P0+dPTLevWE5n1vMR6wx2d2DY3+LiSEmJVBsWcKJd9UKD6BnGPbXzmyUOBAnadUe9Rp8/fcYYy3SYmMYKEsitT6wRNd9eJ0fdROSkUfrBt16lEv25/brVC7SK6aSrJoI0LaIrpjOOtRCmP/0iSudSvFvqq0rBtoL2rwWpQhEwXepx9W39nK6fXYFci1IpgBdyxVXf266bWTfvtaZpXN4HjGhn2FjX44KLmip6J/daeG5dEiHW6Knf/gSd1eUYqeqGbwDEkLb1RbKhRZznJYIWdXSrJMMqFqo1UlKNMzTFbq0J31+z9WQsZyytp3YpkkoRdrnkzkjuuKCscgnvLdYYTXwzqqOutSIhsNWESHh5T9ZZtcBPj0+KGtoSceiJQU2LA5ol9YKv1QIFzttKSoUQKqfnI8FY5tOZ89MziI72jTGkZaWWjLORWjaQhFjHnNRgGJwmHq7rSnDCq1e3GCfsdnvGaeBmingRvGjW/boujEOkpY1oLRXDgiV3zfecVjCZtiVaSfjgSMuKl4ZtlSF4jpeVUsD5kWVLjMPEllJPNnKKEiqVp6cjDsPpfFG9uvNcTmeV9ATPdJi4rAk/DNSSuMwLZlWZiN6PlW3dKGlj284c9jdc5hnKqsVLTequNyrhkVJpObCLA6bXK1OYVH5DRayC9afgWKsWTD6MrEthlMKXJTOLYS25B84AVOZ1xhinGlUX9L2O9oUHnHPuC6N6oi/risFwPs9468gkDR0RgxcDW8Y7Lb3SuuBdZF5XxiGwpZVShNwKKa1EFxBvGYYBa4WcE94adfYbXXxzLqyygghOHLZr99d160a1RqmFJkLwkTVnfAiIV/Oh6+Y/0GVfD4RdtoR2c61xykFGEXHW9bWhKNYt5aRG1s4zFxGc040L01nJ+cqn046s9+5l+pSSRh2LkZe16M++RMvZq28H+r4oFlOVMa1fpdDE9MKXl+nnCwautZeRa6O8dJVErtlZjWakd4saXgypaSefjiCc4sjDwxv8EDmdznz58sTxdGKrC8F5zsvMbpwwOFqzXE4zzgeCCPPxSBXD7f09f/jd77DecXPYs66J1iClyu3dRK2Vz5/eM+72HO6/wcWJt2++5XJ8xCJsy8x/97/63/Dt97+kXR55//jEw/09N8Ej8xHZFobBE6NBjBJU9tOoTRMRYnCUEPto2jHshcUYOC+4rXC+HJlLwccddTlhaFg/4sqmxWU1lEEbKPrsKDghWs+SE8XpGhScIVqDWM+S9DdkW6PljdYs1muzIhiLHwbG3R7nAgMFRBP0rDGcLidicNzv7knrhVdhhwTL05c/ssxPxDgQWqOsT+xCIMY9NRXWyxNrbngXeH76QEkJ7zymWcQElSoZxxAiYzQEb5kGyz4INyEQfEDyCl73SOscLniGMlFroeZGdULunh8XtJRy3mKoBB9Vn2894hyUjPfCaHbc39wjWOJ8JqcL58sJKzBYQ2qGdVsYvQEzagAPiiYLLmB3jlwbg49E57l9/Y7n8zPTGGniWNOqllWn5krJAZ9mboJj7y3Pz2f2D99ye/+tUoB+lfg9jeenR023C5FtTdgwsL+55fL0SIqRCtSyMp+PjDc3GOcQG/BWaGnVaY3zWKfJh9ZHiltx3mFjJAaPq5VyeA2t8Hz+TLzZ8/DqFRE0QKpdwQF6GOZl8qydY6FpsK4ou139EFfp1FeJVAOulbB0RNs19U4/pnTGNlSjhbZBEXFIpV4p4EJHYAoiRQ/eogl/Qv6Z9Y9/hgWyXGMou/HuGhCinRzB9LHo1biXy8a6ztA1YbXmXmDLv9Ehfw0B0QKUKi+L4VUKYaxuRiUbvPfkTVnIV4QcaNc2deB97d2t1uq/MdjVqkEmpVasdeSqI2NBN1wjOgIWlCZwlW84p5Gppm/G0nQ0rFfvhldAHM0YatNUoK1VxmEgl8K8XFjTyjxfuFzOzPPMIpZ1K9RckJbIwXE8Jg6HG56fn0AE4x35+RnnQpcN6IGCUjk+dZ2ZVxZ02TTFsNSCWPXY5mpYLivbpt28LRvGOLAPlnHwtFbZTzfspom72wO2VcgVGxytCWEcEef0lIwGllQnzMtGcFEXKgvBW8plw0pDvNfUNR/AGHzYU23lkgXrJ8Q5pBqcMVjTgIJI4eH+nucvj+S0kres3cPalFsZA2NwNLNyWmaeTydyFXyImrpnLZfLolSEVhmDp6aMa4ZgAtHarrnLnd+r94NphWkaAPsigXFOiQveK+PMeocUIeVEMIZiGj7AToC10ZoDrDoq2qa6eUTvsZw1Rrkqaq2mSgxBXfZVF8RcdEGUVlm3RWUPwZG3RDEOQyVnvYe984gVjLM6oTFGD6h0oxFaVNZWGaKaa5aatGPSNfJ5XRli0OcNIW3dSGe6164JUnUacWWIq/zJYJxR/a3VZz2lhHXdBUXvKhvdvOzVrWK+hgSZnpp3DSEpKG5PW9uoebUm0qqjTE2h02cv56oc5FwwYrGivzNrLVn+PTosKj/5qjS+mvR+Kr8QmtSr74trJlbrSYHyUtA3aEXjqftk5zpwbV3rbNCuanO6YeZtxZXCMp/ww0S1lunmDu8H5jWzLIUheKzxpFKZl4Vlnnm4veuph5X5sgAwTjsupzPf/eIXvH//I58/faZUuH/9lmGIrPMzeasYjHJ593sOd3f8+MffMoTIfj/yt3//X7h7/QDrE6M3vHvzwHayfP7xA2adubOCqxnPgK/CYFVfHZwhGkGsYH0geotzkJvHbQ23PfHlosFObVlYLyu7V7c9Ul4TDE1fmwtCDCNCY2taSEgzeKzKcawov1nAuojzKktr2YIpuNbwtmJsJDpHcI6dWC2KfcA5iwXWUjBiiOPA3e09c535vB1pi/Dhxy/Qu3ytZIZhZDfucDnzPK+s20pFg62kZBymm6v07rFiCMYy9fCiaC1RCqOLRCreNZz1ZCqUBdMSlso+OEgB8RsbmWojzTbFMxqv05uyYQW8HxmMHkSRgHUek3WtsOGA1MbmwUcNUbGpsFWLN5lSk94HfsB6Q0lLn+QKOMvD7a16Ypxj3E2QV2pZCTaoPKGBF1FTePSIE17fFB6XjfPxI9577l99B2+/J5eCD3/i+PiBLSlGsm4LfohMcsuaEusy44eJlDbW04kw7ojjXhFtUjE2sL99TdhNLE9fmJ++YCw0bxldYD8duIk7VuDT+99RsxauQSq1Gmgbtl2FUO2lSLaonEwDgmoPjhHkSkjunqOK6QEh+nlNug+jaUPLiDYspDU9SIv7SddZ6RfqZ/DqR2g9+rtdZWJCE+0om6ZyDOHPl5D9JV0/vwL532iGr9HSumBd//4lde6aKtNxUCGImnJ6kIZzWphdC+xrcABNi+NSy8vm//Vr6O2Vc9aAhnHs2mP5N/KH2mofuxqCVymDNVa5zGJU/yMaWmJETQutKWql9VFLrZBT0glK0+/DOw9SKKUiooELW1a2pH1BPHXOMxYnsKWk0PqmI+Ntmbt5sXeRGpwvF0yDwYt2AGOklJV5mykZwm5kQINXUkrUVliWGYvtDFgt4krO+r1ZS4yBZrSInzclIngfKK2ytcZohXGMTMEgtbLNC/sxIGXDisZbG2t6+ITXwqlBFjVE+KpBLa0J1jRKWtjKguQLBtX1IoEkGjc87A5QG5e1ULaF3RgZx5GyLP11Msfjs8Zt10qpDRc9oNxqbyzWqU746ekL3jl2PoL14BzPxxXTLNF61VEPNzwfz9SsXUcnhsE5inicU61vLUpfCFET8YypxCFQqmL1as04I9od8Q5jHfMMW8paMLfMfgwYm8inpS+a6hTPrXJak+p1FWWAGGWDI5WcWz9kbbiUGMaBnAomF5qzFGNwTWPKa1Md8uAdLSUGDC5KJ4VUnX7YRmlgcsca1krbNnLaCNFjgtJVWlFofYye0iykSkkVYxwpr5SqbnMdGyp1paGFX6HhjemTk6yLetY49NLNcqUqwQOBVHKXE+jGUWs369FIZVMKi1H9sPWhIwn1EC0AtidMScfApaTyCyzOaLelJDUbBueA9GevcYb2AvmnG2xME+30GO0MW7RAUzNXl1h1/SDXEWl3GKoDQzdaY1z//Ktjx9CMspZt9MQY+mjXIrUhaATw4XBLGlfOy8p8uZBbZRgig7U8PT3z6fFIraIHVAw3dzc8H5/ZUiEEva+8i+xf7ZV17XR6RMukXLh78yvGac8+es4f39OA27s77u9ueHX/htf3d+RlZbCF5z/8iT/87o+UbeP1Tg8o3jucFbwIuziAZEpZoXgohWEKeqiyjrZtzMvKOQshWM6bmqS/u3sNpbAtGdNWla+YhjGBvXfkJgQbiMFT5oWUC7aCdw6xGkpjrBBtovUOsvGeraM/o7ME4xWDaEdECt6rNMN7z5xXTqcLt7f33N7vsS4Sm/C7P/wr1QifP/+ID4FxiBRvub89MNA4LjNbmknzWf0cDfXioIdpY8Bby+3tPaZlvIUpBpx3DNHqwcFq97006ZIp3V+MrSy5YIPgN528iAjGeap32jmPkZYWrBEN6hENXwo9Hc9HnRBVMbh9ZE2QN2Vel7Sp9yAPbOuJhmUMHpFCjgHJmaXHSjvrEG+p0oO7nGdZz9rpNo5SVupaGYY7CI6SMnc7w+tD5sfLmcvlyLr8hrfvfsGbh+8YwsB/nU+kZdOGS05sy0zc7Xjzzbd8qIUtZ3wcsH39TOlCq5Vxf4P1E5fTI9t2hpJxVHzYMYx7dvs73tx/w2Hn+eff/RPp8kiwo6JB0QK7Nn2/tTDWKA+V4rSOoZSX2gVq1yq7XoIYbKs0ydAauiJoZLRBoPswVEbR8x164WubUFD5BE3lGAhUNFys4ZGetmQqFNP3jj97ZfvLu352BfK1e/pTzjHwk9Hm1yGAtY5GpjXd3HLOXJP3FKtWu7i9/pvXBP2zqy4558xut9MEm16g6yjWvZAigJcRaym1hxdoNymXrMzb/jkpJXWSv5ApwAfPNS5amz9NFzZUspBfhPu8/JzW2hfCRfQB2+chAtQt4UKEpkUkfaxaSmNZFkSu0o3KMAwvzn9nGsZYhrjTg0azWGvwxlFTZi1fKSCNxpqTJh2FAA6KsaoJFmGthZJy130K3nlFsLVKiIrJyTkhLnBz2GFNYwpODTxBtXze+Y6FK3hrML4zb41Q00rett5hRCMxUY6v8a7j7hrRB4wL5FIZUe00NNZlRrKBkpnPG6VWUtoUqeY9cTcQQiCXDWegrBslzfhhx5s3r8AMfPp81MWoNgK3jOPIPF84LSeOlzO0xs2g/NAxBLxtpOxxRvFd26ZFWnRWi+OoxjU7eU0etKLaMOeQYtjQqYNtUNcNH7RAiN5Dg7U05jX3jqhFJLOlhSEOpHUjxIC1Sl5Y15ndfiJTyaWypURJWcNzaqbkShLlLXtxtNoopjB4TxFDuSzE4HCixWehMU0jwQfWpeg4r2iIx7YlDYKo0g9TGvXuY8DjSNsFayNUC8Hr5lFLP8A6mlhqVvNnK2qSlapSJGMsSsKrGNs5yF3iZKyhptLxh2CtZ6vlBZVo0KQpsY2cVjXSNqhFuzHWOmprSl4xhuoUueRaNwhax7IkTRvkmrz5Z15N7/ercrirBRXb1Ogd4mvHSfrfXvFvffDafRdfD/V6wDDSXqLnVYuoiV5WDMO4R7aFeV7JVf/cWOF+uuEwDTxL5rDbsdzf83y64K1lGgY+ffhMa/B8OvGLd2/48OmR/e2Badwzn2eeLo8E7zQlrk7cHALH0xGxlvly4ZvvfsnrNzfkVjidZ1qufPOLb7m7u+Hm/i13D/e4ojHjH374gY+fv3A6n9j7SrQHpRo4i3f6s5aWCFUNjm6MSpQYJtxuR81QLyutOowYtm3GOkMwO0YnPB7PhHFkO61YyZpuKQNYjykJayOypR7Q0mDwgMca8Nb1BgUMQSjV0eqGC57WdPLprSc4URO0D/gAzCuXknm+HJl2nrvbe+ywwwfPfPrI1kNFHInR7wg04m7i1f4Vx48/kPLKum0YM2FdYEuZKhUJlmAbwR847O/Z7W+waQYWQqgMAaYxMHbZkq2OJBmpDd+EGiLj4ZacH7HVQ4hUtTZgqRjrsN7gvAW3J1ht2KjBFga0gYXzmGppUljwWgBaS3UDxXmMa1zOK9bfQit448hFcF1K6ZzFNCgtY7EE1zAE5Sg7h+QNiyVbT26JXM8Y4wlBGPG8vb2hSuPTeSEc9jw9fWQ/3nBz88C77/+aH37/L+T5rJ3cdaVYi592fPNXv+b49MTlyxNp0SLYhqjEo22F+ULdVv3+ppH9/o7XN2/Y7V+xe/2K//zta377/g+cn74oQSJ8xcmqt8Bo8mb3Rzl13dKwiKkvJtzWC+OrLOo6BdOesoaEvPiyAJp5KZgFjZY2FO0zi8b9GoTartyLHsbUGr41GtcJtDbvFGZR+vrz77C+/QVdP7sCuVbVG8NXZvG16H2Jk+67nHOWUnR8bK2mm127y6VoAdAsnaTgX4x2V+mGyhrcVwmHNf2mLeSUekiJYrJML641WUyTcYzRjatWLUpVhqGFYumGQhFhmibmedZuZje7aU3ZOgUjUWrVE3kDxFAoOhK36mYvOVPEYES1WLTax1N6reuKycqXzF1nvG3rS5HfWlMucG7qrq1NSQ7OA4Kp+n6XWsjbhg+O2hE/1WZKyuTUMA7VdRrHsm2anETrwSNFfx9ierGc2dqKDIFSEnUr5LQyTjpy9Db0QrziDIgEpCbapqlQBhiDxVtHTdo9rEXLBRcnMNrFLrViKniruuxpt1cEoLW0XCkxkMpGCI4pqnTmeDoxjhHjHJWqshGz4VojDgOSNp7PM8MuIGLYjXuOj08a0pEWLVyqbprWWtK6si4ZP3quVBRQbW0IWv4Eb1/kCJvJODtgg6NUZUhnWk+fqsTRU6xwmRdyWRGxHEaPSyrNeD5v2vX2jnVb2dZFD5dUMIoztGJZllnvAWNZ1gUBLYh9pHSt+1XjlmrlfNq42JVovcZ07wfCqIedy3xGrGpTm4OUCqWWXtQ2gvEazNEawRpSWqk5I63zTEUQcWqsSxsNwTpPLcr8vsqU6kth3PW10l5QhtdDaQhBC+xaui1F9czBOWpVmUbO+jVMP6QaUeNdqaVLKrT4lut0SCtMBBVAiKikS4weFvVw/ef3WRRvZ2m47ijv7FOuKF0ND9DNTbBNlHDRO+MiGqiglfZVlmG6BK1PuxqYVrUzZg37aWQiI5cn0mVlQ70ebpx483DA1MLihJv9wLrtMWFkEkOuK5dtUd38bmQaJ96+dXz68qh0gzGAdZSuQTdW+PTxA9Z6bh5u2N8+8Pr1O+1AOstpnXl9/5o3r274/rvvefXNL3l9O/D+d7/lfL6Qc2MfA7u3DxyMIYgSh7wRhj5uNlUNS1Iyeb7g94dOxNhx+vKeWoXLSQ+vcbdjXjLTOLEdH7k5HDjOM6aBF4PxgWZsV182MBlbK1jluIvRCdxgXZ8yWLxzUM8ggWIDzQjJDDhriTYQvMfFSAgRWwppcsyXmclGbm/uGO8cjUj0wofzCWMNzu8Y4o7Xt7e0bWH0QpvPlAqXdSOXym5/y7KcKa0wjLeIUenM4dVbgnNE64hTJKczwTkGbxnCgA+B4nRi4EKmrJXmLKZmrIEheop1ZBEG10MrasU1COKwokg0LwnnIs3q82aNxcQdtmbqqimQwXlsLWRAbKCaTlYZwLVMLQ7paFFKZc0bu2Hokiv1k4ydgVyw3Ex7yDPz+Uw0EWkRqd1422DnAkuo3EwQdq9JcUcWy/PpGUPj7u4dWy58+sM/U0phy4mnH/5IHEcOd7cM04Cxju000Ay98dXwDZq1DLf37KY9/mbPdPcaM9yyWc+Nt/z4+U98+t0fCLUh+zsaBodR7XKXPkgn9dRWeOFMGJ0CaoBYRZqi2HQd7jIKaVzRtfC1d9bQ95n6VUZFXwHpFPSiLC89UrdKpSDN9OZAwbTU+fFakuvhRHVqrf3569tf0vWzK5Bbj6Z9QaRd/5yCmKaBAV5HuamntmlCncFaNZ9ta+6GNr2rrsXwVZOsHdWvhAsR6Yls0okViqYqaJFrxCj6zWral0b96o1bc+knPjXTeW9B7AsTuZTC8XjEe8/lclHdczVUkR4Got1DV/ShVA11L7rKhrW9g4dQusyhNg2Q0IOBOmJrh/mfzwviVPaxnZau31x1ERYtLsVoNHRDv16tldIK+bLpCLrLVIopnC9PpDUhpeF8xEilNqVeiDhi1JN+jV220I1hrhaEzDDdUowSPHKpGAK2OUzrxjCnWDzrXTcxGgbvVTfYGlXAWYObDDklStXfhbEWHwbt+BuDMQ1nHcU5fB8rG+vJZSOOkXUpitFzjsTGOAxazBk164lxYJXZWyqcTmeaCPtx1N9vS2zrCWd3OoYvlWBV82WMMMRIaYXmhdEGYj90BLTDP00DtMoYJqQWDmGg1MacVlzc0VJmXVf8mLkE7SiIVULIuSO4nHVISYpfco7jUhiMIRlLRjnhW9mwqHZ3iBPU3uWVpsa8onKFtG0Y4zHG00wml8oQI4iwzCt21Pd/Qpi3DSqUogmQQ/DsJs/zoyamGQPGGvAwLxe8dRRjEQslbYpoEyHVRi6lbyBKqdiy0i0oTc12tmECL3zjkvTAq+E6Vrt6jR4V3/rnCcY5EoY1ZTVvlYql6+pEML5/vS0TrWftcfVK5Agdmq8R2Tboc1nyVd9bVfZtlJX7514iL8wJlUiI0IxgX85VarKR6/RMOg9VGq4jL6Sj8uSn/7SCs3rQXZIeVJsYArDzXsMDaqbkpF4P59h5z/evX4E45PkLSy5M68aWj3hrmE+FUqHUxmleeD4fuT0cuAyRT49HxCyEcc/+sMdax/F0hJqpFE7HJ379N2/JaWXNG/m8MOzuGAd4+/Y7Koa70fPDb3/D509fMC4wBce7twcux4Ht0xdaaIqbtI1iYe/0UFtaQlohTgeGw44mjcvjZ5bzyvq84NyA7CLteGTnwcrK/tWe8+OZkiqD8RADyQ8gFrYTqUFwglglKmjsNyq3sRVawoeAJVByIohqv8UHUhUNLrNq+nXX7v04UdYNnxPxcCDevSO4kbqufH76wO9/+B02V+LdgcHfcDsOvL8clSKxrNQKp8uMuIHSMhjHfhxBPK0Vbu9eMQXP6Cw2GFzYY3LUbq/zeB8VV+YHatFnyhmd+tmsIT5hnMhbZXABqRNbUY2rODXKihWGGPRwYCeMhULBG6OVqjSIGiRlWsWPt5yXE051EhjrsV5TKkvwSPDI6YhpCzUMTLtXWNHvyw0TJVfGGLSr3ywyeMQGLsdPWCziLUYMplmy0dCrZCyfLzPRGsKrdzzGgY9//Beohdf3b2jLwqdPf2Tc3zBfziznk3bKrWeIE29/8QsuKXH8+IF0fiblBnFkHEaG23uG3R3O3zEMO06nD/zwL//Kh5qU5rO/wUhjW2Zszai51oNcEwCF1FBiBEZDpYzKwfTQ1fpEiT4h7lNyaX2SZIGifhZznZ7lF3rF1+6v6aNWlXNWuRLS9X9t7bJU0ZxOwdBa6pSszlH+jyS9v/Crd1K87yNo4JpI571XKUJOXCcBtXNdaeZrsIjoWCL3grjWr7rBqwzjGo5w7Sbn/DV8RETwwb8U1tZaatZ+Tslq+hDRcJKvUdhA7zopwcK8dLOBHvzRqEVToHKt+I6NK6Xg0IKECpWi2fFNk5xK08IiOE+V2gM9tIhwYrDOYmpP38taQAQrqp0TLfht1zZWILUGLaupoI9jjQGxSkpoVT/WeEdOG6U2lUQ0qCWT8kZNjeChiWqritYW6nQ2pnf5tZuFUekJpeqmL9CqcoiN7afn3BTkH4J2zSv44NjSgq2W2rIuRm4glY047LA+gjHkUojBv7CnNd4Zoom0Wli2BYp2CvAWHwJp21i3tcdsR70vOvHCGEMMkXEILPMZUPpGvT/w5fMXnDQOg8dJ0zhn71ASRNPC31iClW6kgt1uJHjPMl86K7upCazkl7hoBIJzlFZpS6EaiMZSfCC5REZZyNp90KJwPw0c5zPe98mHaUg1qjutjaUbHDG265MF01ObxEItVYvh4Ei1kLJGrlvnWOYZ7zzH04Z3jTH4/sx4tq0gWbX20xTZ7XaczmcdRcaIN6q3dtZiK1Qq0zixbJnggspOmsp3BGUfizFQ1Y0tpiGlx0n351lEyQtS9Pejo8baUW96OGytQk1I85okWCu5aSIdFHJJWBtY1lUPmrXRWqZserii6TNlGxRUvtAa+n52fFz7d9hAmrS+EelYlKbJV+ot1u6c3id9XNvoEdKCUni162REO02mf5B+uvRHrmMvnY6yTdV1J5Wm8cTNcjNO/Prb7/nFuwfm4nh/ueDEsQsD5rZigfP5wuQ9q804a/jw6Ysyppt+j6kUyvmI1AO7m4H7u7dc5i9gAt9+9x0pr2xrUmpQM7x9uOPv/vqvGeLAt99/y/PjF1LKfPvdN2zLws3gOT2eSPOZwevPHXsS4DBZLcLyhjiLMSPGNNL5grGQtkrJ+q7GcWLZLrim+ly3n/j88QNLWlXzHzwtRCYTOc4zQwiMcUCq0o08FTGOljeCA5xBsjYIDGDj1MUEgNX3eq4qg3LOYeKETCNtWXC54Hd3TIeDcoVbwZjM06f3urfYjbI8sx8stlUOY6TmwrplPj1+BrE4FzFU9reviN6Q80IIN9zevVKqRCmE/Q6TC2E34HrKonMeMQ1Tiwb4ZMH25sVqBVogCGALFG2OhMsKtmG8xziHHwdiTRjrVOJkG5aAUDVlsRM0KuCq7nHjuIO20JxX1n9xbFaj7aFRjKGK04PLuKM5R9tORCeYMGoCrbeYZqml0qxjGCa2baYZpcw4K+z8SFoS0Tlubl5xyXD88V8xPnL/8Jb3P/wrg8DrN99xPD1BE25eveV8/MK6bYzRcX5+orSN/as3vPv+11SK+hTCiJ0OTOKp28r5+Xe0YLF1obbGOg6I9wzOky9nWq2Ity/8YRFFt7VultPKpoFoR1e4yix0D22iR91rH7n1KZF6CqRPmfq6RNNpUQO6wVj6ftuuHejeIb5+Xbm+Ll0H3RpFTVgIvT74edXHP78C2V7NED0yNyfVI9IcJRsEq/KHJi+bge18QMWZZQVtG9XVate5vHSKtSjWzf1KnbgW1q1qgeBDDwWhdS3nRXWh/QZtRUHv3ntS2rj6bWqtitoKw0+MhI0Yh5eurXYoK2INW8kvekrTDXW5aIjEum4aI40leA9O9dRbUinDsqzs9q53qo12lwtqpFsLU5woFXZxoG4bwVqW1thao6Xck9+EYYjkLZNrZi0Z4xxL2pQnfekcaIFa+0ioVCyOGITgPdJNfd5bUlJzQBzUoBJ9wF6JCMaw2+8IPuB9UP14a7RUGOJApX4tjpuO0L2zOPEv77WYRs4buyni/ETtJMi0LZQsGK9JVGIsy5rJNPaHW4Z24HI8EoaR87oomzltLOtKM/r95qypc7VrYKfB48ikoLiq1rSAvpl2bFsm58zgLJ6qnZo4ULbMYXfAtIRhpdbCOI0EZ4leU/icU62eGsJ6x9X7ruPVpEZvIvOy4kNjCI3LKlzWtSfMNYZhYN4alI2yreCE2gqmCt5FtnI1qjraVoCM2Ex0gyaBxchlmanoQXFbFDOYWtXiR3Ra4a3KaOYE4iM7GyhNTW+tFWy8HkhUCmTEUKXQKJSaWNYNh24Y63aicg0H6As99MOmIzfF3RljFONnlMiBd9QGTXTSUYuOLq0D2z0E0oWhTvRgpNplLbpV8iOIs+Taf8etYlA0nU6d9BkUQ18P0A6rgbWV7uvu5uB/hwJZC9rKVbGhpj2lVtB/hmbAqOhG068q2G7Iq1icKTijB+Br8Uxr/R5W6U+wav6UhppmTcT5wLzNLJeNt4df8O3Da6bDDcenmefHJ2qeuRkD+8Hx8csnGpX9biAXPSSf5pmn04VpGNToe5n1gG31HLbMTzgXefful9RcO05PMWnff/st7+5f8f2bNzhv2I7PPH78yOGwZzAQpon16ZHLKXF5/EAzMO4npujxg8NQML1JhjgQoSYt3PJWKMbT1kWDi5ZEWy6EYcKYwPz4kbxt5K1SsnayXRw5zkeit0idsKaSWDGhYpwqQEWUcV4AvMNYQxBDFU81EScVbyotGIJYcANm8LRSkLRQZQAWxumG4COaf5mZt4Xh8Iq38YZ//eE3nJczzlbmLXOze6DOF8554bitiJtw4l4CPESEabfj9vYdcRh14lYLuYmi8KxT5BsJsf2Q2ScuNZ/0mbED3qsOviYQ67G+kvNGaglpBozFAVY2WtwjRnBWaElzA/AR14TWNmouOClgB2AmWk8tEZXvqaRjZwaO2wrbjClCtQaHY56PxEHZ/E4swY+IgWC0W7wuC7ZWgrU0a9lqpRqvQUllIxpDtJ7LmsjLmbvb1/zp4ydEGvvxwJcvnxmmAzd3r3j8nAiyY82Z8vyFtZwZ9gfmeeb4u9+wGw/s7u4ZdrcM046tJJ5Pn6jLBYtQyoBER4kDrhNLjBXWdcGK7tU6lardUOA16a5dVzzNNfA9DVYvxVZWdC3UKlZNfBU6plH5oKJJQPQPUkpF09e9pvABuhajZn7bUEkmjWpcV2Zd2RjasDI9+EX+o4P8F36JaGxu6Bo85/Dq28QHT62i/3/nAFurKUU5qZ7He4fu8Q3nPcYoCg5089P2yqad6F6IXQvnWpX5uG0JLY5V56zF3PXbu3aWWjcRuq4X0s6BiHaOrwxnWmOezzoSEqVsWOteNM0arqCIOZGGbZZ6pV2ghrlcFA0n1jBOkxbPRpTCYYRciwYwONcTnWzvvncAUO8eNm0Bk9eVEDRK+nI+sy6ZOES89axbUoyQCLVlxLRO62gv3Wbbd0NfNT9epEKtNLQbuGzagRhd1A50srqgomgmSsNF5TCKWB0ddg1VrdptLrUHVRg1RlnryEVNaCHq+MpZnShMMuJcUFOWEWqDcRo6L9dCUbNV7hrV6G03bzZyqRQpWCuEMLBsG4ZGkaoHC+QlaS5aA9ZxOWpRKxY1SDYlbFz/bYywO+xYt1kXOkdPXSoYh+q315XoB6xYWslkgWIazjhWW3DekHsUdbCWQ4xsqZCtkAuE4JFaCasntcroNWGsFQ3e0KJKndS1VUyrbC0xhAC19uLUkbaibugG67ph8ZTamKYD27aQ18QwDKRs+fDlyGXeGJ1we7tTjbw45mWlNeH5+RlBVKOMRUxEBEpV2L53tpvpLDEOqgfOG9SM5WoM1Wck51UxcwwIKg/Z8gpdWCC9u1LqVcpUNaZeBMtPTK/t69TCiIAVpCpxRKSSu2u/Seuyjm6OqU0726Ld+lZVO7hufz4GSVF75kU/bJpubsoaBuRq5tWu0TWxTdCixdIxdsb2bnEDYxHxHfovyoM2QjBCbUJOBTsadlNQg2YrJJO4LCc+fw6ck6LFKo0xeubThTSroWq/21ON43LZELGc5lUlJ1TiOOD9wHTYsWwXLpcjrx/ekVomOM/pcuH1mwfevnrgV7/4lr/6xS/AOHaHGx4/f+LmMGh6ZlrYDQOX6Hn88Adu9wPDELk9TFAysibs5F606tZASyvW31CtpxXPuBvw0ZOOjyx5xviJ6AzzdmRdc382CtPDNwwhsi1nhjgybwnr0XAeKsZFStWJliafqhYXDLlZVuMZvcc7izEBIVPtgMuFWoAiVBtexuVhf8AHpwccqUgtzGvDDrfU+T3OWpY1QZq5v7ljCJoWOs+zTlNMRXxj3N/hMFhjuH/1isPNPdJ0HZKyMZime0sqGCs4t+sSxKbmzVbABcStgMXZQGuQmk4PSWqSdWFUUkY3AWN0zRRxNGfIpmJNwxkDxSDNY4PD1B4DXyxYR7MDbT0hxuObcrotsOaMlUYg4ocRbwxTDNQmxDFi2qpx1mJpYrFBY6drqUhbCQgzKn+y1lK3RMuV/TSyGcvnL184TDs+Pf7AsiTCbseaToz7ifkyMS8rh92BfH5+MdiN968YnIN14fTpA8vzkThGgvU0Y8hW64dLa0RRUomhMVrPJStCdb8LDMFxTcNtRnvDxriXiZeSrOgSCDBNTbeI1QNMu4ZBV16ihJr0jnMvio3tTGQtc69R01cNs2mG2hyQ1V3SrnH214oADcLqFDDTX6e1a5f753P97ArkK2Viy0lPiE07mJbCtpVuqFPzSQg9FW1bXzqPxsoL+eL6eleOcc6ZTNYH1QpG1IV7/fhrAag84p+m2kk399Xecepc5L6BXlPbtIgr0LQbmlKCVqklE4LSC0Qc0gMKSu8W60afyGx4GztPUTdAI4INQTXZ/vp99Rhs3Sm129U6Gquzl0MMPea3spsmLIrPEqOxuut8xhjD8+mCMZ486wOUipIvWmukvLBtCpGyxlDLhg8jqTadhpPZDR7vLet81KK+VhCVxOjrKKjcOWHymqZVy4ZglRPttafibSDnRIwqbVmWldqEEDUBjdYYh4kqOjZvNWNaozVFDYntDuKm+tuUkv47Z0prhGlk2zbStnWWpsWHSMQwxkDKG9475PTI5cuR9PyIs45mPA5wQ6RRSbmx20dEHHXeVBZRlNphSsN3trEJAcNKK5p95r1n2O1epiIho5KZUrGDpa3CaA0lg3dJf8akC2P0mhyVWjeqlcplWaidTlCLGtpKE41jrhBcoOSiQQhOR/XK7w49glc1zlLqi7yoVcjSSGuGool1OW+ULP3QKCw5s6SsgRNUDUTxvmuYA/PlRE4a7ZoLTIPTJDjrO6N541rgOmuopQ8URbuepRSM1QQt4w1l1cATyUVZnkYL5JQbUhuZppiiFz50RSRjjNeQGDZcNbR8/Tug2l5Qa5cYUY9DKZVWGt5202IDStXEtKrkG8qfXyBr11g30WuXsqHdaStWO0ai35jrrFRk0AAR0cM/gprCvGX0HjGOrSpRxIkeSA0aXtTyBnnldnfDQe75n62l1Y3aGp++PPP0fGT3+g1IY9kSUpWa8Pg806zDxYGxCZ8/P+NMo1iVfe3GkVIaIQb208SOkf2w5/b2nirKC/71r9/x9vUdO+f41TfvkKoG5z/94V857HeIHdhNt5gF/vVfPlLykV/81VsmA5I3pDZM0PS2WhMtTDSjB37bGmXZMJMSftpyYX46YlpFXMRezmwSWLeVZj2uJQ7ffcu42zM/n/DTAbaFgMfXovpOpxIISyGLxVmvzn6TqTiMibg4qfhFoLiArcq1L2KInR8tIhQ/agLcEED0WbQ1UDdRDerTJ9a84cIOm86sdSb4gbxlnpeNOVWcHRE/EKYdDhiC53B44O7+DcFHdHSeoTmoRYtJM2OboxqLbRnvFPMn8xmsw/UOZTajPo+hIc5rEV2chm41MMFiqoZTqSyigjEY0WAuY0vXwztaKUq9SKqXFtPIDVwYAKFtWX0KIWLSiqEQ/A5jejakOMYwYOOociCTKduKpITHUyTiosHlhZKqan27dHDyA6f1mfPzF4Z4xzevv+V37/+IkcAyf8ENHmcH5m1DbGCMI/NyZLx7IG+Jus7kZSaLVdbyEMlSycuZ5COpCd4ZxnHAhwHnLDtnqAZy9KRtJQyB/eGg7HmxYC1NBGvAtqxcCamaoNm6DALlytPDgGrTA0RrQhHTk0jpxXaXkPWJkqCKtNKuUrSGxtFfk0Try+8Rubaf9KZV2kXrGDhlaRu5fsTPq0T+2RXIeUuIFWruuCtjSaVCyWDBNts7uH1nQ2+Qq6lPAy762LV3WK8631KKjhyNJW/pZVz1U8MeKCJLiRRaaF3lE7Vzk/Xv2ktX9hoZW1vR+GVj2XqM9LVrXUolDlFTvHJmS0l5yQgVHUN68dqtroWUateNuhfnfu1fy1qLFSH6oCEPNTEMkybbofriy+XIfr/ncDho93BWjZS6keCKmBpixDpLrtpFzGvnI4ohGk8InpxKN9IFxV6ljFAJ0SHGMETPElalYnj9/UTv8d4wTTuGqJoyI+riDZ2cAQbjB2XANsGZoPIXI/rxBkpTOUyzGqm5lYr1FsFhjaOURMm5azE1dIRmtaNddSR1DXkJUfXRlMqWNpyxBG9YFhh8ZNtmBhcxYSTFla0UcIJrRikbpeGd4bDfsW0F1yCZHo0sjWGINDKZqoWEcwq1v3b4rFNNnxhMrrocBa8UA6M62uiVT1wv0GoCaaRccaKs0CWpllZ68S/G4oJjzglrArYZUkmct0sfv1tqacpALomtFK5YRMmV1r4eHq3RwkcZwgX9P1hywladxhhqf987r7xZtrV0Hbtwc7tnNw40EZ6fZ/1eARqK2APGcQKka7DDy7Oicg3BOUMrjbSVHl/ep0JNCM6xbUkZ56iWXZV1en+JSnrpX1IPMqV2E5Ca9KzRLo/KrxppU1Ovs5ZmuuykFAQNVgk+9GlPo9g/Pyik9Y619Mewe9tVt9+MTlY6393QDacGGo5GxRhwznCISg0BSLWwZsXmZWnYXPHWaVyuCJmMmIwVNSu32vBhZE6JvK4sz56n0xPr5YKJjdSELSeWZaZUGKY9wzCQO0PdWUf0nrmsiMC2XDheztzcvub1m3f6fRklPri2sd/vOZ01+bG0xMPdA+Po2e0PLJdnHt//QLg9MJqBUDOpZPbB4mwjGoOpemhwZASHaU3TLHPB1URpqvUkKYGIdcFEbbRI9QySsa/fcHjzhsuPPxLcwJa0C+lspUmgVmgmaeXhPcZ6TWKrRos2AobaKSlCxSK1ILUxWOnTroQbdzQ/YkQ1u1UKNhec0QbEnAx5yWxuxGPw88xwe4/c3yANlnVmWRest3g/INYxxYFxcEzTPXcP7/DRYW2g5YLJtR+Guja1o1KNaR0fqelsxgjOFMgCzuOMw+RNCygj5KDPLTVha8JI1lQ2KpiIEcE1rcXFWGx1FFNpZcOYosU3gVQKmEpslVqE2rGeGlphaIcb6nLBSaXWlclFoOJE13HrPdZErG+0vLDNJzCOYBwlDKR81ILSdllUrWpK9o7j5TMlJx5ePfD7P/6GaQw8P39hnB4Y/MDJGuzgcdljXaS+esPy5SOtZEpdOT0/gtWmiwsj7nBDiDvC7g57mAitYksi2IEagu65BtzdLfvDQXdV0zqOUieVrRVlGvcOsD7bUJu+HwLUHgHdrlPfHqByxcLSivomtBDgqk2Wn8onalE9sugUVX5SDDdMT97sk6mqsi5q0eK5S77+g2LxF35Zp6xJbz0iBoVaqDmrUV9MdLnHe16ZgYoy66iylslpI4aAYti+sn1rV6FfE++ucojrn12L7WvYCPBvPucFOVcUNZRSJqUVnw3GXakbtksyOqe00yqWZSEEXsJD1DSz9YQwmOeVIRpy0lFZbvklpASEWrTLVUvW8bDtgRohaKevVB2h90joaVITy7qqZEQJBu4lcKFVHa9YEYwXUi4aaNHRXBRDMB7jDM52fRVgXcEE+2JEWLcN5wPRKCtX3fIV5wwxRmKM7KcdrqccDkNUqYlzaoSpUEoCyXivcdk69jaU1lm1pnNW14oTLdbm+YJ3gpVKS2svxizGhm5Es4rrMqr7zrXq5i4gi2qnt3kl2IgxliqJIQ7YvXZGfCmktHQcmh5Iqqi0xxuDBIcUsJjOaRVsHLVj6gymBbblwt2b16oz75OKGCPNWFLOtJxpreKjUHN6WaCMaEzslldicNS6gbdc1kyMkbRqME1FTSwV1d4G46h8TaCsRdnYOfUOWb0qag2jD7qoltYjnVXO0lomlQ1TzYuJcl02xOiGN8TImhPDftIwEhEwjfly5vZ25NXDDY/HM8Z0RqcR1iW/yIpyyeRUSFmLW+scLfdxIPQDhYFcOlFFD23WGpWpiKWikpmclXRiRHGONWtwynXqQ7PUarBZdcVedFIhRrDoWmPMV6Nqa/SDVTfHiGr7rRiaFey/g4vliue6hsnq77v/9IJuZkaNXyKWKr1rZPT7iM4QQ6BiucwbuXazFLo5ltbYTGXLiX3zHKLn0gzj4CibGsBaKbRVGwHTNPH+8xfymmm5cW4zy6UwDQPL8zMfP33mDYZf/uI7fvO73+KNBk9sSY1gp9OR1nbsD694ePuOT8+PPH75wn/7n/+eb97cMwXLN69eY53jfFq4v9szjIOari8n0pq4e/2OwRu284m8OHa+aWhFzdCKeiBE5WNCI+wGOK/kdcbvd1gnzM8z1qxkb6EFKIWWdWLkp4ndu29Znx/BCa0sWnTIgBaAm1J1EMRq6EWpVYkcpdKkYU3CuAHjPc6C5IJtGeO16HCifHFlmK9IRFMyS2PLlWIdsmZaAYOmFLZtY7TCw5vvuCwr58cfOG9nqkDwDmMCh/2Ocbon7nZM+ztGG7DitUBviVozzTlMs5jgaWvFoU0lsQbapvIiJ7Ss+mHppB9CUNpB1qlf9V4lWs1hUqJI1oJRBNsK1VjlF+cNaWBjxDSDcYHUdD8Sk6AMNKP/HRBy03szmoqTgcXrJMkRaC4Q4oCUhNlmEENzhoaSLPywp6SNkhdEKlYclUbaVozNGBPxgNk2RYK2FV89d4c7flhn9rtbcpq5ub1nng9KsDGOy/EJ6wImTmgyicENO00QzCqraxVimLh1hlA2DCib3gbGMKjhNjiahdHr79SjEzNnAwKktHTmsDaF6k8NumKovUHUSegvEzVpGqCk18vqCKZ1X4brz4fWHNZ0AnJT9KX0IlmUCdfpQZUqFYcW0VUy2ixTFGnjz28A/CVdP7sCWTWuWoDWjiRppZGN1e6vdJ2OdE1xM/30pCzQnLVqs8Zz5SPnjmLTCOvSO7HyYga8yh3KT8anV0TbNab6msJnjFFNrtH8rtZ1zwaLNRrrm5Nu+mtHvVlrERRHVmvGe3XhbtuCGAsdLebsSK3o6dVp5wu0e21FGJynGMgdKi5isb0Za6xiWhqNIQbAImK4XM7dYNZ/vs1gnef5fFaHc4NtTURnSdtKLZqa5o0jVT1UbOtKEoHaSFSKgPRwlJT051lW1etFaVjX8LbgJSBpxTdP2xKpZVzoHdDc8OLIa0LQRd62gvWamlTRaORS1WDtepFbu0u65YKUhnWGUrsMpkFrWaUZPlKaFt41J9Wj92juLFcZjlEcFKodjtao6adWYhhIy0KIO5qJ5FxwUTcVD9QtK0mAiW3bGHpKmZ7OK7s4UFzh3DTyuTXBiFfZQi2EaJFtxuSZXLR4XM4Za1UGg0BuhSLa+S61kHNhipGyZDYDW9vIVTv7o4nUCpVMsSCdSLHmhEdYG+AtgqfmwhCFVjUufNtSRxsamtXDmYh28nNOaGPCMwwat720lSF6nk5HphBwzjCIw1vh1f0d+9s7TkslRg37mJf5hRjjrKWVzjxGEV6X+UKzWgRqx1unPPQD8Yve3xqoldgZ2wZLsANbWjUcpSTEqLu9djybeEtFteYR7U5775TDXBqumwZb640ZRJ/vfj8lGqlzk22Fmv78DUToYJH6VUvdrmY9qb2rpF3+dh3GGsGaytC57TUXzjnTWukbru2yDRBrsejHB9sYbWEcDtzfveLDspBS4rJuPF8uzEviy+XC09Mjpja2ApfzGYNjf7vjvK5MMXI5HhmmHd9++ytOz09c5gvzurDb79mFPRXHze1raq6cvjzzd3/zd7y+v2MaPEPcsVao88Knp0e++9UvNGxp23j+9FHZwM6xLrpxu8nCsmDTRpMC0SMhaMc/JeSyUNqGOIP4O8RZtvMF1yqpeUx1pHyCecHZit/dsRsPlMsRlpWyqQzshepSCtYPtArYkZKLFpc1Y20jS1MMZB9F+042wulaLTQ1IjdhQ42s0nrwUXFgV0zUAiwXdHxuEkNLZLMSd5G6LmzLhVQ2mvTwJxMYhwOHmxvCuCfEgV2IGqzkBNcqNRelITmVRjTUnCrOwdaArCN/CgWHtd2A57pex3o8hWoq1QkuG2p1yiDvRu6aC8ZqwyGIUW0+YGI/mRqhpYZYlQwahCKVRqE5hzQltFSjtJ0mEIcDUrJ6Appg8wYx0LxiQ5WosWrndV1pNmLihE0zhgXK2o22KsFBtElR8Fy2hU/HP2n4UG1q1M2V06cfuNnd8PnzR0wcMcuM5IKbBtanL4pUo2LjRLydEIRpPLCLkVoXlrlxmCbGmzviuGcXtINea6UYQyqNOVVuDo4hBLx35NRImx6CmzTVJLevxGJdD0QPxh3RRuvrEUqWEDGYVvs8r2smoHeE6f4J1TersVcP9qaJJpt2L1Prk/fWbNctFxqavdBa0zhu/sOk9xd9qbGNF8mEjk1VvlA2NSxcneclN5wzUIsuXlYoRVSHfL3h4CsR49qt87YXol+1ylct8k8lF1eU2/W6Yt+M0RtP6GP1CiWpMkiM6TpF7fqGOEDrBhFj2LakuquSX7rfrWnnHAPUhnVCLorJqt38pl3rQslqlJHeARcU5WSM0UXTOTUrWcVyzXNBTGW/mzhX1aFSS++COB3ltNbPkKo3M01Iy6p60KAjeKETC7wFGj4GHdM499IFUzJGYxos0TusUYyWVcqYsqmdJW2JyQ/EMLDlTAgWoxm65JQ0oa2C8UG7kKWQSZhmsaI8ZCs9mrN1F29r5KZ0jiY6ns+l0HqBaY1Q+8GrtMo0jjjnKVuBWpjTM60nrbWyqsbZqazVGK9IvaAJfcE7wjBALqyr6sFuplE3gaLftzeOYoT48ICJQRcmPM5GPQy4piEItlCWolKWLdGqFqZhCGzLrJMUlMIwpydMsTgpjMGz5ZXSKqZoPHahsVXRjo/m6KJJk6qN12AOldOYoml8FtXi13INKdHDiHRNe2vXaUdPEwwRYzSZzxg0aVEM1lRskx4AYlQL3eCKMSp1Ux6rVR62dInQmpMi1qCPam3fMAzJ6OeKlR79vmFFWeTU0otmR7C6oeey4b2olEPU+Gq8fr2SIdesZlpr0ZCfr89+6WPo/kiqIchYqulR9VnjXK9//+dcjj7K7C+m3W7d+ETsdfvraCjBox0m1UarXCuXjLsSLBBNt0SNiE6kUywMMTTWknh1O7Fzhj/OKykXalJp1uPTI5c8c3fYkS7aHZNTwU8Hxt2B6GeGaeJ8ufDh/QfevHvLN+/e8fh85svpCQTsuOeb12+ppXI6PfG3f/c37KY9u3EibYXdzmBN4f0Pf+Sv/+6/EGIkLzOffvgBaywxqF5+cA62yvrxR/CCGw/YQQNhYmuwJbb1whg9xar8CxLr8zNhGEnLDLWwXY5qNjtMDOOENY759IW8reRVsFGbJ9FU5YQ0Q6u1s+kdwqqSDSM0F7VLVzLGGWrdyMbgqsePQ88ys5iq5QYaFdHNVkKuhghgLNlGWlWjXkoXvIATSzGBWjbq9oixBm8DXoweSneB8eaeYCCGASOQnd6/ZT31m0kzAFppuJJIImQLXoCWKDYipUFVf0mxEcFC01TSVoXqDXgHZes0GsB7hEIUobluTi+JgCFTqQyYXHG1solQqwarUD2YhsXTqoApqonuBlKxug6Ts3aV/R5viu4jztCqg2jwueghnoS0jLOBlBziB1pJiCSCd+S86ZrlDflyxomwm/Y8nU/UoiFcw3TL+fyBqUVubm/4/PkDw26kPH1mf3ev9935UfGslxMOy93rt5jcSOdnNgdiHXc3Ow4hMHlDE+G06D4eg5rIHw47punA/uYApfC0HvWAQOG6dKg4R/+k8pVEYcR9rT2uYoter5b28if9s5seHnsc/ZVvo4W1LlRVnDafmso8K181zdoNqNq9Rg9SUuQ/MG9/6Zcxat55iYVurY9qYRgGtrT0QhYlRpT8gmzLOWOsMi+u5jyVVdSX+GVjrq+LUh0ML1/rWpxfucvSRYL53/CCe+peQ09oOSNdP5iraia9XI0NntoLYmctKSVKURNZa3182kkDCvBseBco1Ksq8SUFT2pP1jGGlHKPU6bLRLTT7Z1/eR93+50Wg7UiFWq0ZAMSNKq01Mppu+AQQgNjLcFYlrQxd22r/Ul3/cqOLq2xbSti9T2fppHz6YQDDjFixRCM4Lsx0lrLECNCxluHKZk47qmotlWMAROIdqc6YtNNd/19ylKxUnUD6VQE55waT5LiybwP/3/2/qxJki270sS+fSZVNfMphjvkhASygKpik9JCUoTC//8T2F3FbnYVEsjxjhEe7m5mqnqmzYd9zCOLj0w8pFyBidwcwyM83ExV91l7rW/RtZJ8Mm/nWPV59Yh3eDzby/n18+WA509PSPSkEQxL85GtVdb9Qq87VRsOR/ATW8/jMGW+0BCiKSjJM4eZ6D+nf5fFqpi7h+5t/Y8EvJ9o6vF+xteMuIoE8/CmZWZfCy5FqB7vCkGU6Dw+hlG+4vDBEaIyNWsInKdI10zDLEGMhrWA+VBzzXTBCiNG81IcVc3rZlxpf32Yi5iNQ83brWo12VeP8CAPj7bFardq51FvynZ18PDlFxyOt3z3/SPny2aWIm9+XzcG8VIKYXx2c87kQaLpw9aQvB3+ciksKdp1VSrxyl8WR6fjojD7aH/2ddPgbbjs3bzFLhgPutZG005DCM7WoH5gFXu3IeGKivvLPIJ2KyDRWs1CEwOtfD5U///7kjEb6zBnWxJhrLzVSkFwn3mm9pm3/097Bx0/f8bmBFudeheYvDPur0AMjnlZaLoxL/D89CPffPste63o8MxWgfubO97fHPhYCjdzZEuJ59MLjy8vJOcIMXKcZj49v7BePnE5PRPSgd/8w2843j7gU+LN27e8fHrm4fY/4DRzf5h5e7Ow5srBR/74u99z9/Y97x/uePn4PdtlJW8rX379C+I8EWvh8fe/JQbHdPcF0+xp5xP5fMb7RtsLvlVcsHZTJxN+gv3lhbuv3lvI6nyh1Mp8e4dMB4IX9sdHtvOFSqCHSJoEtNOkU3tA+siO4HBDje9iwdLgIrhgzXHObESqtnm0TVY2gq1E29CIh55xzVGAvRTmUMit2++L2dt8v+DKCj7g4kJyjszEFKz8qSKImEf27u6WJQ0WcGAM9krbznhvh2JaQ0qm4+z7jmFsFR1OI82bzcMsVhBoaCkQF3oXmrcwqOLQEG1FLyAazRcMqBekVSvL8c4I0NrQkOjd41VhqM3dJXzL9JztQDxKeK5nwtgrvVdqstCiOKGHZAfl7g1l1qyvQOJECgFplT3vlO1khSMIpQmuVfLezHngIzd3B/L5gu6Fsl7QmtnySpxm/HTku++/5ebhC7Ml5o54T6/K3de/4sdvKtTMTZqYp4lyOXN++WTFS8c75vt3FB9RScR4YC07CkM0iCyL5/2be+7uHnBx5rQ9speNLm2k5NxfZODGZmiUe7hRgKSvA7P+hZZ7/c/DlKUD/zg8xI46Zt5u9+kR8DNh2iNShm3M8g8dI371rvjezcpo7zJO/vr729/S6yc3IHe1B5qq+UWNgay0fq1V1BGis4eaNB3j5Fhdiq24o/8fyRT2Uku2q6XFrxzV6xrXfr0NYK0Z4kzGj1gxqkWMI/Qz8HLbbngvGc1XV4+0YiEx5z0ixj70MQyzvSnM1/a7Vq0d0OpkTbGq7YpyGgMqFlJpbXzwx/dZanm1Hax5JYTI3cMtl8uFFKbRMqis+4aCtRDumZINrda0k7uirRFStBpVcQQf2NYztTLW78NDJWLtUlWR1pHSiCoEgWmajZYhdvM00oixif1oB6Obv7a1NoalMHxahRiCBdOCEGJ8bRCzPxect4NOYqIVc035ILhg62Xza3u7Uav57GR8/TRHah1gdTWP9lo2vEDVwhRnwt0b6Df0XrhczvRSaV3xzsIg18BXCuar1W7tdTqQT945m6GHUt4122dyrK58DEZOwUKWMoJm27YRg1C2YpacYOpfE8ZazdMauODxXUnNsffVNinqENdfC2WsflmHRUnNstCxivSu5GL+ta4OlYiPkXw52ffbKgFIKdBKw4sjF0P8mfXDLBdhQPxFOq0L0aeR3g8syw3b05nz8xnUvv8+CnvM5zw2DTEwTxO1d/Y8GhxbwVUHrwOuBVSbdvu5YgUgVaE1tcpUGr2XQU1xrGvjuNyQax/r1T4U6sE1V6zwIAi1tuHN09fNkVXWi+G67PRMG0NrH02Af/VLjD5yRTNZ4acp7t265nFj3SqIlTCorV6dVgS7toJcvYM2RKexOetjAFxc4mZZ+OrNO+ak/OGPv+Px0w9M4mjRm1rqA8uysJXKy55xYebm2Pjjt//C8yXz7v6N4TSDkOaJJS08vTxzWTfe3B3444ePLLd3rOuFm8PM6fRE6Jn39zfUVvjyzVtOa2Y6PPBP//F/4nx6Il9eLLR8c8v9m3vq6cTz8yfuvniHOk8rjf1ywWsjqFpYMSXaWolecXGGvpMvcLgzksa2nkiHmfn2DlyknU6spxe7r8dAqpVSKj04UG9pf7V8R8ACwNKtAVnEQqqqFafOym3UIVhzZejG7G7dWVC6r7bdcgJpooeAK1YTXNXyHN4rWjJB7YAzHSZ6BScB6kZrF6MYiLDECRXbBM4uorUQponoK8KC0w7RoaXbRiVGsysAkjzSC9qU7hzSrxvYThBvFch89toDOG0WBA7RfPYSoJqVrotHgkDpODchrdGdDdGuFVQLXRSvJliUakHtWht+bGpjCMheUG9B2VbtsyytE+ZI9Pb5rt2CwuJM1HHjwNg7EOwZEstOLIWiHRcs95MksK4W9I3Bc3PzQO4fzXYlA1/58sjN8Y3hJC8n7m7uuVwEp+9oLTC//Zq9XOiXF0LttJxRZ5bCLoo4RUNE2yBK9IbrnUOKHKeFgh1MXLJQ5X65sJ4v9j7gjNTRzXfdrrx2sQAfXLfdI5TXhdeWqS7grnYKG6qvKDhTX+zX6LivGLzA4RWU/P+jCHe0udeAYNfXb8K2T+ZJ/Ovvb39Dr5/cgMxQeDuY37YorTbEW2hjnuJrgM65yF7LCLkpMoZp86+OClzngPaq/KoXpjQjrQ++r/vsj5ysyczqmIdaIzbw4sEFRy3ZhqRk6tUURimIYExktRUS2CpYBPa9EGMarOOhdDtBm4HAnRNKtVa3nEf1dAiUvA1Os63vqhquR50RHtC/CC22RnDC7d3Cu7dvOJ9XTi8rwCuSTpsptNZKaLgxXCdNkSBCq5U5TgQthBSBhPcONkN9ibNhyEvg4eGedbtYaYSMVq9uIPkUrGTCa2cKjqjerBASaeq4NhY6J5Sy06fIHD3oPpIEUJoyTYdxmDHFvTUlxtkYmQ6C2OFoL1YgAAJtDKRXqDp2E2q1IjhTXXoxjmRtdNeM89phXbOFF/pnq4eIKQRdoalZdEJ0lp53EQSmMNOKUVGcdnzADm1bRrwQ52jrtN5RV0jO4TBfvemEtsq/7BvOQRFTBJZ5ptbCptkeJsEe5LTOIpHcCtFN1L4To9lFZISLejO/mSCowN72sbGQ8dnrr1SJhmOeJ8racS5ay6FXSs+IE5IP3N3csOeLefx14ALppkK7iRAdEj21VfK647pYW+Aw4MjrIceTq5U7tDo8dX7ooXW8b4MHTYPMGPoVxAtaZCTyzf5UajFsoo8EPD4ZZxV1ViGN0mrHCIBtXEcV6SCSxqEtExx/cVC2g4VzwQJ92mytqfybpLwN42b2CVPix4NOzfJia1fzkqqMh2UHGctUHYc+fV2bCqLN8Is+EmQ8GBw83Cb+8edv+fD991w+ndi2lbs3bwnVEImeSN8bT+cnnj69MKWJyVk4+rJtHJdqKnIQcupc1p2H+zfM85Ff/OLX7L/7V/J6YX73lkCj7Wfevn0DwVPVUXGs686vfvkzkma+/+E7Qky4MPPwcM/Tjx+ppXJz+5buPfX0jKpZwLxT9ssJtkxKkZju6P1EG2UJ0XfKvoFzLHcPxDlSto388mSecYS9blDNttax4KejgkYrm4metln+gWtepAFzRoujkejaSGLZDXGG5esOfHNo92iZLJTtAuwV2kpKi6mTaTJGvRMLmIFZBVEcmSYWBKRsiFZimJAmuDgR5hlJo0DDORvcdPs8LNVB9JFI84E4tp6i1a5PF5Eu4yBpGx8vOjYVJkY4F3BaURy+VKN0MJi4g1Nv1h1MyHEyjmRKE08Y25axsMdPDpGKrA0NE7UVGM8778zPn1UJztOLYch67YRgt2Rt5utu0dl/FodQ0FaMTFQyPniSKrXZDFBrY0qzbYrLymF+oN294bl0/PlM9J7L6YnJJ2K84enlmcPtHdEH9HiPK8r543dIMazgmnfQSlwmpuOdYVMP9wRpONcMRRoE52Zu0sIyBS55w4myV+VlLWznR0pbrf2uOws4ihW4eFUY3Qkq1trpsByVqiJjaLbjsXmLFXsG9qEem/e4j5+9H1hk23CKdrr6V+GwY2FpKEYl6VfFWsbvaZ58oxb9e0jvb/7lna0JrzQJ58N48z97hW0wtHCESmcalb0599fig6vNIqV5rCahYCuj3swx5v+CgWxhBD+GN1BvZRStdUqzAUiH7cFsDR0XLSToxyq5lMIUE20E7Pa8m/e4ZJZgAHYjajCGtTrWKSOA1q+sVbVCDoaPc3iQzefrhkXEiBZ0IcwTy2Hm4eGBZT6Q90qMmdZhy5mH21voakUjudk6Hat09k5M4XVu0CfsZ+CDHwcNoYn5pFWttAFVq5UWUFZUIU4JrzaIBm/nYUTY84WbmyNxiuRsQ40OgHqr/ZUWYMFLU4yii3g8uRjlQ5xHRpNcLVYCUV1HfIfB9O3NSi9as5vPFAcir0Hw1t5nnxtHildMXKXmZqtd76mlkrcdR2A+zJSScdKoXcfXWXuiNd7FYfGIVGfp4TAaF/u2Mc8HkEBrjMIBW4e3XnHevMNJoNBREW6PN+R9RZwp5X5aAEcYBcNSO+6a7K/D9qCmPrbWh1otgFAHf9k2H90OOqpEH6m9jsBj/x8efqLYat55WitMaSKqp1ULanrnLcTnjMvsRrNWjHA4zATv+eGHH7ic7SFWaiY6bzxP5/EaKK0Mz28xcklrhqtT8BIQPCkF4w43u10brs6G69INj9j6YIWLhxFqa80OG8LVXtVJaULq/ur18z5AGK14KDg3aBFwRdWBjMNqttrgYYUSAT+nf4M7nCLjsShjpfl5ULYoAmJEEdt+dWRwTT/7lq8KNKDdQjnOE71Z1KLz3B1v+NUXD7R64bsfPvLxxyf2HablhsBMM3cnp8vGel7ZLxd6a4Q4sXhHQnh+eeYff/P3LNPE82//hcbG0/PGf/qP/8jPfv4luWZ+/PREIBPkQI8zezNrXAie83rmN7/6ijgl/vj7f7VcxN746uEdnz78wP00MznP+eWZmznh5gDV6rD3fcVJYwkerZW9b0wxIPtGmGBbdxZ/5PZwhw+Oy8dHtGZcGAHjdTP7zDKhJSPbjgaHSwudaAd2sRCTLRxNXQ7J4YqjeEUiiEy0WriGqvALKVqwuoonTJHeHT1O5v13yp4bns4kjV47XRIh2YHLOQvsNgm4rsgyI/OG2y80l5Ce8EEJvSJlx6kf97tASBHNGd/t3qcq9GZNplILzVsgj1LxwcgHPRcro1HDfFoNMUQtNOesSCl4Wj/jCUTnqFdPfO9WXz/ISUi0gV4zosY2dx1Uyrh2jCSjvuJlxmnGTZbd0FyJzoEP5L7ig9jBIUU0BoxR443ekLMVPzVP00JzI4jmHOLtueWoOG34YUW6nJ+55A0575xVSSK8f3jDtp6R3nl+fuT+7Zd8Oj9yWV/wPhC8h9Ap2xNRreiqSKWKknzgkG6RaUJd4HC45eHNew7LDUuK+Nq4mWcQoajDJ8+5VE7rR5JWC30q48gL4gxP2FWN8KFqNokRfByndvscdvu6sVgyZZkrAVltAO5Yw+g4UF9DfcZD1qEo26ZE1LjHSrOa6UGwajqO6bZyffU8/1ReP70BWTtdoOyVGOJopzNETAijTVzAB29IsN4ordDa9U0ep04NCJ3WbOjszfzBwX1O00exB9QVcdWrVT+L8Drgdum2ph2lHTqCcDlnU5vcKBWoVqyAKPu+v1ojrr5lsLIFreYz7qO5y/tA18K17cZ7b8MgwjQNC0hrTNOEIzCFaEmwZA/EvZhPdDkcmJeJh4cH1m3l5fRsjXuY6+Dm9tYKRXz4rJgHY+hqbQzrEm2EA1W7nUDVuJTXxjGHQfvzllkOC5d1NSUqCiVna8DznmVK42fm8KKvlpcQA7kUojfix3XYvr53rRhlxA4FYST5K61m0mQ+wX09oURjJSO0ulG9t2Y35+3vFawpsLVmg2yDUtpoh7L3q1azI4BhfQRo6ojpyDSb57iUbr71WmxNGSLeN5ZpoWXjKRsm8Bpkq2RtuPkwwl2Q/EQrnaaFmCJSK23fyNtGaZladhqOumeonXrZoDZetiemENFW0daYfGQ7P+F6J3k70GmX11CN9x7F40PDiFNtVEcPustY34kfzZGtG8pIDPMmqlwuF6YpMk3RflbdAqnbtnE4HixwqRBDpI/Pyrt3twRvnv5WO/Mysa2FOFlhRRBH6aNZqg++ddupPYOPUE056aPopDexayF4XDWOp7s2ivluLWfAHBMex5huzDfuBY89PLp21vVMTFdG8kiF46w9zKmB/F2gV0MgOu/ptZrq7DxznMb2AbM6lPpX3+L8UIyuta52Bxm5hPGE0qE4CraVeHUk6ue/x9XDrGIVtdH7kV63bdIv3t4R8s7v//gnfv+7P/Lt99/x/LJzuL/ll7/6e2BH9w0/O/ayclhumZeFoxfevHng07aTW2dZZt69u+fx9A56Zt86X93fM0nneAhM05eGfxQooz1y3wsxdX7x9Rf4FKFkWimsTXj38MDp6SPbyzPUwuFwxzJPbPuFuFa6jxyXiPONum7osHDhCrhkA0kuhDSx3B7IdafvHY997lutlPMFF5y1g25Wn+wnj7oF9SZUuFHq1L1hA2MUVINd72I4y66N7hPRJ6R1oFpA1B2MwNAcOic0i4VH/Qw0fApEN+GDoq4gPtHU4ecZ5IKUig+VXgwbqT6hUvG1IbJbG594CBGNwwKSi30PziyH+ID4NAbGDdXCiHHa/zdIFD04tPpBUQq2SXMV6uDFu4D34JohFrWZUqxivH/6bkUgLiBTQGtGS6dTEBWcNLQKLiQcUJvgCiBtHGwn2r7ZZzhvxgmuO9o87hDMglgayQm4RlesbKXv9F5twAsJ10zs6AKt7HQa63amEwg+8bDMnNcLn/YnNC7kkjksB778+u/4/vs/c378yLQ+c0gT531nXo7kyzNpueH2i6+o5zN7jCy7p9ZMDBPzPLOHxGE+8OX7X3D/8AUyzxATEjI9OdpauEmJHoTLdh7WSrvX6dgMgbyGz8HsDVf+vzjjF7er46GP9xDo4gbyQlECTXSowbZN7ip0sQ2b/Tl2OO0jU9FUrqRls2ihVABnxWXO9Vcahgw700/p9dMbkLGhB2/DlFUgmjIWR0GHqqKtY5VAfXhyhaaDqyrmD1VsoHkdWNUuRLpCAMVwU9ZzroCRGUQY/jyhdWuBM53O2a/F2Uq7NT5/Mkctrf8cBLR/bJ71wW68OGOPln71pgWCGLd3X1erBaXhxSO1c388suYV7xzTPNuA6pT54cYCG8vE8XjkeHOwKuZRnX08Huyg4GBeEiE6pilZ34r3hODwwzeb1x0ntsZrtVJrodEprdqaF/O/NlWmFGmt0nqFi9KbDbm1ZMR5tn0jeQt/ecB1jMgxKjhTTIMvacOJo9LrRhFTaENwtFyt+pXNhtpg33PJmRQnUlxsgO+NupvFxNtbildoe0ZLHWisv/BzYQeAaz1x75ZBV7Whp9aKD54QJ1MjxT5iueyICpNG0E7wtzakuUaIoL0Zb7QLyUe8x1iVvaDOBiDxgqg3cgiKMpToItCFGAMsC6pmH2nFtid53Wh5Nx926yxpGcFQYfKVQ4K12gBaBLMtOLNVtC7k2pmS+bxljGK1GAc4jOZBRplODIG8l7GhMS9ybWZhaq2Q624IwBhJIrjomZxyeXnm7n7msme8TzaglB3nPPPhwL5tTMGz77vd/J1xQlsTctkJEmjjMGatf53S1LzD2ujjgX0te5JuIdDSqjG9vT1DxIGPjugd22U34slQ9cugxoThNQ7irIYXo5jY59ruDd5Z0x4KtVVE2itn/a83WPDKNwZGzgHMpe6ogLcbkA3Ag6JzjVGI+VXMeqH2n72MDYuzcJmKMB8SP3t/hLzxh29e+NOPP/BhXWkBvBTuJuXnX31FEEfXzo+Pn/j4zXfMwSFaubTKx9POh4+fePr0xC++fMevv37Pm5sjPz6tvH+44XQ58/7hDafzTsmVD58+Enzj/ddfg+u8f3OL1o21FZ4fP3IplcNx5tOP39G7cnP/jhQDT6cT+fzMYTky3d3TG/S6QS5oz+RckZuDNaqtL3SUeZpI02y170vncPtAXhutKj3vIBHvPOt2sSFSF6r3uB6QvNPbheoCU7ox/KOpHIiYKag3s/J4B9JXE0JcRFxC1Ci2fb8QmrPBHbMm6ZJwEkkUtFZ6SERRXG/jAJSNVWvQWtsQOI/zNjT5aaaredQdhdQzXhfDuCUjemir4KoxuVs1d33wSDAvstqNzgSc3tC6owT6KOG6ChLqPS5nWrR7k3/9HI664hEMlSZAQ7yF5Wg6/MGjHU5NIW29MHlQ2fFTpzm1xloagUqPgnqrOO4VcG5YWhT1ClLpuY7yEoFlNg80oH2jbitmCKtQd1Q86ux5tK4ntDnevv2KcFn59sMjLjq2deXucOA0Ry6T43R6JM131FLIubIrtHUjHe/ZC3g5ME9HHMUscBI5LDPT8YYWHafWaafMthgZIvhASFA0s60mmKRoVdA67vRNr5QoebVcgNDcCN6D/ZwH1pIx0lqxit25u5pV4upnVgdUyz45zD523UQzIAIqllHpCBVPHJK2V+g0xvkcqygZ1op/V5D/tl/BB6RdPVrDSD4+YK0M6oEC3XBOueRXT6v3Hloz36Ho65v9SrMYJyUPr9QLxmpeu638tQ/eY4rsPQNWG606qqaHAm3meqMDhGAX/XVF630YPmP3qobav1vA6brSs7+L2GalK0ucUQrBWymCU0d0zhrZgjdvbwiE6JmOiSXdcLnMLMvE3f0tnz59YtvWV5VYnPLw8MDN7QHt5pvOaqHE4/HIvBheKQokZyfaZZl5+vRkD4dRWW3q944PjtI2pBt6q6kNFHZRe+peSdNC8I6WCyGNAVUZiC83wl6jktp8IoShACrKVg20T6/s6zP7rpa2FUecDNdlarQVfxj7uNPzULudVW87cWZHwJqcertaU4aXu3XG9EqrBcfYPIin144L1srofcD3Pvxxnd4UdY7z5UKKadiBwDi0Dkodq8Zq9IRSEan4YDjAXpR93wjB/ryUoh3cxucUsTWqOEgE5hiJQdj2nRSs5nVXK7OZnFKjY90NldZxiChBPCkmSu/jxjlKNDrmKQ6jhnyEwGorQ3EfIdRuynJ2NkA78czzlQVehxIhRAfH5cDhMCEY+q/magE/58ySg1BHE6ZgQdcQE10Nydg7Vr3azMJgGwiHCwHnI7HbQ160GpZPRmAXU5LVe3I3a5S2AkXR3VRiJ1ihxbYhYfhLVa2l06ZL3AjmBSevnvWmQnTezC1u8FzVmMXe//VPEDcO9II1YTlnS9gOVjE9znR+KEJuDL28Bo4HcgvGxmsUizillUwKiS8f7vjll284ffqRy8sTiPLVl1/y8vzCZbvwu9/9K88v3/Pu3Xt+9tVXvL1b8NuRuq/8+Hjh+dOLDZooj6cT6XjL/+M//Jokjae18uZhYTk6XspEKR95efnIy8sTX331Nb1YC+r97R2n0zMxRR4fH3n48iukVbZ94+3bdzw9PlJrZkmRd1//jCUu7C+PiAqdhrtsLEtC5xmtSm273Y8Gez5vFw4Ha/dcL2e7l+roJvOmyCmTbcjYad1UTr8cCGI1zb1sBG2DVhHAJSNbeH3NsIgk8w5f8yWl0GohBSvlEe2jhVGQ1vAp0cOBXiu+diRGarfPjqon+joUxE51dkDRJiRnLZoUywC4OCFpQRcTQ1qveAcqHmkz1dJbryhUWgUC3RndQV20TE+tOG/FOsELDkfrdo2JT4T5aIHjkKDviMy0VkjOm80pOYKbUXHm+U+THdwaeNfoNaChICFRVfG+0zTYVqktdDcRFuOlt32zjINcxmfXwu0+2F4l3i52nwUoxUKGrZmaLN38R/uGb9XsHzESXeDcM05gX09ji7Xw6XJm742iSkozoo5jWkA8S0qU/cLNzS2Xjx9ZS6eWnfxy4tQ2ljSRVXE+cReE3o/sOZPWZ8L9HcfjhNaKr5kmjcfzmZJ3DslhiKvPRUUeC1CLOLNRuGa2FDVLWOOKpe02EJuh3ZRzSxmMYbmPodYGbCEjtiQYIvPYOlyH3S4IVgQi4kZb35Dzum0LLINh9xZVR5fyV9/f/pZeP7kB2TjB9nC7DpmMa9/8nm7g3EZTzJBWriUfNmTAFdt2tULI8BobMFtehyktI/iiY905hricbb3jRFiva74QUGBZZtb1YurmUN8MszaPZr5KHzXXzlnYwNTi4RfzEe8idZAcYkwWmss73kc7lSOkxeOi0nLmzd0XvHv7HhWrgD0MT7H3wp5XzmclBOH+/pZPnx7Z9wvzvHB3d8c0Bc7ns/1z2qi18vbtW5RKyTviR6CxRfZ9YPRwbC2TczZFuVWkKN1PxgguvCq3PgT2veDG4aFogZQoTllbYZIb8223TJTAngf+S50F4LqtLmOKxp/1ZkeJIRKdMntondE8WAlxxsuBm0nRVl4HhWtlseqwDHQjR/RB7HAIIXjzrWvH+WZV1iGhpVj4E0/Rju+dki/4oSKH4Nk0g9iwPMfJhu4g5kGuQ5VRIyd0NfpDHJ7lUsaQjQcqrTpaM3pDjI48hn1nuAz7+1w2/CB+gNDKboLi4NiqALUyh27M1tpxIeAF1kvGt86G4pqaajX8wE6EVo1Scb2WtHdaNy92a1bYkmtGe2VOM1OIbHmz781dry/7u1ojnrNBr0JKiZisErqWMgJ610NsJO/GUVYZRIFxyEEs6BpHMEh6fb02+7i+vXPg7XCZh7fYJ2vdbBQruonxVQn3ztoau+sjFGh5BsXKYK6/7xXxeP1MK0rr2X4myQ105Ph1f+XLyLlDGxIdSpwMO9J4WI7SB8d1IJYR4LPHo4Xbbdjx4oketO744Lm/Wfinn33B2zcPXJ5fEFXev/uSYwr8zsGnf/0TJ9f49Pw9/8v/8r9xOB64nR1JhMtl5cPzyRBfceHuPuBj4PsPP/Kff/U1X3z1Bcul8dW7GaHz548b56cXWq3c3r3lqy++pNP5P//jP5K3lTdv3/H73/4LXRyuN/707XfM88Ifv/mG5D23d+95/8WXiK58/+2fuJ8iTT0xQLx/oJWMuwZMx32pa+OyZQ7LRL1c7GAbJ/pWxiZBCIeJ+nTi6dMzKQWON7dWthEcUjrad0othHhDV+O7azfBw+kIxOLH1Xo9nIxw0/B8io9E7Ui0A6O6idqs/VRKHfSUxI4JIcl7qoKeTwRpFO+pzdN9QGtBXYBeTNV34HQEVC8rIU34GMw6lStNhOjMX6p+MlyhWkub9mHrc0Jt2ODrrJhJezEBwNuBHwRfN5r3VBnP1J5RtZZKLRsSobojgY7LBYmj7KkbbLnXglARiVR15gOvDTc75HCLa51edzQ7pHc7yFYoiyNZ+p0sowisdsgXywMFEyyKgMQFpwW5PCO9U9VqxKOvNAL4QCEAkT0/8+nyjHTHvq5G6YkTx9u3tPWZwzJzqc0Cb61wOn2ilM5084CEhHeNGB26rWgMNK3MWpjF8ZAmvrx7IM2JbSus69ksjZdnZj/hp9uxtbzunM2mqTLKAHREHK8LIBt/UfXjfmj3RRmWwz7uA6pCJwwXhfvsTx6qsIygpIyNU8dY9oq3+XdQMnglfumrH7q9ruD0s5L8E3n95AZknFqRRzP1zjlGoMaUkg627lJTVrwfnGLMDqGjZe9aE31lrF5f2j9j3a5rZUYRgnP+1TMsY6i9BgIZv7/wOSjo/TC7D2/vvm9mLBADskwxGX95sA4Rb2vb3JA4HoZhGPd7JSULyU3J2JD3D3dMU+L27pZ3795xc3NrCCNVKo3TywuIcn93z93dkfP5wuVyZttX3rx5w7LccDgcOJ9fKGUMG8DxeOA6vPVuJSaldpKP5jOTZsihcA3Flb8I2ruhVA0kmYuU0qi1crmspGiNhW545XQEEGofuDgdyVvtZmMZw5o1GVYkBGIyj3OIwnVRZcOdhaRcSkh3Q800D58AczIsYB3rRRHhsl4Mb+TMs7VuGVXznIOVh8QQCCMECRWcbRVQ6GohyNoqaH09eAU/gQgpeLxYdqVsO9eAWC2NWjPJH16/xodkRS4SqKOoo6lhC6dpIrcOveNUqegoJjBPfu3NvIatmfKCHQ6ic3RvCkUEejOfu8OGOfMi2zURgzM2dumImuXIB28eZ9deg2oxRHu41kYQR2uVDK8BzVYrIUamJZFrJr/sVvqyFkKAlCKlVeb5YDaIWm2DMkppxAlBog3GLpLbUDY69rOu5uGztePY0DCUVhWCc6+HZ1WlZfMPB+/pzWw/gg3kIdiBtzdrmLKEvvnrLWgLIVk482onCiPM6cbd1d5TbO3e/3qThWDDz/UwZEOdI2CbZYdQr/QPBPVGIxkgkM+2CjHF2TsbnZ33HI9HfvHlHV/dHSjrhe++/55L2Vnubnl3d+CHHyN3h4Sjc9kr+155OX3HpzkazaU2dhUOh4W/e/9Lvv/2Gz48/cD333zg038q/P3tLUjj93/+hl/+/Gt+8fMH8r7y9ou3vHz6kUvOvP3ya4oqziXW5xcenz5x//YL/vznbzje3FHyakNAmpmmwPbpWz5cznxxc0OtZ8CurXzazdYlnUP0VgSR82g2NCIEKaJ7IXYlpoS6QOmBslU0Bn72q68R8cbLrSe2rTG5YOQUiVQdP7tqaDRVswE4GqJKiAdDeqWE03HdTM7a57rg0gHnO4QFFxy+ZOPe2puH9kL0M/hIjxFfMi1OlFLozQbRgNJbpXbFR0dpjhAnnCi+ZPwyG+qw2X3XbQWZFzR4IyHlFZo9e5w3v7ZZMZw10fWCkIA6sJRu5EFHLXEuON/RFHHd0wCp2D3Be4Lz41PrcXEQHLxdDyJK1EaZZ3xckGoecmKyZ/HeqS0TponmLOuB2r3d+8XyLdWyImH4oXs60F1BvNJrg2r3a1GlTRN5reS+muXAeaoxGdn2HVXBuYn5+MAPH37gsp7pdPq2kZY7traDdLzr9L1A8LS6Uy8XqI1wOPBwcwStlL2TkjClyCSdVk9sJfHh6YVDKdwfrLTp8fEHLudH0sMXeHdHGiSJq21KxQKIqOUKtFtrqN3lse2U2rzRzYQMDEFFR+5KLUDdERDbWlydoUp/3ZireDtEazcbRrdh2kSIYJ/NV+aI3cukQRXBD7X6p/T6yQ3IzpuN3I8aaFNjzY9oDzB7ePpg6lDPYvWsem0DMxJCG6G810a+4Xfa9h11NvR5FwAL++VBmwghjEIP02q8j/RuambOO957zufLq1+2d8Nl9ZHqByGIeZClWytScwrNCAR1eJZ7bQTnXwNAN7eznVo1kuLE3f09x9sjIQZOL2f284bujZIb3Xum42wKxQTbtvPy/IJzjoe3d7x9+5YYJt69+5Lz+UQp2Qb4rfLmzQMxBU5PZ+idZZpQcfTSrMUpBLZWqLXbjbI0Jh2Ka/DkbUcFcik4hOU4s60XmnaqVu7iZH5aYHaRxQdDwfXOnCacCPOUEGz917sQo1BrprZGigu1JTP/+YjqShvJ3hRHeDBnRML4jERcG2G01ujVBm0C7Ns61MJA79ag1vIZxZR7VU9Msw2VOLwOukicCHFCdyVvFS8N7xTXxCgWY91bc6MX2LUh3ga3RrPtgVhrnfOOyd9Y2MdOd2YjEPveLZTW8G3U6AazakT1VK3sNaPODYS0halEYfae+3nmU814daTkwJk1QqaZT/uGC91CPykOz6txqVtr1NYpvTGFiAeCN4yecbuNo+zH+jPEhKAcpiOlVKp2og+8bHUotoHuCi5NpkqVTJontn0FFXJrZqnYCocl0bEDUa2GI7oGQ0LwZpUYjVu52/t8DZhYF0qg5IaKx3tLmpeaEdqopjf0kzoxLy99+JSV0iq12zqc6uhU5nkCHC6O4p7WLOnfzJ9f+1hyDsKEBM9f/+r0vwyMC7YmV8WrJdD9OATZlWTqv6OPlbqp+A3jlU8+EKQRYuTrt3f8/N0Bn5SX84l9rUzzgSUtTClxmwK//vpr6l5YpgtfvHHUfUdjwoeZmjNvuvCP//gPPH74yB/2jdqsJbHlzr/+9reIi3z76YUwHfnirXJ//x55fuTPl8z792/4xVdv+e77H/jiq1/w8YePhOAoeUNw5MsZdZ7leMfNYWbfL7ycXvjq3QOPT09IuUBaEIUFEw50mUA6kitSK9E3JE6Id0Z2CI5t77gU6HsGGmFOTGmh7itttxpqxA6OVR1eg+HK2tk0PMUaKF3AN/Mg+1DRXgmiJhq4CSr4YQMSX2kaQCecKiEOHGQHp5keD7ha8WUHaYjulNzwraDaDCdKQ3I2z7EXmkT8ZO+r0iDMaDvDrrQ4VGSpKBVyh7LaNeucKdFDhOjO4aptyIw4IWa1CA7fOy7N5LFhU2deVSsIqoYBc9aip7OFhKGYVQ7QauJHULtXyJQG013obSd6wc2RRjJf/Hk8Txv41qnFKu6dOLQWXPDEscFp+xnmiMaZli8mdC0LrXfqeqFtG7l0q3CujTgJXpWownGaeFoz533j22/+TA+RXDsvz0/EyVNa4XC4pzWz9Ty/fKK6wOHmgXLZQCqqFfU30CNuDkzHI2+/+ArRzvmycn75gPRK5D2Hu3te3MrL5QPrZeV4vDNVWiacMswN+mp/4HX7MJTeEd5zOJorGJbToXo9Ho8yEcbgPPRmC9WJWeREaWphvTbsjGijSkDHvURhBHmN3WztswHE0LhmZ8UEiX/3IP9tv8yTZGqV96Nr3fmB6LJQnERbRdRSDHWiI6WJHb5qr0zTZMGuUU5w9SjP08TlchmGdh1r3c82jatVI8bIlS/sg+F5YohDYfYoOpRtDLmkOtq8TKdy7rNyHfzn0A8idlp23ry6tRkezbnxZzrevX3Puq78+MOPOOfYtwKivH1zT80dnOO8nvFTJE6JaZ5IaWKaEm/fvDHeMmbcX7cXpjkAwrv3D1xDj+KsyUzH9+WdBTFqzlYE0jpBZPirHXvdqaVSm627vTi8c5SazQ7QG84pvRa6U/bWeXN/g+ud6Gxd3kuj9UYIiVp2cHbokWQHmoZQe4fh/Q1xotHZS2VOE0LHa2Pfdkt3d0/NKz0bleSq3EO39jNv71VrjcvlTAqGLFuOR27vblkvmdZNifNjHVlqZj/tTCnZZ6dmVDt5hM7CwOMENW9qU/PH+mqotVYrLXrjk2JINy9xFNLYFqGLw3uoex2Ds/nhW6m4rpTSoBU8FragdaQp0TkuzZTlNspyphgtEDdUzn2zwKPVRYPZ8tVQfs4NT7IVa+ActRWitzVfSoa9C8FzxdfFmNjWjWm29Z73zhByveEFtr1Su3BcZlrtNDFsm4+B3tTCeLWxZ2OMbtk+eyVXWytqfx0+u3Yr/RB7nyx/MMp8nSe3itZqCLo5Uq4D1EA+mrvK2/+mja42dFyLe7yzw5r3weD/YLYKhhcaU6VNmYbem+G4+rVprSPy11MsOjLsHHxmdduS3hRkGY/G4S92Q0G2Gc7jBNLw7eOxgURmjnPg7764526ZSDdHnn74gb037t+85eH2jnfvFnqriO7ktfLhZUV753TOPBXlpTgu6wfu7t/w67/7B/70x++4u7ujBYefhY+nJ0555v3bB7762c+4vT+wbydEJ26PB37+y1/y5u7An/70Lfdv3tJ74byuNJ349HzGi7DuGT8duRWHa5nn5ycebg78+OGRFCdCOrDt9lmZl8hxOVhwsBUo2Swp4ojRwr/ROS4Xu1c9/fjIvEzcfbHQZWI/X8j7PkJ4bmzfdoJWK9sIy+u6+pUM0jsNK8zp1aGuEJKnb5uV48QAYaJVG0KpiltmBGv59NNkdAznKXnHTYuRBNpuxprpHu0rU73Qym4s36nSNvvcq3q88ywhUrcKyRCQKp6oDc2rHbR7xRogQacZqbtlLoJDi0O0IGLikjTzG/egIIY51JqJaULyBsEGXLyDIERtdu06T59nOI/m1HrBD4pS643gOiqBOB2s/dVZrEOmGZc3XJqoan8vFxq4RG8B33akR+L9W7oUyp6R3l/DzJSKa+abFzfZ5qmPMp9JyZeVva48Pl8Ih5lIZB55HlohOuHmZuH/89v/RmuOebpl3z/hUDKB42EhbyuHNKPe8+bNFyQ3kUtl3S58fH5hubmFaWYOE1/fP/C8b5zPZ0rbyeVCaRe21XF5ObNvmdbNCrm/PDO7e1PLwbYI47ruhCH5dpARt1OjU/RRd27x9nHYYBAmBg1Eug2zVxtNHyQb98rBufKRTUFGR/W0WBbFja9X7aMjx1HGwO26GUL+fUD+G39J43WVmLNV/NZa2ct5WCeiKUneiAvOBVN62mdzuffWWPaKWRsEhFIGg9IJ8zy/+o5fbRXyuVrZAlqeZZ7ZsyHctHdbibf2auNorY0iDqitDdSXFVeUYlxDhynjzgmhO5wIhxApqsQ02Xo4BN68ecO+FX788UfjZYojTRP0TpomalXmZWHP2bxwvVqbU7rhi6/ecz6fDTWE8Y4fH38gTQ7vIofDDeu68enTJ1pXUopsl5W67kTvyPtObRmtjd4dh5jIe7Zih1ZtQKkZJ54tZ4I4JCb2fSeGaA+hllGJZgmIytYyfmu8uVvoOdNFcNP0etChmye3VqXUiosRuimXNEv0VhxzSjRp5LKS0mEcaJRWdruNaGEvO3vWcRgxzBUADmIMLMkweXF2hDAPP6onRge9UXuhoqiraDbShQfW9YyoPWi8M7XVjQCYeCNFWEEMY+1tdIc6SBkAey5mA3FCvpypahuSbTtRisH4W1ZaHQNgNZTUul7s92iGKaR2kp+IyaOTspfCVhuyKblU8J4QAvtQuFuvdFcRCfbzDdcmv8ERH2ln1BriAvJaetOqqRhNvTFlLxssdvjwwSpzJXh8iuRaebmceH9zi3OBaTriBKbJc143+vA757ajuZHS0ZBvQLmWJvhrCNAUXh/Mk3/dBIlYw5eFCxulNuNY10ZwjhickWGk4X1kvWRCSPYQUauKFoI1UernAFatbQTjLECjqsY/dpN56lXJrRHHe5n85zr3v/Z1fZiJGOcWQJ0DrOkTwVq3xJoiVTASjjjqX6hQRSHQebhdeFhsgMlPL3zzxz/yhz//nvMKuV5Y+0KMjqMmXj6deHp+ouTOx5eVp7XwnAuaKz7A93/+V/aWefdwQ2k7j0+fyJdPfPHuPyLq+PGb7/nujzu/+ru/R8qFP373DafLzhR+wbYW/u7Xb/j4+APn8zO4ieCC2VrU8eYwkbzw6cMTDw8Hyp7Z886+F5Kz0pNlmukIW95x1XM8LKS7g5XbaGHLNtSWlpm9QBIevv7SMgSlsj79gNZqrZLjEJT8GXGB3DDubrVms97MIyrS6M0Or5Y1aCOkOdHqjraMbwl1CZFozHMcfc+0mJBaSHHBux1cIgYobbXhIyxIK0T9aDjl7hFdcC3b9RQjLSzEUJHujYDjMbpFs02mBCBnCAcbeqUCzYLqtRo2DKF2w2qKRlQqEia6CL4bC7d7rPENawkt3uG64Lrgu9DV4zBbXcSTY8KlQETRYGVaicWIFld2ro+21vfd7CQyBItmhVAeYVs3fBDKfgJR2v6C1A1X1RB7Al0m3MAbop287YgWWvdoF7QKMNF94eZ+tiyC2l259or4Tt92vIt88cUv+f0f/pVSf2SaJl5OF3SgQ9O04HZrAXSTR+bAeT1zPn0yGk5KxOnAnnf++P2faKWxvpw5uc6+Nnx3yP7E84/fs58Lh2Wi15X18ombORCXo1nhrmZjj5WFqA4hB2M+Y4dhp0aTaDKqgswfwfUhZtkR8xs7lQEJaK8WC1OWx31FlfIXPmf7F9ugaBfbyMrVu9yHP/lzschP6fXTG5ARarHGsjQFemvUMaDVbqtacULtFthxzrHvV3JAt0KG3sl5qLt+rEadYcxK2cefYw/bGMNYtysy+smvuLbeuxWViLwOEa1VUkowBvBriMgNJm9XIxdoNy+qOLF1EpCrEoNHe6X0ZhXMYSJG4XhcqKWz7aOu00dub44cj0d+/PGj5VZF7OY0TzTxvPviPS4Gbm6PtF7oaifg1u3KaK0PO4NZT1rvfPHFV3z88EwNmyk2i6meh9uJl08fDa2nQggJ55MhxbzZRyaBfR9te1ePt3OWSg6BWhQdjWVOhMu68v7NLU6UKQRKtaa3nC2oiNjPnG7kBa+C6x2fhBgnu3B1cIi1jhryjXUfBQ4KIkqp+6unvIs1FhbMr9drIy0HINGL4JMj523Ukr6aTG1g1m4PATA8Ehbk7GW0E9VC1WIPohDpmBJqYQk12gl9tPnZ58vujOOmVQvOO/Y1M7thRRHzRgumBvVWES+so06VZpsN8YL4wLTIqwVJ3cQNnlzg+bzZtKUWNMJ5urcAGKo4L+SWTf1GqLnamlhMiYjRlF51sNdih7Y4UQaRoLXGVvIrDk2G4sC4bpx6gjjSNBOirdR7ayMbYB7jGL3ZKrrhiWxL5MxDKOa1syCSrYxjtGG0d9uaDJnXasiHTSVGbyg67+ij0MPKGMyiYr7lZkEldRaUVStO6VVJ82yHH2+/rrdmoElx14UP0Vv5yHXY/mtf/rrSZGyfRprfcUXADcM/14Yta89yTuwwJ4oJRJ3gZXi5hTnC6fmRy7Zyflr4/R+/5U/ffENtgf37Ri3K3e3M17d3/P5PP/DbP/+B2j25Ni7rhdbh/d17zs8bL8/P3IXO2ze3/B///b/x5Zdf8U//9E/Myy3ff/M9v/v2Ox7ef81/+a//G9oaeOWLr77mw6dH7u7vaXXl2z9/w7pXQvRorpRW+PKrr0kh8N3333OIkQ8/fmTfMyl5Ao6i5ptHTc3EC/2wsNeCipEG/BALvVgj2/Jwz81yQ94vKEKtK9tW7PDXKy5Fem+seyN6Gw76tttBvDZq77joCWFC9Go5Gi2GtdqAGs3P2zezS2jcUD3g/ILWgvdn2t6pOkhIseDnW1JZkVDta0QQDpR6QuvFeMBUwz+i4DtRjczSW8PjCHWj9AJjK+JbtizMNGgP4ggtI1pAoqnVPthnZqiU0kBjROOE9wKl4WrBJ/P7igRCHAc17227VEElUHozzkKLxs7tjTmIbQNFkJ7pUUxZboLGheYDfnbovpOCB69UdbjkEK+ID/jjA7rcUveESxag7T3jnYUbq9jB1UeoGVwv9LxZHb0z//40wrlOhEsulD74ybJxOX2il8K8LKznJ54ez6TlyLpdSE5MLI+OdV85t07JnfXlhRAiuWZ6qcSobM8vaN9IPrI9nTitL5wPR/Z95eP3lT2fwAXe3DwQvT2PLEfQ7Z7u1LImfcRyhdfngsPRxLItfpQCOR0Bu+GBN/+x6cl63SypoE4tqYt7DerpsC9fg39d3bDF2OhrOD5TiZuMZwV9ICOvVo6/+vb2N/X6yQ3I15cyGn+k472h05yOIWKEj7w3z7D3kW1b7QEyjlGtNVNbOlwuF1KMdnoDwDivvStZM9e6Zh8cIZgC4Z0fBR+8IuLECdEN747ANJl3ubRKLY05JQTjN1/xbmak74beEVtNu+CQEAjOmyezW7Xw+byaB9qZx9ABT4+PBBHubm8Ic+J4e4t4z5ZX825NkdPlTO+F4/HIsiyktFB2++84Ne9wrdzd3VFL43g8UHLl7v6estnPTltnno5GkRBPbRZ2a2pBu1o7qLUcpWANSp1OdNY2KM0ueLNYF2M7Y0q1vQ2NUgsJa6ez4RBUK1Oc0NbGgccOOjnvtFrovTKFGaUZjxhbWbVq3OhWrPFtOR54Xje8dpxA3ldTdIFW1II66ggaSQN9VPc6Vl5KyZuxk7FSmPHWUYspt3ZGsr+Da50mEQ1mXal9VFkP9Y9uX6cdat0odKo2arHBs7dOr53z+Yy4RhdPU0crFrwsqmxlN2sBZjMKS2S/ZA7LAi4b63s18sfd7ZF1L7QuRB9xxRoWG0Jvhgfsah5zGYg2cdZGF2OkjyHZOU9zhtiSGExPUKXWRhc7cLReSSGOKmZBaQQPqRvnM4Zg14o4clm55MpeCl7GoK2mUnsZPytx7GW3UB5WRRsGhu76so1OH3Qba3/qDUrLBO/NojEOKTHG4bHrtlUa9/6q4+AbHL0OO9Z4WHlnhQl9bDRARoOno9YyPMIjV/Bv8ADpiKnW43Om4oaChD20rgSLURXenaHbXbe/pwV+bFt1Ld9y3lCMf/j0yOPHR96//ZIffnzh6ZShFl62nQ8//Mjx9oj+3S+p2si9c75kunZKXsffvPJpvfDnx0f+4WdfIT5w//49X7y5J++NXl6YZs9v/vHveXm6ME2B59MZ1LEkz+4Xuno+fXym1kaKRus5nyARQx4AAQAASURBVF94ePuGwxT59PGR22Pi/HJmWzPHeUJaY0qJeUrUuo/DaODd4UjyEJ09/f1AaoJZ5m5uj7jWefr43eCxF1ruNJS9VuZlIl/OVlhBR11lSgdiOuDjARGH14iEYFxdhOjDsLk0tFRbYHtraowI2qohsqTTdNQva6Z3h25PgCL+iMsr/nigE0dd+swkhYjSfKSWlX6Y0eqISQlNYTrSVAma6ap0HF4mZORo1Bl7t0tEyXg1X3xvhapWPe1KBt1tW+ImfPRoEFzzpngnUEm03nG9Eqdk1fBSXw/QTR3qI55G2yvxoEhQ/FoGFsy2HN57Gg72C2pjHtKMCKTzqODuaqSgXiyk1ypNK+3yjKiVWdVSx30pUHOhKkRxRutRxfXPtJzWdnyMBB+pudC8Unql1EJtnmU6cruc+fP3/8rp+RMClGI2kWmK1N7p+2aH51I5Xc6kw4Mx0kWJxzuOt3d47Vz2M10j7TiRJge7p24bT48/sAYhOeWrr99xf/8GVWWOwVj/4jHTiD2D/LBVdKxFzw3lVui066/VPpoBB40EBuWmg5qj2em1fMRmhqsdy1Et7CdWuGQAOWNUm9XDAunSgGHYctpouGGPUdxPC2AB/AQHZKW+htW8H6EBTN1zYqpSLoZfcq1RygUv6ZVaUHIdD0kdtApT5Zq4oY5aq1hXq+JMyVQnU55G/a4OrJJ8tl8YFcB8pMkH7OSmgzdsCLjWOn6g3YIbVbHOFPFrcEvUM6fAFDyHw0IIgW2rPD+frGXNQQjGeCbe4lxkW1fUV2qD08l+Xe2Fx8dMd3B7e8Pd3XF4iR1TcvTqcOlAb5VeCj7YQFqreVd/85vf0Frjuz//kW//eGZfd9Ztt+FHMcas2mDQaWaboOOXxR4aIuajDp4UA641pmCBuxhH6+AIJCrKnjPDGG2KU62oNMKUKHU3YogP5LLRSgEfLbXcKh9//NYKJbxwvhhvcl13tHaCgyklCyiExDwdgUaarKq6lUp3L5RWSN6TgoUgPcZT9s5S2iXvyODj5p7NzyqO/bJRpTP5iFBtiO6NTCXOB7v5rhu1f64u17/AjK3rzrpeaNqotTBNid4bup3ptVLqzl6qFQRIYGtWDe5itAeYsyY76Q6Jo8kxHnBNSamgvXPZNsSZmuaGp9fsQtZeZ8luU0R1UD4EQ+PFOAbagQHyHYJzuK6mxF7rjsUQeYfFattrbqOm3ROdHzQZa/xroqPJzlGKVa6qM4IIREOSjeF7LxshDOd4rziNxiUf1++VOCPj86RNP1+jzgb73jsBCyK2pgPv5sz7rdbEpTZhol2Y0kQen0cXlK6FXhUndjvtamU5UWyfYMxsU62utqy/6nVVgmB4B4eiLCMspmNbJN1WtCPcaZxkew+vX+Nfv154ejrRzpnvf3zmUj2le/Yq9H3n5bzxcj7hvOfj8wuHKREPR+rpR7MXhInJeeq+M8cDy3JPUeUuJH721Vd8eX/DFB1ffvUV/+W//Ff+9MNHluMtN3d3qM78/a9/QXCOaZrYa+W0maI3Rcf5+RmfFh7efsHj4xPBOU4vJ16eTqbUNm81vfvG8+mFQ/KIOKYQuJQGzkgqwU9IcEgpSDUrU748of6IH2HNSy700sk1sxyOCI6b45F5OSBTBPW4HtGWqUXpulur3B4s1Oo8hUCYD7huljK3HEECrov5buM8zsENwtGEnC70NON9NEyg87hekXyGoEzRqC0SZsp0Q+zgLh/oNdOj4ttOVkWmCVk3XICyXugdogsozhrrwgStmMLYmtknWhnWNMyGEKIF6YISxIYxOlYi4jwxRUNSYhQlg8F3pFfGksKud2eoTG4OhDlC6ahfcc6yL1XV2menA6FsVPqwMDmrUm6dNq4zHX5aY5xHelpwIxBdSx7iyxgKYyC8evIV2Z7JZXhvmz2Xpmki7zsahK3uuJCI0ih1o+bOtp/Yy2bUk2YWgu18IsQZ4sJtDKiWwYIunF+ebOum8HB3j5sTH775E04bl9NO2C+8Pd7ZwT4ka/KdEm8O93z17mfc3i7UBkv0xDgZ1pBrvqFYdbcMG6cav/rz9s2ueacedSZscP1Hx2NTrCPRid2LFLPL8Ap+DIOQMWwY4+7S3CAHqUfU28EOAwhYeHAcsLWPLNdPy2TxkxuQu1p4p/XGw/GB8+k0HpD2oK7VmrEIRqXY90ynIgNHdX2QXosRlKEqoaO2GsPrIEPR4zXopwg4R8kFnDX8MPyn15WnyFh5i63RdVgvkPHABrR1YkjWh84IO4zVh6MRJJlHzMG2Xdh3Ixw0LUhw+Bi4vTng58QULFDkY7SqW+l4b2sYU9BtjfL9d9/z7u2714HMu4lzLizzbB+S7mjZEHK3N/fGntyzhRmHcjstiRgnHI7Th48EbyUhrXXEOx7uHrisZwiO6MRuYgIpCS53W3l6Ww85l/A+AWHwRe2C12bkjOC8qfrXGl/nzYtYdtbaeDmt7DlzGQ91J/b3PZ3OVlUdZ0KYSMGxFdsGnNZHQphBCtM0c3reKKWy6wqiTN7hMYzgcZ44Lgdujjfc39yactKhdCsN8cmKT3rpSDQlQ7RSciHvmeqEN9PBcE37bh5f7yAFXA/gYN93csu0WtjX1T4fKRoDPiitd/YuVD+DnzivmzVNSaeLp/YyVupWGuEjuOBGLbcboT84HA/Ml5186a/IPES5u7vn5flixTg6OMDDWhKiez2sxBhGWY7RE6z8JFFawbCFMm7u3drngsdN3kJLTbk/zLheccGaFF30tGoP7eAcVaFVpRYlxIHTc3b9BGdqibs2+3EtnvkcrL0OpXp9gHa1z6YMe5OLtD5qhfPOleV5VeDxFnzi9dqV8XV+XKPd7BO1mYe9F5yz9j0/VHerlbff9a99yfW3Gk8nrw0xfROVjjobEP01lIPgtFqIC6GK4Mb90PCUINL5/odPBGx9+vj8zN1yQ/KOD2Xj8fJsXdACp20niCOMkgARIUrkfD7zqb1w9/AGzS88PwtTz/zyq7eEsvLmYeFPf/oDx9s73uaNS97RkvnFz79iv5zpU8RV5Ze//hX/7//6v7Ikz2XduFwu/Prvv+J8eiaXSpfOD9//wPFwoKvycrkw7Y4YxagKEnCuoVqpudK9skRPLSvkRu2K68ocgRjpTmnS0drZ9h3vErc3N7x5uKEx0cms207dVrQO+6XYYWwOM0WMie4l0NjxTuma7R3RbgOoVpw4+7NbQcI0OMeAjzQvpDSbk7MzMKWergt+OaLTEbbdbES9QD7j00SLM63taHe4biQdTUecjzZMbyuu7ZCf0RhHfqCiPVspTr6gztpJXfDoVul6xolis++MhkiYD9B3PAf8IdDWFd+xoGEKyH4hpkQvllWQMBF6ppRMSNYeGJaj3XfcGNawgh7noHtv1Gix8hUZw7dXBmve0JH9dLLGP6doLfQqJIRdx6DXr3EzR24n2r6Rc6bkQu2VrSk7laiWCerqqLmCD3Y4cMreLoZ265WO4kOg5M0C2PuF5fbeyqRwqDjicstle6T1yuHhHQ93X/Ddt7+lrmfC9Bmxdy4rjc48RZabW5axvZsnDzSmFAgx0MTIGuYNNluYG/XQomp0CdfHlW3ed3FA19cD8CuR2JkibMdgu98Z4m08T8dPqw9V2FaddmtRjDFv5jV5/XenRuZBGtfvQtSMHf8e0vsbf3kXBv84cXq54FwA7TS1EF5KaWDL3Eh580oCAHvo1Wbtet5bZWcfqDdDSxW7SXkbeLWbQ0eC4Lun1kZ00TyWk7NVJoP8IHYmrLXhXDWfHAM3J2p8H+1GaWg7f1k5ffUV+ujwk6MHZesb4gTvGlO0drrjEvDBVsjax1CPoF1ZbmYu28bzyzNF7QJaDgse4eHhHah/rUh9fP7BVADpHO/vePvmvdlBSsP5CDhyznz8+JGunfdfvmVeEr0q//IvfyAtE/O0WOBtTtzd3pL3DdkdXTpTTIbA00bTnaaZ2fkRLhKad0ON8KCRlCZKLeb7Du4amKaNG8I6FOwfP37ksmU+Pr1Qcaz7buvbg6nhuRQul5VpWlmWmSBCyeZH1dKIcyDnnWmaKXvlnAuXaqGu3i3xn4JnCo7ZwXEOPNwceXN3z/FwZJoC0XUOstBKQ5vxtmtrlH2n1sqn8zNpiqTJ3t/9/ELNO6oXsvMshztQO4Cd95X9+UwKCfGe4qHkzO18xE2BXlcL0en1KN8JMZl6r/pak4539GoVt8thorWKNjuk1NZt+7Cazciujcr6/HTNYpj1RwTxIxgidfhbO71ay9yVPBHCZxVXXDcVzUOIFjYt2TzgSzQSy5I8vTaW2bOXAiLsZac2tSAdF1OOnCDBFO6SK96ZjcEpaO201gmzmKDVjK19DTpeeeZXGkgYGRZ1DlWx4bE7LIJo9gucXglyw4pjP1epndAxRUsbSCd6A/Vrr3iZSMlTq3mbmzGQ7IHb/vp7XHXmLQ7DD2ilEKMgYKy4lYFz08G09qYTq9ghL4itV523a6nUwvePj8zBkdRUqXVSbu+/4MPzjnK2MgW18pbiHF4tALi3ZkE3bwUMLh7577/7V45L4uv/6/+d/9N//g/U84llWnj/7sC79294fvkZL5eVECYua+H77098PG38/a/v+Od//u9E73Ap8vH5Qrp5g4+JH7/5E4dl4fHDR0LwPL08M6fEnCJGGZkQFfZWOHg7lOz1AluEFkgBLnvhbp64Oc64EFD1uFq5lIKK4+HmhuVwJB5uKednTudH09i8qZ01b/gQSNFCarnvA88YKV3sntYCXqv5eamjttdKG8zj2lCK+WpRpGbMR7ZTG2ODaEE45ICfJ0rd6M7QgaKd7jxSd6Q3kkAPAdetIKKkCBLwmtB3XyNth8snRDNSza6EBjQ0qGd62wYRZqGLQ51HgzfhqFUiHnf5aKEx15E94bfTOKl50vEd7WVFgx3UXOsoxT6XKdKeHon3b0wt7ubfl2CWsN47EqJtuqq123lVJEazGeLwYqFf3xteMzkEtA8mswqlmyJamj0PtQaoDRft3mMHXU/pNiRKcGhtuBQ5bza0Ot3pqraxGnbIstdxCDaLZml2gF+fnrhJyawOXSiXix1E0sx8+8Dzy0cujx8JaSJfNrsHugV6oNWM5gy5EqZATOCdMofElGbEBUPrCcgYikeawayZY6N6JVw4Hbzj4RdnWKt0oGsNWGCWouvySm2aNrucYIFd2tgQBmw/xbh3Vvqom0bM3lX1KksbPlSGl51XFfmn8/rJDcgiQ7EcRACw5HbrzYJJI1h3HTy9t/a2MPikV/X4GrJxCNOysO87rdRX6wBiwT1jSNoFLCpE75miNSLp8GjWkkfxiLxSK1orlFope0GiKWrSrguKPhRmN5r17PeRbqEk+1ZtxdJ7x3nH4XCw70kUulJqp+0by2EZ30Pjz998azcHJ5QOD/cPeOe4nC9s2Tyr07QQk+fp+ZlWOyWXV9uHc55lvuF8urBtO7//w79wOZ95++4LlsVWdT/+8B0xepblht6VZbnj5fk8VEYH0swP7R0pzJzXFWqmdPNZ043Z2Dp4FboWVCY78HZT6XprkITSO+fTC9qV07rxdLrww8cnnk87uTe6RC5bBu/5cH58HVi0K5ftzMvLheBkDNxWgzoxUUtn3Sp73jntmR1Ha7bekqamngXza90ukZdL5+NTJviPzFPk9hj5xRfviUNlkGalEk9PL5zXC8+XE2/ePDAvO/u+0c4r2iov65n59g7CzPPTmd4az+uFXjp1MTNsTI2O8HLZadW41m54wNCOV1N7nRp5xXVTdHuFPhTEdcvEFEjzTC0dCco0zYjfiXPAt4y4YTWqnZbNRytjQ2KHSlMidBzorgc4u+T0lRuuWDDU6ADZPGxXC0BrLCHaBsA7LtvFgkj188ZFVYeKbGqo1fImXFJa7aOVz1BmFqpz43BrW4Mryaa1+toOpkM5V1XKQEBdr3awAKD3HhUD4rfWCS5QS3v9e4EbYb5gXsY61pMCvSnrtjElo3UwrFamPP/1Rj3p3Qoa1IpCFGje2hMZZUgGoxkV5GKsVB0rZzf+txisir6rUruw5UzJyu2cmEV4fD4zxZnD3S2H8wtPpxNPJRPjzNwbWrsFhmtm8faA98nx67/7FT/8+AfECzU3bpPwz9985H/+p/8nbzTyze/+d27fPPDw7h0peP75n/+FL796Q5PE6eWZ58cnU7V9oewrX371M87nEz4mnp6e2bMdWNN8eE36OyKqVpHe60qpyiSN2ZttqPfOWkYLqgj7Xpi04eeJrTliPHI4ztwcF/bLmQ/ff2eBtCCU3GiXjRAD6fZI6rbRYPLGWneL0SKuq2Z2eosEBnFHKj54mnhcDOAcfu+QbOPZoj1DPJ7ubesQMeUUwDVnLOXDqJt3igZHXz/hWqQ7TyvFngstW0ud83jf0fqJsmam+YZrMzBaURG6a8i+mze9no0BX5XoO007YXljvvIl0dSjKRD8hFNP8wsuOqMRSSB8+Stk3/C607eG9Auoo+NIb+5Rl3Bk3LLAsDj5XgbL3ywm0hutNqTm182N0HHDftYvT+j6QglH2raObW7HR0ddd1BjrEu0DWM+dVq3+1bxsJdGG97Z6r2VitRGb8VEpFZH1swsJL1X9u1Mmg9m0+mC641etxHUjYgr1O3Efv7E7fuviQ4ez09I9KY6bysyT4R55nKyxsgS7f18czxye7zlMB24XY6kFKnaKdXIMmIyrtknGDxiBjuaa2EHdp+kD4vV4Nmros747zrsVLaQNp90FxnBOxkTh/1/fWz62hDQvLrR/mjqcBu+5T7+u+vKtYBaX+kWP53XT25AvgZx+jipoja8Xj07ffip/EBa2YPTPiTXh2jv+hryCc5TsZKAmBL+1apR7WynavxZDDVmCCtj34pJVDgnlFIIwRL83nu8j0azaEr35vn0V1pBqXbyk/6axHfOEcSTvODVdCI1XCZTjMQYOa9nO42HwHIwXNd62di2ShEhppkwR3LLHHwiTRaC2PcV9kLvSjsIfhWke26PR7zznF5O5M3azr7LP7DvlefnF5TO/Zs3ADw+PvL48RMpRr7++Xtq3TkebxFNrJedPe88nx45HJKt1hDO52cue6aWRq8enyZCmk0dwNqrkihlu5CjfVjLJUOceNxfSHOitMbL88p3T8/8+OmZy9a5bI2m0PtqYcFeRusfIEbNaE1pTYdSYgpRrp39nG3gcoHL3ukahm9VWVLk9nig1Y3c7ee1d6XvmS0341y/XHg+WyDmy7dvDc1TK/u28fTyzIdPn5iOE91joQ/nWbvyctkR7/HVsT2t5POFqorvFsa6lMZWNlhX1vUFjwwSgTGKxQOMNkiEKS6jdt1a8pw2VGBd82CCG0awlB0kkCv4OJNPmx38hqWgdwuYOm/qaa8ddYq6xhQSpddXpTaEwLUuHEYYNppXtvVGShNoZZonO/Cp2kFSjZG8bYVpmYnBUy+mneQ9Gx7PdaOXONNHfbhes2r+Q+8Gd9noIKO8Epy1K3rxhl5E8SHamtGLod1iwHehXa0V4obFCUrJOFctoOcMwZjzFfEXbTtVrSGv1oK1P3ZinClm3zOl1unrofyvfUXMjqSMuk5xBDXUnIxCgS7X9jyziajY+jU4BtYuWBCyZkurG8WJ9XLmuNzSaOSXZ570ie4Czk/sW6GS2Y+Z6jxKw3sh9BFI7orvwjd/+Fd+fPye//APv+FnP/s51MbPv/iCf/6X3/Kb//Q/8Zvf/D1PLyd++99/S94y5105HBJvvpi5PD7hJBBD5PH5kWk2XN7HD08IyofHR9uGpUQv2SqOXYRemF1CtTIfZ7YtD5Rgwjv7HO+1MqXAZd9gnokSKN0KXqI33/ynH34AHyAEtryjrRBCYjre0epGy40aIn5OdAlIh04hiuHzijqmaJvDyoZIQbqQ94Y4U7p1WhAfjR8sagjACnQbwkUx0kgMaDrQtKFrs/KQ3tFWidNM9QeaCN17nAzlMQVi6xADpQqhN/zBD7W1opLwXdGyEyTQSejNkXYOhNkC62AFTrkZblS6lYpEIs4vdKd4D16VXgwX1/1kleoS6O0CjYG5c2P1fm32NLVSfEJSsnyDOFwRWvBIELQFcObzljDTqwXIWs0mlATLCsSYkG5YS4kR54/4GE0w6J2WGl4D5Xwi52KFGK1Q2whQ1o7vao1+2jnvG13Ml2+WRcA5tvVMjDMpWuGVuMDeGlM3pV6WI/G2Mh9vOD3+aMJBWti3T8Q5sRzvceI4b49W2BMDh/s7Drd3pJDoWsktE3QeWSmzqnXFruVm9zJDwF5nZqOk6LBFSLfhX0dOxwRnOxAjdn9S6Z89yeNechV8OwEvo15k/I+Ba55yELYsHow1+nkg08UO4V3dOID9u4L8N/0yT528JtdRkGB70i5msehlXHCt0+rnekTnPnsNxfYWtropNjhbsUh/Dd517WhvxBA+2zbG2tkQbh3t2dbX8vnrjJBh6lZX42ymsTy5YqZSSoB9f4NbhBsUDBGPE48PIwA31tk3t3ccb2f2beey7+TWCHEmzTPHw4F93y3A5R3bthuk3ge2bbdQUvDj71tIPpB8wrvAdlrZKLT2TO/K0/MTh8ORhzcP5Lzx4dMnA/MfFm5vjal8OBz49ttv+fjhiekwse8bh8OR2Qv7vtlFLn1wpRk/OwvH3B2POOnc3y3Mc2KeopEqunmtmhdKU8q+8/zxhY9PJx6fXjitO1vrOIkEgePdHTk3s9mgbPtKuGL5XEDUGhbXfcPHQK2eOU2s6wZOaC0g2lkcuCDkfaWgiGvE4GgjzCWqtFqQPjyHHR5fpsEJVuZoQcmPnz7RREnzxJu390Z20M6lFfZqbXhGejDyw94aVYXTltm1szZDnJWyMU8JpzaM9lF97L3dwHPZCfFCHaSV6CPRW/Nb7fZZnueFfc+U1thHWUdXQbqitdtg6hc7bA5EmnPO1AIRgrMHqQ61OMZIKQUfjcld2+dDXvJjY9MthOoxP7dDSdGsD4aFM4tULRXvIzU3O5iORssYTW0WN6riR6UzzqbQPlQPsxXZZ9xyA6Mdb6jD181SG+2VIoKaDRDnvYVtupKLKe2qI6zZGbagzz1VXFUTs/mZ7u2G51hHw5gXqxxHhs3qr3t18XSx4JWhnWQo4t6Upr8gfAAgNhSHGEgxmmjQOpdSx/2sG880eNY9s1UlJI8/zpTHj/Rd6eUCQfEDG7g3xyEJb48LstngVltl3zIfnp54uD3wr7/7Pf+vL/8rh9v/mdkL3/z5j7S8c3q+4OZb1u3Mthd+/PjIL3/+M373u2+oWTltJ2IJ5Fz41a9/zTff/sBp3cjnlVY7h+MNDjfed2g1G/JSHE4V3zqzj4i3ULHzDnzAByV4o1goxvutpTFHR4rKy/mJm7s7LucTe1VaydwcAz0XQxfGIzG6QQRRFGupFExa886ctXSPuCMSnA034YCnG/pRK20vr+peCAkppgiLU9y02AregVs3Gzh7wwU/MIJmQ2jbanmV6EAi2jpSdqQXXIzUFHHBfiZ9Pw/rmhEYULvfNhwyeSMQzBHZ63imKT15Yu204Al+wadGc4ag870QMMUc36BDVMMcajYus84LXptxjLvi5uFz1UqolR6w4pbSYQ5oq7htx3tHbkYDknLBM1HbBS07rCezEbmNA9ByQ1tB9kytFzQcCGkCaXYg3s/sBfbaKVqprdOnhORO2U/00tguZ3xwbPlCE7MgVTI5X8h5R8UTUqBsmTgf2IshQXPZSDEMalUmLUfmwwGNAdwty1ZpNw/GmlZhzTs3b75gPhx5+/YrDje3dJS97ATxZhPq+3D5doI4qhrizYbeMKqjjV8sYDhORleeCtcj/vXe9DrX9MFoZ1jGVI3wIZ2m9juEIfw66gjlOeBKabIBWgetyH79IFSpbbBQNTTdv0UI+W/o9ZMbkFvvQ52dRpAm4MSSqugVReKJ7uo1nQBeG/MGSdROccGT8/46VJni3F5VIOegtozziZQmrD46cj6fBuLN44OpdaPrl1513JzrsGcI2rv5a6vVvbo2HqjdbsZeEi50RA0V5L0nxEAMRtXAQ9ZO0M5ptZrnqpDmGR+sSOPx5en1ArmbDyRptjauyjJNVnGsncv5RBSHUthOZ3oz5c4Hz7ws+GCNYFPwPH34QNHG8Xik1crx5sjPf/4Lbm9v+fDhI70L9w93nF5OpClxPEwwDhKlmQer9DPSGk47Pho1YK+ZJQoxRaNJOBsKexN8slbCfd/Z18LL6cLp5YLWzhQCznVSCMxx5rAs9FmYponz5cxzr0MNNbUl7xuXvuFSNAWtdk6nM7V3trriFJJz9G4EDGv8q4Q0UGBixIVWDCOUxQ4+TYXH5xf2dYVWOMzWktU93BwX7u8Xkje7iKh5RUut5Kb4lxdcjHx8Wdkr7L1TVDnthZdtw4dIrZlpb9acJM5wXd4htbLMkTDNnC4ba6v4MKF5J/pIrYVWKqVWpmlj21fWnBE/cXt7S983pLbRiiRseaWWTowLtbZRny6DECEUNY++c87Chn2UI3iPjME1ulHl7gq9Jo5xYkl28PBDdewCTqJ5u1Mk587eqjFtvWcv2bz9DAW0RauYBmJ0ppxg35/uOwfnEenUlvFO6K2ORk19HY5VGTd4JUZo2AH2Wq2acx6ZAOwQghX8uN7wwYNW4z5j9dqv6EgFbda8Fly0gJx4ajOO7b+Fgqyv/j9nK1euD8ROE4aKLKAW/rV1qm0cqIz3slGxwdhj7VjeeWopnJ4/Mr17j0sH4rRxvjxzvmw4MYJHr4WX9UTwt4QwgezsxZTNRuXhZqE3yPvGrMo3f/wD//Hvf8XPf/YlnYDzma2uzIeZ8+XCz758yzRPnNZPnPYNJ3DeM+/ff8nTp2c+Pj5xvDlwPhWmeaG2wTouDQkwBwe9mR88eLvne2cB146pqjHY8ByuVeKO1iD1ypsv3lJy4fbmnqenZ3NjduVwOJL3C9EbVajWFUccAe4OPRGDXStXHzvS6W4i14ZrGecavVxG0dNM8xHnjFThq5F3unbCHAn7DiNQTYw0f4A50S87rmfImzWW1s1azbqn+0B3hmWM4z7QOvjacLVRY8RVYA60XtEwE2MyL2wp+JhMUJqOIMVIFjj8fGMYr2rkCo9Z4Lx2fEiUV2xiRSWYUOQtC6DBnqmuNTQmpDfER7MmNSsIEnGID6gPVvGNVWSKdwQ8XZUQbunqCO2WXgplucPPC20+WClVy2aPaP21xfZ6jeZ9Racjey80p/Si5odunW1dab2a3Qqhlkwdtj6nndaEqpBLoXTFTwsyBLJlvgVnnmS02wKnFmJITAJbV/ZibPtSd+gFH2duHh64We6Y5pkULdkfxZ69yzwR4jywbiMu18d1PKyUxjxxYxh1Y5xohCv7WOwgL9Sh8tqmW2h2UFbblMrwwr+2gAyFuIv+BRcZYDT0iYXv/PgenJiSXMQKaFTUnp1Xoz1/vQDwt/T6yQ3IIDgJ7Hkb/kQGN3UckXpD8EORCq+J9xACtdbhRw5/ofB2emnD+lC4Vsle/+ljl9ua1THW+tkHab+fXmGDtNpJMRlvUc02gSoBMZUMG2C8i6/p++gdTiLed6IEtHmcpLHKVuI84YIN2b0rKXjmOVnz36AO9GLc2zRFUorcHI/03tjWQvCebTtT6k6vjSgBH+NQwT8PYCkkonPsJY/vGw6HI1VtSHh484aH+3vytvHnT0/GLE6JH77/nnU1PvO+7kxO7O8YAqVUWulEN1jHpRi2qTdimDkui71lw8ZSciWQ7L3ZM+fzyum8k0umto5PkaSeh8MN4gNdxW6G2855tdpYgjcfWCmDT93RbazN1g1t5m1utdt6LWeWiDWveY90MRaneFuXOrMJSLdAWuvFVtqnzkU8wcNlW/HOcXc8cDgkvBfz9bZOb0rey2vjWj5vNAofn432IT5w3itP5wtrqzhng+B5M89rSskwXU6IIbJuRkgR742XLI7ztlOaFW9MIaFV2KtZREozdXf9wQJaMXiaWAsg3cKUV4X3OiTHEZiz/bKnVQY2zb8qpDKoIVcl0xHG9dhfrQbdGac1efOmew81V2qxn4vK+JlmS5uXXCF65iS2iry2V7Yy6DRmgSq54jx4byFc1FR/BLTpsB44UpwoLVPGNW+jq9L6TuvFPt+lWVhGy6jaNl0mREvVt34lXjCoEAKIofi0k6aDMaSdt+Cl7H/1Ha6rkSaMXGFh1qpm7o4MRulYy5q6pGir1N4MGTmehY4RMkSAjsSIeM/z6ZnD7R0TmOfSOUof7PY5Mk8RLwWRDtFCxp5Gc8LtzS2Ti3z77ff86ot3/MO7d+RS+dO33/OLv/sl/+v//jvCPCNTpDfHcXmg7mf++//x38itcby9pTRr8lTn+XR6orTOZcuGnBT7bNUuNmQ4Z4OB87SxgdtKIbqB/XMTTmEK0QKfrZNzIyWYpsi72zvKuuF84PnlExXzNE8h0PJGb92aBuPEsgRc60jtOKd035A6QlAe+iiGy5dHU2/VEbxRQnpRiFYpHyKDc5twHiKKj9au1xF6iHA5w/0Bydmq3Jcb2uqs0jkcbDCphahCWS84zXitqLOyYfGB5owtLsEOgL7suGB+U/GB1BRNCS0FoRv2TRRtpmBfP+fq7XTvQ0CqIcBcc7hWzbpFw8WEFit16fNsh7bskHggkGliG1FmPwgIAm6zOndAorHP0W5DdG3GPW6CZhMauJzIvaCS2beG5g0LnynUjkaPtsqmoHGi7JnoKm3fcM6zlgLajGkssJdME6h+MhvOllExWs+arQWWXtj31cqJgOPhSAiBODZdrY9tc++s5zPnlye29YJPkePtHeonfFpI0zL6DSplXXk3v+HNzRtuRkbIB2v6E8qodu6vNdDBOXq/kiNGK97g9asqFbgWdjjFhnoxG9h1tL5WzRvPHVTNxigIqL3/VvJxLZxuZg/FtoBXpr0geIUqDa86xnHDfHb+fUD+m3+lMCHiORxugMa+rXjh1SfZVQhhfARafx1mr4PyXw7CcA3XDAi3WLPdVW22Smj3P3ytYLxX56yERNVwXCGGV6rEa7GI86NpTwkipHmhlEIt1v42L9OoNBbCYNMuUyTGzu1tZC+O5gfH1TmSFyagl0wQeFlXY7AKLPPB/G1Utv2FLVv7Ty4NxawOgn0gghttprUCtr7rtbBrsVCTiPl3tVpjUW38cPnA999+R8uZw+HA+Xy2CtNXUkik7CtN4fZ4y7ZlzqcTTZXkLFCWvK2zHAbbDw6WKVFLMW9aNwLItp94/vSEauK8F9RHQjCG8MFHZvGcLpkPpwtPz5+YYmKeJt4c76jSaWAByd7otVFyRiTgJyUXuzH4aLcPN5n/NUVH3mwYlyJMTGaJ0WqWgOCsmMRB6xNSbEsQAjAF7o8LNw8HjoeJY5gIPlFbtZrlLbNX5VIqZcuct842bD1XCw7dEtOKoxVTssU5crG1pBPBSbOWsN7Bm8KIL1QVe9B0KHtGm9Uxq5soajfS1i1c42Ojh3Eo8t4USmebDPPD17FFEWKwYRAVs0a0zCtMw31GroWrwoohh1pzr4xxP/iuzuk4eI30uloIx0dP36qpTU0JfsIe8YZ1aqMxLAVnwalhgbNGquumx0J6MQSamoXKOYfzARkFGRa6+Vwxn1KktIxoYAqJvdlafpknai3UVu1gN96jawivVPt+zJPtaK1Qu1rxzVXZ/Td52eFHh4rlrr/v8CC/ugzV2OkqZikwRQnjYoutUnX8vFJITD5xOj2TL2fSdWPmh21EoA5yxSFFbpOjucQWNk7tzL4X5mhWrttj4p9+9TPe3t7w47ryh+9OuOUD/5f//A/87vsP/P7P31H3UZm+77y8PPPl+y8IzrHVjYOf+e7H7zifNlrZ2Zul6UNIppYG+7zBCA11CxYlcbTeWOJEUdhbZxFhrZWcd3CBY4wcouMwT6z5zJIOnE4nCLYNupkX8r6Tc+EwJZbDBJh9gylAj8yH2dTX5nDRDoatKdoKPggqcVyz/XXtbUrfaFCtBXENjcAIBnvxSOswOWJPthcJHl0LLoIPE5Ks/rnHgN83pHbi4YCrnlYzXsCXYoeFBlMMaEgU7yxg2/J4vydsuW6FHk4quhxMwVydKZpqxAcn4NVDrrZul0AAZGxH3V7xhwD+1jZIEqj7akgy6aizXgHvxDjEdUe9Q0pFndBKG8KViTLWBhrMClOg09Ga7cA8H6i52H8vFYkePwVaHM/urdDzhRYCuRZwQk2Bsu2Ig16a0TU61LzRCKiPtHyx+5Wakrw+n9kvKz4m+x6HtWUrG/NhQRBqLzSEoo2yZtJhxqdIf9lpZcU7z3x/b7jFUunRE5z1I0TvmFLgMC+EsFB1o6v1Naja1seGTYfrg5yFHz9P+/5Rh6phJ+v18/l6LxDL22i3UO8YXO3fG59xbmOjdlWnAcNfjjY+Y96MkGAx44YqXjsqlpFxMLZjPy3/MfwEB2TnBeehtTzKIYJ9NEb6/Hq++Uy4uAYHhnFfO9M0HtqjD15EyLVQu615r35L5ywc4Z0Nzn0wnPrwojoXPvuVex88424D9HgwDGQ3Buq2soI0QPdW+CS0WphSZJ4jt3cL3qud1EUI4jidTjx88Y79fOb5+cyUIlvNlNyYp4B4x7pu6NpHO5zAwNfE5DmdVqYBV/eDO2vhNku0XtVDrSaRqAgvT88IZg2gNXKtOKcclpnHHz5YUCsI0zyxbRu1FGreIE58/PhsK2yMMeliYFN7mIThnYox2KwjWFkFhqJqrVG2Ss6d3HZKM8/bPM/MIdH3zOPpxOPjiW3feXt3w69++Qsmb0SBtTW+//SEOk+rnp1GRmkqnBvsTSjo8PoZKP9mira2XBZSqa+J4CtVQaLQFLyzmynNhhFb5ypzcLy/u+Ht/ZHDMpFmKw7I+zPP65mtdLYmfDxfqGKbhtaspSnFRKuVaoIzLlrVcVOH7/610twKL5qt/nDjpihAxg2SfCvm420C3gnVm1pWm6LOQim1wp4bFVsr76WQO6g683n6weQWY7XGaDXKrdufY944wXsZfy4wWvBCCASxm36M9k/JxYYdVaJ2YlJaV9IUKHujN14LW3BKaQ1XrXTjyiOuYj8rGQ8JJ2KNjn20ymk3D3kr1G6+QcVUn9osUOi7jO8NdHDHTQD/PAC31slXbF6XUVfsoBX6CNjiZBwOzNZgDO7hTdfOkua/+h5n8V9T22R4jnUEhu1nbqzjcUckqNiDlKv1wg4P1xzAtT3L+0RcZtrpI/u+cjfd2/20O7N3DVtHFc/TXrjsz8xpNqSl2v2vlkzQxj99/SX/t3/6jzSX+PjDn/Fp4U9/+oGu8LOHt5St8y9/+obTvpLmibfv3qI+sq22gQniyOvKdrngQjDaS2v0OSHiKdtqlAnnXnUrp57k/evmT1qlOOFSChM2mARvSlwtZi+J8w2lwjTPbLUSo2ddT2hrLMtiA41CuLllOcy41ulFKPWF/XSBXnF+Yp5u8N6xt2rDjB+M2jkRwww4K8EZ5T0xTjhR+r7SPbiWCbd39D3jm9Uk15whLsiUzH+KBcjsQyr4kOhU3JzQUzfLnna0mtrnBXo1LnsSoaWF3rKBDL3ZIig7vpsVQq8HqMn43hotu9DWnSqONEKsXcye5CVZ8YoT9FqE1JU6ynYET++FVjriPKoVckZ6Qf1E88ZtLtFDaa/B9uaNj8zW6a7TmkNzoXaoe0bbbmUnzkLwrapZJlSRFAjxhp53rsVfJW9IVXpTqlq9+nV72L0pwK3aMWZHUe/Ysm0ZS6tMy9GyB1RS9Hgv5JqhV1ozf3/pO65X5uPt2BZn+5oOaQ4IDc07bpns/fRQtVpD6vYMrgwrxCDdOI+O1jsVaMNu0W3AAPSVsqPqB/FJx0BrPxdRSwkP97F9D0PpNTtGRzVzfVJYUYxt9QQL+nb8KCKxoXpEK8bB+v/L3p81OXJtWZrgt8+kqgBscHfOvDFk1tQl0lL//2dUtXRXVnZVRlZG3oGkO91tAKCqZ9r9sA+Mka9970MIJSAhwQiSZkY3KFT3WXutb1l+AYl0dSijIfJ39PrdDci57EgZirFXU3Rcsgt1Ckjvv6nJ3ZTa1pQpGZrtN3tFoTshxWihMoEYJ4KzQWSaJlA7/RpS7l+oNoD3lhI3VFujY8MEYopVre0mdqHaaX0QBbAQzDIvoOaNdqMIQcTz+nJhXqw9KCZb885TYr1esJaziqtW7RxCGCq21f965znOBxtsu1K04aM1Ts1xgtoQ7wneeM7TfLAhyHnW9YKl1j0hJHSQQKR39lKGl9HRWyMN5bzT2baNLe8c0owjUivUfScEz/V6YZ4Xqm+kebLiiDG436qiUeP/7vtGbZ3DfGJdM8fjPTNCbd1+6x3WXLi8XKiXnd47337zntPdCRc9xQnP685//eUTT5eNrpGOrY73WrlshTVX89XGgJNILRvHaO1wgjB5xzwf8L0RnHksxVm7E92U1DZa5ryDjl1Xc4xMpxPL+6+5u39kChNlvdByxz29cjidePr0TMbTRngUhNozdS+WpvbBAjbVTu5Nla7NbDbR7EEWQBo32A5gyjZjsPPeKsB7s0OZcaUBgt1Cg7eVofzmi3fOVC0ZdBecvKkQzrvxZ89Y++BEb6O5boRRxXWrtu2dWhpVG3P0xlNVwxhu2272i9EpYjXNYnYkLbRQodsmpveGYnaFsmezuHRT36aY3ryIftia3DhcDS2ZEO1nGMbNPPnSbY0Z1UEI9Fbo3VBZrRm+sWpDvKO2RlA1davLWI0H9prfbH2tN1Kc7HPXb/QKsyJt+9/AYiGjeharf0VvRAvo6m1oV0BsO1S72nUq7pawgHE0v4k+HlME5+VoHO1WISSiREJf8c782AGI4tlV2OsODrx0pgTXGmhl5939Pf/LP/533DtPDw4fhJ/+9M/I3SNbd9RcWI4nvvrqjl9+2bg8PzM/3pkXtHS8g19/fSKvOzEEnkfZk6nGZhOJY/0cY8R5C+Ea+9UsKF2Vwzyz14IqBDFydOmVEISQFrp39L2y1WqEEm30noeQYRXoD199w2FO1OuZ8uUXqnboZsexIcORa6OxmQrrA65bi6WPjkmUXgrgxvdO+DRDmNE04YMgvSLXV5pzEC2nIWnG9TZsS+NwHGyQ6cEjUfBVkFzpLtHDhKOh+RVJDuk7oTR6mJFkNikfJrMdlULxAQnBrCL7hj9MtOYJkmlrxk+JuloIMSZHaUCc6Yhx9qcw7nMO3ZoNrfuOYC2mbXB+xRlhxrILZonS4ukECJW2bfQQ7YBVG5qNd6w+06s1ppZ8tZDoNNPzmW7+IBsm9xVaH/fbjmN6sxZJrbha6Nm8xKJiNpJuAsatrv1GnWriaVXYto1cCyEl9ryT9404HwjiCS5YSFhGS2dV6rbRc6btGSThcdZsqgPH6BylN0q2empRobRGwVmQXgQdLZyebt5odeNzLXS8bQbbbeAdkSY1pVho9rtAMGuEoT7Rm0hsljTtzsKfaltU7cZDtvIQfbOPmace2x5iWQazJRtXfViU7d+U37IcI6b3V9/f/jW9fncD8g1f1IcnFBh+QMe+b/aWv1kqhFJMNch1tQOcKrXqaDGCph0XA8nbEGIP4AqDLZpSog3OJuOvN8brb8xUexy9rhe09zdvMQON1TqGdsMho59+zxkQnHcWEPPGXG6l4V0khEDJldPdwt472/VCjJEpJXqDFGdqr+z7RvCJGBO3D489bCLeRZDGFAIpBDa1Xhy9KQBquJmbL1uc0JvSs93wvQvkUZ7Sa6V2R0wB58xr1dUg5LjIVkagwPbvNBWW471VWHuHnzqlZRY/UUcARBhD+K3EYYrUJoib2PcV7yNTXKi9cbnsXF8v1K3gBN49PhKWA68Nnp6v/OWXX3i6vNhDKc5My8z9wx0P7z7Qmfk///M/8x/+z/9ElYjvzYIUeF5zpalCKCTvqKKUWjhO0WwSuVGlUtWCUmbDsdCCqHmm33+459sfv+fhq2+5e/8V7brZe7DtuN6ZvJDLRi87294JkujOs3bPXip9YKpak+HjzeRm3tzkPKVsQ0m298ledVhLnXmRe8cFTxkYOGkWEHLaqXXHDZ91VUfFthM+BkqxtHrwFsTzIRK8p1QrVmjdwpHzPNumpdvPNfuSGjUBo1NAGIdFfftceO+pvbGXzOISpVjzpLZOEPApInTObaf3RtQZa+cDMOKLjO+1bZt5sgerWUXIzR5QdI/3thlwOPpY2dbeCMFwi7llQmCsgyOuC92VYakaPObx+TZCjdJ6eyNU0OxgHENg38sbf/yWjhHnKO0WBv7//2Wra9OEbg8sE248b7PDGITlRtgYfkRF3x5hFs4DnHtr7UzzgXk+Upptw+Y08+LOY5hyo8Wvm5UhLbhpxtNINZPWTG+d796949v7R56fPhEmz7wEatv4/PPPFA2U/cq0zJyWmceHdxwOyvnlM5dceTidcJLYtgsueNbzGcF47Mk58r7iCFQqISh7yUTniF5oraA9jA2CMTC72hDQu6mSKUWSZ9SYK/jOlCLnNeNoJO+pwfP+6x/5+v3Cdn7m9dcXs5sMNGKXSvTRfulu+Osl4H0yT6Yq6rtVIANoJ8wBNxi0tW42qNWKLAtuOdISg9NuBBVHw3UQPYJLdAqeUQDhbFPS9LbmsOcIYoSOVgvqPd51fF/p+46dbwbSzHU75Ak4te8l60orhnXTomi4ENxkW4qmhG7Dq3Rb2TsJbzYuRZFo7Xnq0hggi23+PBauVsvotD1bvXktltdpHekNWoZ9o4oJDn0on5SOVCvY6V2HhG49B3ba9TSX7UCeC41KL43aM41bJ4IivSASQAKFTO06RBLPvl9p6tlbp9fKerVadRUxD3bvtFaIaaIae43gIjuV5qph+LphQl1deXr6ZIUnKRr5IgzbWK2sXWg5sydBPhS0Z9R520gh9rxUsyuIVszaYzZLJ318tu0ACMO2owpiWQmrC1HzkKu+Kc/DdEHXUUc/LGr9pjiPf8vcxrYidB2a6NhWWXhPtdGoo7nPPlv2E+14clsa/l5ev7sBudRiDwCF6COtFzqYytYKbfiGwVA3MSZ6rxYO4Le/39rNe2xVz8po49JO7zdUlFLVbmqWnI7s+46Oh6gpR6ZS996wK9MA5E2Mw2wP3441Btm6yg8Ft2lHOhaSQM1HGY2lfKuNfH55wjljJopzeOdJ80TOxfxw3hLdKjoeGhaSowFY6YhTodVmgTwYOCHQXt/KNQyd1+nVOI0iwrpthhELntIH39lFcqnkXMmt0FR5uZ45Hk4cUqLlRvLJrBOqltYNMhqQ7D10IgQf3tQhVeF0fGDVV2Kc2HMm5mKD1nj4S2skJxzuToZeSonndefjlxeutTAdDxwfviIuE4rw/sN74hzBKf/Hf/gP/Pp8QYGX8wtOHXMKHOfE/f0DZTvTkOGzaoizAoTb3rOVThm+WxfsGkzecZwnlkPgq2/ecbqbuX84Ghd0mshroLWMcx1tmeSUgA1YWXX83qw9y3lTeFsH1yuqdrOPMVij3xRtvagYYQHG15iiVql4P9GDp3U13+A4HKo3+sGe9Q2TtrfGXq1xLqYDUu1Q6GM0T7wauSGESCuZUi0gejwejOygZnNS/S38esvfeO/ItZCGMgbDMjI2EU4cU0z2fgY31Ak7eDFCT3Ro0kfj1O0zaj66NoJoU0z2exjYRqsXD0a1uCXwnYy1of3ZbXgxBKSIjnpzRbytHvUWjOnW5hdjtOFaZtp2NQay6puNCkbp0PD3ldr4Wzw/nDKUGvvODjt49mGbaDRThMEebIATW7uaRUqHz9C2usjt/gFxnkjLifPzF8qemb2pgAFH8olr6biqTCngXSClA9E1ctl5ca8owrvTkdAaH3/9mfN6QZeJZZmIPfPTz39EPyo/fP8jNOGaM2ve6WUzn2vPSFRU81CLzZ/a1K7/fLkO36ajqieMQ72XONSubhzbVpHkh/Jt1fbTZMUd0VkjptIRb2pvjOZ/L035wx/+Dmrh8utnWrmgOHLtVEnE+Whq/SgOCo5R9QyEAw4jE3kE9UqtHd+z2QtKx6UE8wH1jt529utOr4V0fMD5iL6+oHECP0O50l++IPdf2yCbAj1X/GSH1egtNaIiuBDtcOo8UQvNT8Oomsba3BBcbs903WjrK9I2elpQ9bhi9dulFfyU6J8uyN17u35Gu2br4NOE1opfjrahCZHWwLlOd8WUyloQGr1ZsVKvFnr1WtGyU4c9DZS2XUA6vY6K+Bjpl2xqpFvp60YVo8i0ywWJ5hnWYg1yqPUXiFeaOPAT4j21CdvL9c0z3b2jYhtWT6fTwFs7amvmE8/rTq+Zp5dn8mYBTR+sityyRRawjM7uK3u/oSsdBSWXndPjPctyYn15MoGsNer1AsGsP7akmqgotTVwEaSbPQWP5UG6qbYCb6GOwRgwQsVvvAuzuwxrhth/jwJW32koQYbwZ3mE34ZhhnJs94kxm4h7+73KyOu4bsQmfVOPrT34JlH3cTAXfev4+928fncD8mGURxTt7HsxX6aLtKLUXIhprA1GcC/nbGto7AGuN6OX2FpUul1IfQzEtwH7VvhxK/JozYbetMzk6zqUvFEk0hgP4UoQjwsRH5MNrDi8i0ZCGINwKbt9327pcyFZeUnvVBTnrdLUmryMunC6f0C1EZeJ1sXsIm7i9PhAqZmgSs2mOqgXI1+MFX3rjeC9laLUSm/dvIVNqEP1aq2P1Zaj9MIUI2WvI4SoqPPk2pB9Y8uFncbLvtrhIXga8PR65f3dHVvJBB8ILuB84LDM7GtlOpyMo+kcvdqavSk4n5immTkFvDM/3+P9ib0Vrl9euV52wvFAXhKlKk0dT+cXRCLzMpPiAxo8IUbu3z2YRaFXqgqtwlazDRXJEy526+m9Im6iaaOJsZfjFAg525ra/abst2yqeu8d7cbavjsd+erdgff3iRA90zSZNUUEnxKH4z3l+ER5fECLcjclXq6FUiDjyLmjzo8HkEPrxpSMJOJ9Yq8WJjxMnl6zKR1ACBFzEjaCj7RcUKxOurTdhsLaqeLJXUlpIrpE3XY8YXjQle7EbAOqTNNEqWYlUmeNSd5Pdi0LdKmGqivFgjCj/CMG8597L2PbUBCBFG18C36yIX4QNcyyEGhNx6HSDq3OeWvsip4U/ZvvWAeRRBRyr8M+IHgJ472wlknUKAY2iFsosdZKEIdXoUVBA2iFqp0UZ0rZcNGquJ0F683qpEA0BjqDapGzJcK1WaGIla8wcFDeHjbOIdKIfwuJRYzD68eG7NaMZRZjxxviTXWoyOM5qTdqhQ3H3XkbrhlEHRGmyTHHibN2Xl+f8XcPNuyrBfW2PeNLJHnDIeS8m0o4igJm55lQrs+faftOTxF1ibUUXFD8vrPvyh9//gsvrye+effByg9aZ5kmtGWuZSVvmefzymFZ+PzrK4e7e56fvvDu/t7KKwBqBzc2VsNEWVo2qoAfjYI+8EY6aI3TFIFCckoSz+W6I6K4UU70wx/+Dl3PbC+vHD/ck+uMTwtOO+w7taykGGnODoW1Wu2zi9Nol6ygNjD0XnAxIN4+m8Wohrh1x4cG0dNVKJczXTzzcUFCgMPRQp/LHX0vyPmLbd3kBM5bXfRQO7lVE2PWKBeTYf18gOsLzUdTqr0FrYgBl+4RtwIH8Anm0xBTorHma8MfvsEdFqPzqG3ErJhKEHexsALDG9s6XRTRQq/FfOFig1nLlds2q5eGa2rCo/OQrzRAcqNls3OUXlAxDJ90OwjsYvmXLkq/FLSdcSlAiPbsKRlxhi+s5QuSIjUk3Gxse60eyo6rBW2NvWCM87Cw5pU2cKceR0cpJY+To3UpxHmyPBIOHyPVCZNXes+Uslu4jk7PO70UYkpsIRCCCRfrdmW6u0OCH1SoQB8kJekWgm3dshM6gnNNTLhSxkUDwBDoMMuZihvcYavw6O3mxbchekA5x0HfU6SbV7kbxlaHSt8ZLXjacNreiBSqw9JjYwlNxrF7KNaNNrI47c225X5f8/Hvb0Au7a2v2SwMKQJWL+xTwAXHngtLWsDVNyW4VR00NiM0GDYq2qnwdERV2PcdxBRhs2noqJi1YZqRkm3VCANOflOau3Y7MY7VaEgW4KnFVO040GreB1Q767qCd8RRlzuJJ8z2ZEjzPB6GwjIfzBvogq2gsAIE8TCFidPxyOtrgVpYlskKNloj+kjOlZqrrctUzPs/1il5L4TB5zWW82ieU/OwgmG0ajW7hlkAGlstPF0v5FoJaYQUxRrHxCvilThCTHvtBGdKjg+R1oxXeToFI1eIJ6aJeT7hCWjrpBR59/UH9v1K3TfeLSe+fPrCOQZe1iufXy90EY7LglPHpSs9BVyMpJh4/3Ak987r5Wx2mBA4HA88v5wJXbhfZtb9wjInohd63kniSN6CbV5gX1e8d/gpsixHluXIft3N1zZ5Ht+/5+F04BSVefam4ruZphFhECLSZP684EjLhA/B/Ky1c1l3eveEuAAO0UqcJtKgVbQ26qXHADTNC6V3dlWet53SIdc6vGUQvMc7C7OcpomKbVVwdk3fhrgbrid6T+2OFD1VsbDgNA9/dDObjDJwbJVpinajVxu8vA+02shdiZPgnHlHvReW5UDNo81POyHKv3gYVXK2tX7rVvgCxhxOcWLvO61lgo84tYeKvnnQ1YaAt9+PH+Py0KrUwlHtX9wrerc4Sh/mYfttBnKuMPjCHfM+l96YQsQ5obaGCxEc1FaGp0HfmjkV/kXGwQ7fTsAnb0PdX/lqzgKUFtIbFJ5xPPDKWwAPQJ3i1AHeuN3dnIVuhCWtOMWqur04pF6ZJjtMvq4Xe8jTEG8Q5a6Nbc/MPtLbysv5ybi92iiiLN54sZ/PG5++nJEwc/wmUZeJ158/cvQJf0j89OsnXC88f/5MWCaWYJuNh9OBy2b5gxgjuTYOpzu21zNTiMhgqHuXCM6yGdqsIKEXo87c7Ce1mFWsoqxlR71H984y2aCxF1vbi3ZUHD989y2t7kjdOdyfcLLQydTrE4jHqzMcZFGEjAsB7w4YR81UPcQay0yFs6B1Z1QgOzfoFR2txroX8RaQe/nI1u6QkHCt4afZmjljwE8TZS/o519AG306kR4fDbHpBa4b3kea9+bjbQ28N1yns+Bec0LfMhITunU0b6ON84KLkb7u9NRxVNreIQVcC+goEHLlhrYLBIm0PePmZKOZGyplGfmFmm3z2BvFC65UCB6aHVC1GjpQcmZXxXVnob0pwGoBvB49qh7ShGuZviyEaQEJRB9oWDnS3EB9QKPQeqOVwnY5I9cL+Xyme7uHqXiyqvHTveVEijZyKXSJ5Jpx0imivLystgVz1pwpXfHTjX4TzPON5SfymkEi8/0jWldTlKM3nOjwjmurHGPCnyZwFoxXL+ytkduNcGMHOjEAsv3eEYTfMJK3XI9qpzkI2riVBTGUYFU1Lrxa/sNoFHYns6CtbY8aNwyc3R9dv/1GR36BjugYD/WmFts270YREoZqPfIwlt77fU3Iv78BuRTS4Ao6MX9jrY3kI14CmWZ+Ke9wfRAAumJqrzBN6c2s7n1k3VbWdXtbFYcobz5jEWdDQu8WwMOqqUOaaEOtijGBmOfSeYcbpzLvzFNs/qbf/Mqq+vZXC0ApXjwxROiOeEj4lMj7juCHwm0J7qZj2E6RkAJ1z6zbhVo2Jh/sIe79G9rO6n4DOsojbgZ986t1cuvcoOgh2OBRm47gX8d5IUp4+++/7itbh9JtsAhDmd9WW2+rdmpvpBApvbO1zEwi90beixV9jApw56E3fVsit9aJIZLrjkRvjVZNuFxWjo9HptPMA+95eDmzrgWtZt949+OP/PHpiZenZx5PVhMd0sSyzLxeM8E53j8+8vHnXzgskfvTiXWfid5S147OIUSOXjiEQL5eiM4zx0SvldCVx/sT/uGe3CoVuP/2HQ+nI8kVQs+m6vqAuGjXphPyfqV1JR4OTNnQd/rlSu1KbkPVF2FyjiAQEXztw4OsBGfvo3eO2qxKPOM4t0busGYLOzsR+pqZRxizXgtT9Ijo2EKYpcB8BNZOKGlBu5XsxOhHQtwUxGWx0hAdq78UEzRLoDeUZVlIKXE+X+x7DHvOvu/WDikwTxO9FLr3BB+JztF7oapRVrp28+LHibI3aMZYnqZILwXRRuijlOfWmDn87dpvnx8QMUsJamHdGAMhpFHBbZ99J4aeaqo4nBVtYPYXCxkCYupOq3XYOzCLzagtt7yKUsaWJ4ZAiNGqjuVftHpimYa/9mWIp24sZDGVyFobbcPDTXniN1uXqAWSxJvW07FwnXcJPyxPrW7UvCNdic6x1cLzyxOHeWKKgSyOiKPuhTo3ZlELMVXb+oC9J60qTy9X/vzzM8+fn/l7J9w9HrnMC2XdON7f816/ouSN5/MT7+I3fFl3JBx4VFMNXy5Xjsc7Xi8bd/cPvD6fOR4W9r1wd5hNJR8YK+ggI78hwWxv7jbQ2IDXMHa6BIdTT3TCljPzNBF6592HD0iwjaFbFtTPXM+vpOiZT+95vl5ZLzvBO0QSyjQOX/Z7Tj6w953eIUgAlyyLcPOqa8URad7Ct641PJ4o0F0F72nXC24RZN9o+QwuGQYxZ/yHr+Hhgfz0hJSd7ac/46Yj/nREw3hetIoOu6CxOryFdr0fWy+xzXsuSIhIKzCCsc55Q2BueeAPPX0vFsSVW6WxHahaCLA46B0v3ex4bXwOnEPyaJJ1OkSAgE4TqlekAWJhbq12aKhOwAV0v1jI/HCiqdDPGyJGrnAPR/PXJxtOpXejVUW7t8h5M4RyLWjvhGXmOM9cr2fy+UIZ97m9W0uoqKOWipPIVvY3JGStyuv5hVZ3fIg4b+KWEwuxOp9wXWGo0XYPMbtYur9jOh4RhnCGIskx+chyPLGcJpyzQ3iYEq2PDAVqii6Wt7mRLBpt3NPGFog2sJ8Kaq2mTmyARxzquh3IZLipxidd+hAJnA5V2LZNihFXFGi2CrSHhui4fmxLaRt0rDjG5mu63CwcfnwKTLGmN35Pr9/dgNy6XZgp2YqjVKWF0dolDVfsYqvNPFwhJFrtA9PWKaO21HVBHMZDrRkROBxsJXx74DlnviQRz43wYKepPozw48JXWKbZeKvdbuYKv/GQx9eZHcMe5DEmG2iT+bhQC2lFZnKu5o2SznScjSzhPfWyG6h/WbhcrTqz5UKIEyElamksy4nWGsfTwpcvX6h1Z4rRVG8/6rMxv/JNBbO1ccF5saYkFWpv3J1OuAbXbeO6WzGJKkzRak7dKFLwflgWRHHBEabAfl0Rb+GZXgXnLWEepY/fg5JLtcCltnHOtXCiSifXwpwSh+++G37obGg54DA1NHdTPp3yP//P/57//f/9H+120RSvjTl5zteG1MLDkvj7H77lj3/+hdp3cIbRq7ul5e9nz/spEPaCSiBMDu2d6BLR2Q3i2+++omil9Mrp/R33x3ta2QmSCdGjTsyvWDJpmYjBhk3fO/m1cHd/BNRweRII0UHteGc+9K4QnZCCqaQ1CHvJELq16EmkrJWtK0WFa+u0BlM0X/vWGmtemcWzFojOcTpFU7VEzePbIQZPFYeMohTxAZJn2zMhRXLOdpP3o5yGPg4Thla8XC64YT0IISLa2LfKNM3cMGSHJdAz5H1nL41lmu0zhQ2QPpgqKA58sANaEs++d0iGGbxxZ0/LaTxkTG3pvQ/csPlq/c3r3HkbqKx+2rQZVSxYWk1dbTQbrFGk258thkitxmhFLPTXamfPlRATAVAt5vEb4VIdNBPzCwpe7ACcy/o3uMuphe/wpiCpHUSbg5s72Sv2oBOzDOnYZNn/OLwHcQEZlhzqjtb8hgs8REeNntfzKwHlGCdktgCUqF2Hj0vicDzwuu+2XcIOuFXN6lGccH698H//x//Mv/9f/nvefXjHl18/0/PON+8e+fjpI/d398QI215Yr898djspzqSQ2PbKPM2UPTMdT7xeXnn3+Gj3dCnE4I3/7aypMPhuXnmnXMvOMSxmexnoO25qVxeeX6+EmCh74eHx3kgs8sj6+pFlOaBL4XB/oq07r59/Za0NxCxhk4/gzWbX6wqq1MGpdxVqLiAbEmYrCXHm4wUrFmkYbk5bp6mF09JhBhXcNNb7ValxpddOUEf9+M9IOCFhwd8/2HMuF8rnT6b4xZmwHOhOLDin0NsObYRynUd0iIH1isSFno3O1GozXN0+vEQxoiMQp5itSFHLqfROX89otWAeOPv+7LSt4CZvSrWvaKnUzeOdfY+ad6QaT7ftxgf3asUcvV6MZe0Enwv98krJG60Wdu0szg9l1hCk+LE5qBUtm22kklIvqw2o25W9WNHInCZUHF9eXkwEapbJ2BVa2+hdLO+Dsq2b5REUau3E2TI8IXji4YgGIWu2w38M+GUhykLOKzEe8WFi266oDqydV3ZRrnkl7MLp4YHDfCLNE8kLuez0VoZ44AyZ6OxephqGfmzPm1vewt5IpeutKKgPOwYgo+BDPdCN8zz83jKGX1UZocAO4gfBwiyXvOVCnKnXY7vWx0HQPMZh3Ee6ec2Hqixa+W139ft4/e4G5FspQc6bBYa6Kbt72VDtJJ+satgp2hrOCT5NlJptnSIA3ViHeSNGZw/BYCghlLcWvVs5gN2hbkGcat9DO3GsfDsd7RaC89GUv9I70zQRQ6TkjHZDszgXQBzBB/J2pbbGEiMxBE6HA8vdiZiSBdicMJ8OfPliHrW4zLZCVlimiafLlSUlCtZ44+eZ+XTksBz4+ac/se9Wte3VPM2IjkFWRguaEJx/G1Q0d4J3hJRY7k421OedeU7U4LkbOJuQkiHIWmXfdtxkw7L3cHd/4nq9EoJjihNTioY9c5nSCtIcOMccrfkquGTVrq0Rp4T3jpACgW6w+pQGfsxWxHsp1FCR0Gl7QfeN8HLmf/jHf+ByvnJZr7xeX1HvOCVHbZnoOv/+u684BsdPH79wWQtSCz989YG2rXxYhPdB8KVTvan3MQW89yxLJHphnsIbH/s4J06nEzknHIWQzEd7vVw4LDPX8zO+7zis4MWjLMkzJW91tm5GW+XusNBypnazJ7gQEG/XX6ezPBx4fLhnzRv4mRIyr/0CCD53Ss6DeWxX6PH+nsUJ23Ul58r1uhJisADNYHq3nnFxppRMmCN7a9RcrewGRhBT6N0YoWGeUBk4tNGed7lcjeDQKlOaWI4HLtczCOz7xmkOQCVMDppakNaNEFsXynbFNcNzORK1NaK3EbjqwH0NS0dvjV5vodixCXF++NVHGcYYjnLNxODetjQgJpC0ZqUe2TYhKt68lnikN3qFZVpGM+ZOionsmoWFlDefMyNUG0MAMfLHjXxjuTgxa9df+TLLiIX/jIN8S9sZasmDDfI35vlwpRvb2dB83gW6T/b7qTvaraqY4DgdFh4n4bQk/qxKbYV3pwNLctS+83LdKL3R0sTdMnPsnVwK1/VCqON9co7uPA3h5dcX/vn/+hP/w//zf0TvDwDc3R2o9QN//uVnggt8/f4bStm4rBvv5zumKfF6XTmcjnz+8oWucFgOtNbIJbPMRjMJLowDdAcs9NRHMdMN4xm8H8tkqHXnKe/EmDh6tWtQC2sR5PUzEiKHd+/QsrG+ntm2nRg9sw80icxpwY3NTJwSQSIV6G5Yk0ol7ytdG63s9Gy2OuccIS0WqBOzXdga3xPESApFhL42QlxwXQjdqAY9OKQ1KGeYFkK9p7mJ6bBQE4g2PI385Rdc77jDkY6HmKDvtuGplsehZfp+RbrHbRf8dDBCRPCmRIaxsq+Fvl7paaJ3xYuzragT+nqx5sBrg6J2+Ex2pcmlmZKdbVvYts3W+d7bYFwcnWqlPg72Yni+XjONRJ8icr0iNdNTQiVxd/cAx8laLavSq1JLo9c8wsBmm3RFrX5bwPlI3Tb2rQyrgxLSxOX1hVYrLgh7zuy5Ipgn2Hl4Wl9Ym1lRaDeylA2EU0zmaXeBkFek2b0oPjyw5DtSDGjJnF9eDF/nnanoWNtnVCXMM3d3H5iO9yxe8aUa85poKrUaz5lbzTRw66tz3axiNgiDiH2mLd7XB8lmbNJUxlHZPMpvY+uNRUmxIRsZX1ftx97QcdLfgsvmrrj93Nu9buDk3ggYjPvRG6n7d/H63Q3I274zJRse97zhRoOVMtLlkz1cW68E51i3FUdEnNkzDJfTQTohjstq/OW2Jr393zeixFu9tAr+LRUPMURu7Xp28rOvU+w6a61YkYlziPfkPVNLHb4hmKYJhzE8W6+mes+BOAW+/+47ctm5bCun+3vu7x+5hcumNLGuK2lZuZsPbNo43N+jwNcfvuWnn36m1sb9/QNzOvD8+Yup0DHga4BuGLrcMj74QfVow/+8GEJomokqvLycLein3VaMKJMEW4X3yuQt+VxKAe94eXmhlMLX7z9Q1x0/UsRFK/u6cjycSGmilJ3aGjlfTLkRoVdH9EfoSm+dME2kdCAPdVOd43i4o6XOdl1x0dGensi/bLjjPV8dFr5aEk+z55enJ+6XmS1nylZptfIYhfd/9w0lF0otRHFMdyceZ+GI3bcu68ZF7OcfD4mHU+T+cGQ+zLjZKA/H+zvSHBGnRDyTD8yqhACtXPHRcFW0DUdmnj2XszD7ibx+pAaYY6BsF5xCkNHI1SrNRbRXDofJ2gO1cneYqT3i6oYvVrWraoeaGDwhOAP6OCFFR0+BjLM0dWu4MIEIvWdUArl1w++N69zsFvJmF7jBc2MIb5uSlBK9WVlIjMEsTh3W9UprCR+sqKWUxufPT8xzIMXx3+Yd0hyuQW2N4/FIWUdbozPfa+6BUpQ4Tey5kHMeth3Dr/mBnDocDmyb1aHnWnDqTUVWtWBo+K05szvs0Do8xLcnz21I9iJv8PyS6xis0/ic97GeNP+dG98zhcASkx3USrdxVUG6UEoj/w0sFjeVB2wVK3J7APq3x5PgR4BmwPzV2YHdjxIiFYIq0rOpzS7gpRFi4hjveQj3nM+vdBWeXs8QI3NwvHt4oGGNYi/risSJZT5wOgiH4xFXG7FBuVxt1esd0oTPP3/m5esvfPd3X3MdTN6H98nS/YOH3lPicnmh9848Tey5kmLgcr1yOt3h8WzbymGOMHRLy5yabatzo/FY0UhrjX10KzsH4g23JV4ordNbIbrE5y8v3B0PlBj55rtv6G2n7jsxCLoE8tqZjnc4lLydjXwUI+w7va9kuQUhA12CqfrO4yaz5fjgcc2eOT0bPixOR+IYPi2/YUG6tlWk7eaxbQq3lX4xWoa0jVYyKpHy6vB+QrxDlxMqATd7yvoK11f84N8SFrME4EYDXcfpRt/PRlHYPtNKo4sHH3Eq9OsOmqFtNvS4gI5NacsF8YKWFbThklE3nPdAglpo12f6eqGXYhYQHKoObZ3SFCg09fZn7IUuDjcFW98D6hejX4jhzcKWoWRastKmJhUdZVndd7QJJWdqVUQze264NBOZKNsr+7VaSM17qjY2bWx7tbBc36m1ECRwPm/UXAnJjzIVQM1GIt1DhTTBnjfW65U6TSzRG+4xWGHKdDiw1k4zeDFRK6LmDa95p7Rih/rRTmkcCHM3mI1XLbQAtJFBMb23D9V2tNapGRArZrszTXcg48SBevO5I2+thvYD+2A0g6PSu6MNXrwADrNSKBGlDQTkoOAgKAV6HYORDt+0o4pQ/60o5F/3S7utWS1QplTNhJAQDFP28vpqvto02sYEStnfVOGUIq3lNwvF7UR1I1eo/lYre7so22CGBmdc5NLqW/Xrrbra1GE3BmYzzHcMq1SbYZLAFHBxNoh4MabqPEWmGDgcZr7+5msOpyPL4YjbPI2Od/PbKvV4OrFvmaenF7wIp7s7Qu/Md3dczme2dcM74XQ88vj4wOvLlaq2gp3mBcmZsm2UWjicDhwOCzlnyr6TgePpZIJBTOheuL9/4HW9Ah3xts7O+87p7kRrld4L83wc62slTemtfKSpEQfcIGhIXVmmyJwSKY4Q0tgLOmcFCKJAVVKIBB/M6hBs5dm9Jy1GRPDTxHZ5pl8EtgKvz/SyQUycQkTuTuy5EoOnT4lrPVM0Mzkomrm/P6Gt0vLOHALSIa+FPRuWaZlnjsvEkiJ3dwfu7k+k45FSCz4EppTQspOcQ+pOu76SHLxuKw/vHum1mSozwo3Hw5G744kYAp2Gk4h31jQVRxBJh0qpCn4klWvJRG8KyBSDFbaIcHc8MR0S15cLwSlTimjLqPThd4fcqgX9Sud0XIjO8brmQSxplv52zrjHrQ4ihccP1jja6K0S5oMxksUKQIzu4vHdkZvigxu+uZG0D4F9N964c51DMs9xSoEmjfVyIQXDUymNaUrs1fivORuVBoqRGcQ82M57ejUclLvxtruOB4QbXr4+woLh7XMbpoC08ejpVgbixNa+IlbyM3J2VjOfKzGaWtaaFam0aiEkK9ipnPezhfrmhapWUa/jueG8+xvc5YTfnmbmAHRjg6XDjwv6dngRcW8FPH1oPKqFXvIYth3R2WElpcjdfMdhfN+7y2bv/b7TvWM+nvg+Rl62larCdr1Qe+UwT+P+FzlK4PK64UIgudFaKI5Q4aDW/tacJ/TOXQpUTqgPUJVwd8e+bxzuHvBbZt8yS0os88zl5YmaC9k54jLhvQkLqs0oJ9qNBpACrY9rQIztHcahXQfFJEW4Px3YtitpnpmPBz58+EDZd+q2Wn6iNqiN492BEAUNM8vdEWVGurK1L9SS6cHjJLLXQtNsuRLxxhGvO1JsSPEhMB1P7Ocr7fWZMEfSfEd3AWudq2RVNFj7q+uO3uw619FgKlrZ84XgE80re38hpoRczoSu6GGmlZ04neyA6KGfPxuZICT6voJWdF3p2xnxE0GAkune07fzb8/RvDK9/9Y+K9WQX9Qd5xT1EdwyirMcvYL3lXpZqednINPV0+NkeExR+mZttIrQR5irD1KThghxwseIa42SOyWf8YdHbkvaNrCPgqOXigZHqea9r7VQe7V7Vy42OHel7KttjPWK1sZ13SjayerYewetg6UdjXBxXemlmNUjLnSBNHCQVj7UKOvKtl+55iuTd7TXFyRNNBeYgyfFhZjuOK9n8na1wH5IdIScC+vLC1EC0zESRM3XjuJu1i4XkFEZH7TyxizWYFYuLHNxQz2KukHSGM8H1PCwKG5YPgW1wZshFhLGbGN3DfqI3Rnuxg4FN1WZm3e5I32360D6mzXD/t9uof7fWd30725ANhXYDzaxFRmUdsWHiARslYJDeiDEQK47MRlDs/fOvmfSZCtxS+S7N5U4jIa4G+vUiXujL4CFmrQLwSfG7YQQbPV+ua6ICzixpjARx5QW1nUjl0JtBelCDHGsDZXeMiE4vIzQ1jQxzzMxRvbrSmtWM9m1mDleHCXbEP+P//gP5Lzy8P494XzldDri68bnj3+idcfhMJNz5nx5oWvjm+++Y1pm/vTTX7i2wsPdgem4cPf4yE9/+QvqrGFOMV8nxW5GpWSzwLlIDBPeObJE7k/3nM8vhDmawtULrQlBE9uWqUPtqRRiikyzY0lGi2il0KThAGn2e+3qkeOMBAsUda30GN+8nYjH4VniRO0N56E2T72f2Vsmn1/pLy9UCWj0OK9MU8J3HVSJmeVkD9WtKrMIBcAJZd/pe2fPxp9OKZHSRJoS0/FAeDgxPzziYyS2SsmZSc2/m7xDW6XuV3RZjMU6VlHNCWGZiFuh9cI0Re7vTjxvVk4h3mwpPgT8tNByJflI007ddo7xDslKaRtMC6e7memL0MXx47/7e9a9kq879EreM8sUmCYhNaxAYxSf5FqobUOaY0oz+XqlYbB9IdFHec08z2YHckptVp1udIyGOrEHpQw0Go4QBE2NhvG4D9Nsyq1W1IkdmkqlIczzRHRCmOzPbMimbqHZWowq5Uf9urcHTtVmkHoZvn9nyHql0ZodePGKC6Dd1t+9WsDGim8M7xQwCkRIfqx7N3pr5OFnta4q8yCHgWRUd0PjD4hFbSN70MF7ayWUasSFYIde6Q7++p4QI08MVz7cQjeWR3fqcN08yqYeG8HiFraRXg0fKFBo+G7Jc0GZfOS0zBznRFlXqkKK0XCGdPZqDNh5mvmwHKwZsVZa3/F7J6bEIc08pgWdrlYg4wNbK4BwnBYe0gFpKy9l55gWDumRLy+vdPUEFwmYmJDmGXdZyaUxzwemOPFUCt7xFvZsrUD3BG8D3RQXCpXZCSXbxqpX29zoQF/eDoenebJwZrPB5937B/brqw1fuZBzJz184PH9Vzh1BKnUbWe9rmhdqS6iLiJTRItZVFyM5H0nl0zv0PcrDJtHdA5KI6vQo9FrtlapL7ftnbXrtd7R9WoHKZ9QZz5P1wvKPMzljo0z4gMSEi07nGSqTMjlxagx9UyTik8TUhvqrB209YpQ6XWnlh23r2iISBsHuZrNkJNXgngLYemtxryjaR7Wp07eN7Rb411TpTzvppSLIHWgU6PDT0J+Xck9U0XwRdC+0UXI6og+QXC0vFPXMw54eX5B5sjBWeV2V0/rhRoc+XV/u//XprSyo/tmQ7KOqmRntOOsnqbgY6Jtr4hL9Gr311qskhxxNPGUvFuRkkDJhRgPTPMBF6JVTCeHCuRzpm6ZgBCBul5AG6kLLSRKENziScXTxRkO00eqKqFVcilWajI5ZKx8orOMjxuFPSJiirWYh9xCx4a0VGw+EIHW3dvGuWun6WjWA0QNr3pjGJv/uNrXE8e1hSH6BgFLxA539q8Pjka/GbXGMP3f2Cos09AHA17+TUH+1/36rUmMsW7d2Hc79Rjv05Lf2ht7NoKFuvqGSLvVTMsYvLZte1N+VZUY438zJPc2QOHVnnytNyu/AKYRPso5k6aEc55S7CY9zxZayjkPP5EMNcdKGBh+QQsRJabjwvuvv6Lsmev5QpomewD0ivbOMh348vmJb3/4nj/83T+yrRsvT1/49PETX73/wB++/57//fMviMDp7sBWMuW6k/PO+w+PfP/jd/z8y8+UsvLVN+/5w48/su87e852g5kmJn/kcDjgnWNbrSVqPh2ZVHl9uSIojx/esa2bNaHFgEjmME/02ggpcDqc6Lmzbyv7vnE8nFDtvLy84rXQk70PMUScKkGFGCbCfLBqTLXaZBHDiSnGgL0VsizLQuudNa/UaSI8PHA3Lzz99ImPP39h3VcY18DxMKFVeXp+oXarIL91yf/6+fOojRZS8CRxOBdM0V0S6TDj08R8/8h8eoefThas6JXDFJG247TiunFat3wdbOJE2TaCgHo7sac405MQvGN2js17U0xbRwbfePIefwhMMRGCI/dm6KgxLNV9w4XE+4cHPj498ef/8p84r9WaJW02IgTPvl6IzSw0W63IsCO1VqldmJfJykbaCJ1hxTJxMkXXlNNq9b5DDb5um9XqOm9e+rHyd97e/+TjKMBxA2do0Pycy6i/ruwZujc6SIyJUtaRrr8VgVjNc0zGFl1SomlFXCDvO9CHLW4EWW5D4wjf1nIrxpC3rIB3tnWp4/PaxEpgeu22UQR7eLaOShsc5WC8cuforY7Prnl9+/AOOmdVsn4c1G/KuXmH//oHiPIbuQF48wkifojKpjiZr2D4kIfdQkdoWNVKgQT7w9tq1VsBQS2s28a1FAiBaR7B4Ka0WsgDH1WqFbww/uw3xeoQHJvA7ANLNGuNBseyzMwhEWIk7Gd+/vwLv65X3n34lhgmetm5brZZccDxcDDkIYE9V5zahq7WgkNRnd44zkU7oRV8hJKNHNOGx7KqQskUbUw+MouYp7ha0O/x/TfUbed63sB7Dq5z/Id/z3J4pF+e2K9XzrtVUFfxVmbRrObeKtDtOukNqjLKeGyoueENxYMXjCWP0R3CPKG5sOYrsm+EkIhxBufJLdOpSAqEMFGa4GSD0pBogkDbd8QVJFlRTpFMpxPCAk5xaabngpYdZMfXlZbHwN1sQyBd8C5RpdhqXgW0InQaCck7fd+hN1ysKDMlr4hrlDLyYmLDM82DdkreuP1DaQndCtvZsKVdhO5mUGei0PFErZGgG/W6U1U5X57ITfhw/4DLGz0K66Z20HeZfdtoPtD3TKNTshVaVZrlNCRS1yu9FXK1FjoJAY2RWle7d/ZGcJGijeAqTtS2IqLWZbBu9JKJj4+4FEdhoVV5aDExa57vSVOi1cp+vZB1BeeZ7u+YTw9sI3eTgqMXe29iCiieuByZ5glpNhiLDIV2fJS7AFRjl6Og9nUijaESvNks7CZgHnyH2v8e9xtuGEe1cD1D+AMdwT79b/joVgyiw9LhbRSWOnz+Y5tuX/3bzxXsEIXQ5W+gAPwrev3+BuQY7WTVmuFfMMWhOdBiOCoX05uvGG7DQ7CmGxTvf0O5me9YB6PYj0pf44/maszTXu3iynlUi2JJ1NfXVws2aCeGNFCQNiD30UryhozDDTqAB5qlZn0ghMDjV+9J80xaZkquXM8rdGE6LEwxEYMwh8Dhu2/5H/+n/8n4jvvOx5//wh9+/JEgyj//p/9EXndCmjk93pOfvnBKd+z7znff/0DRxpenX7k7LHz97dcU7UgMXF6eaQ0Qz3w6cnd3h3S4Xj/hvKO0TEoT02GmY18zycy+r9Yc5UBcJ06eUuHTp0+8PL0wT9Z01nqzAI0I82Sq9rUrvQqHSdm2nTDtOAJlV8g2gHRsBanBE1Ok1TIUdWVKiVIyp/TI61aRpNx9eKR0R//4mV4b4gKvz4VWd0DGkCXUXm0z0MFjwT+vFqQJweOmiI8e9Z3H9/e8/+EHjqd7UjpQy05jQ1RJ0okOtGdKKeSSceVCUo+2TpQd9isiiegSq+5MIZFaw+0bCWfrVjfZA8s5jofIMdq2Y69QullW9ta55t1WhQgPS2AtjXQwtdNhgTG/b8QAaUmgnnwxdTSKR2WwO51QnRU/OAmDcW1MWieOVjOoDa4hBLZtNya0WHtYimk0BFob5ByTfZ60I27YM1w0BXA0Ud3oLbfh0aWZEBO57QPbmAje/Il0RXujt840GNN9bHdKtoOPE/t8qhptRpxZG1odlfDOoV6ovRst+Yaz8EpvVp6StzIKTjz0TulWL9+1j3pnHbarThA/PsODYqHD0lHhLbSi5lvXv4HDQlXGQc7URK8OnC1PuxMrWRh8VC9iD7fBrjaOqSJuoKsYh5CB1yt5hwZ73cm1kXsnxAPHu8R+ebKHczPfYckWqqu9E7GHvH98ZDo+MsdISonDbmUO4bhwejixzJGyF3w6ML+Dw5I4Ptzh4z2ffvmvrC8vuMlR9gspzVy3wjw5Pn38aGpXs0CeeDdawNQsRrYFxxPMZuMDuRRoBS/BGMi5E0S5Px3JpRIlE6cjp7sT58+/UHLmcDoyf/f3pBC5/vm/4OZEOt7TY0FyQerG9VrZq92/W8dCya2Se6MrxtEW43/3DnilSaTRrDVP1IghJdi4EWZUGrllarkQvMMFz6aNgP2+1dn7aMHzgiNZIUS40nKldkOXqlhhTxCH7BuaAlIKzkdwEzXvKDtuv1D2K2l5h+xX6nZGmaAXSj3T9kI6Cf3zH9G+4eIdtTv0/IXiFGJEGP7nWqhS0OqpdPqejVjUO71s1Cg0mehO6GroOK0W/pZiYbNam/l6S2HXxnT3jtaF0gutFdbdkKet7ewKue30qmz7yt4M45immbavNHYiAuK5lp1WNjoBPyXoF1ovFjpT0D4sLFpZ982IKSlZHqIXRDunw2KdB3slBkFqs/ZZAslNkAJSKkhjOR6Z799zqR3RzjQb1nO/XIy5jsPHxHxYrJehWDeAFfzoQKrbZhinZnlQG1cVRpurdRWotGFfGnbOPhTjYYkYcsbNQQHSR335rRnPNkPadQgAYsSVbjYWug7aT3irondvWY0KCN0xqB9mExH+Bje4f0Wv392APE+z+afUVqLaO16Cnf6Sf6uBBk+Mlk6trf4LtvE4cQ3erPcB7624orXOuu7EEI0q4B173cdFrUzzwR72pRnFQRvOR+Ywv6HhvFhoyOEGI9YCJ/SBtXKGjZunGafKcjzw8dMn7h8fuHu4p7TCcnfgdHdiWWaeX77QO3z99Xdc153X1xeaOP70pz/z449/hzjhul55eXqi1MKPf/8PvFxXowe4zt//w9+z7xuv5zM5Fx4fHt6KUFKKVtGbrC3w4eGBeUpos9rldV1ZjonluOCCKYopJcIyI6JcLy94HM8vZzqeWoWXy8o+an/znnl8eATpvD6fST4hDcKSENc5b4VzrkxdmcRRa7aq1t4sUCiOqsbwtJY2sfrleULVrBpOH6jrhTVXDktEvn7Hvq5c15W+X63spKm1G/VO8nGgo+xhXErhMKwR0+xxydTDMM/4eWKaZmJIJugppDgh1UIfbctv3lfngtUee28V6NuGSLT165QoT8+WHG/KFGfqqPne9yvH04KPnvN1Y3oITMGzhBndd7zAtx/e8bJeWEtjKZ3FCxVhK42SZTTeOVotpGmmqLKVhg+OKMJeOgRr9aKDl0j0oN5UuNoa27axzMsIunpKsXpdJw7B2pckBKY5cjnv5u8N9hmrtaBYJfk8LzgHJe9WShID4sQaLb1SgDZBmGdCSOzbla4NvakZNPOkC7TcqFSulyvL8YCIHbpU7YDqfitcxgcIPrCXSlWlFQvUtdqQ1k01V/Mv91KN8tDM61eb8VqVDn4o9+PhUbtRCryLbw+qqiM/3q1qutVqQ4F2alf+2leXmyfQ3bI8dsDBLB5OrbVPxkA8LMkYFu6mMDO4wRC9J4hiZS0OdQE00Gth3zeUiE8zk39Etg3XCrRGRdn3Sq0re+047zktC8u08CwvJOeYvUemxMP7d3z/1Tse3p3Y9p3rupIvjruU+H/9f/43ns87H756z7JEC1FtO3cfHgmpUPJmuMM4aDYhEf1ibYsK3gX8DUElVi9d604SQ0JGsa1H8DA5RcsGzrHnxg/fv+PzT38m98bkhXleqJcncvawHPHesZ0/s+VCrZ5eMi9XK3gQZ3XAmneCTFY0AXTx9N6oJZvVpVnrWoyO4CZri1NzgsZode0OoYpHvKN18y2TO6F4ZD4QUhxZFx1bQ7PGaFNqbgSieZRdJ3jP1qwoxJViB7u9IboPH2lhz1daXennJ4oouE6TmSCe3ipl33DHIzEs1CYEV6j9gCaoGeijQF1tqKxiHtTcMkKnt1HAg6OXzhWYSzUkYb9aBbeTUax1JedG7pUmjnR4xxQ8vRWuqtCVbXuhNqHgzfted86XM/mm4KNcciVO9hnvrdJqJnhvQlbZOThHWha8KlvZrIjRC3Sze13XDIg1yS4TW87QCodkFeQ1V/puh/OGoC5bJbgLTD4Qo2O6P1KpSCksy8wUj/Z1uRGcY57vmacDk/fQ20BSBrqYAmtFm7bbubXh2WDczcqg437LECqGpxg19fjtPjkCeX3cAXXM0U0YSq/tobwtvcYwbfascRM1rvLIYJnk4GhS3wQCHZspO6bbCC//AmTwe3j97gbkbc94vIXcgmNZDgiOpvn2/LI1qMSxyrUTbc4782wKphtKESpMaR7Ds4Wppml68xCLsxS1qt2U9n2zwJgIwfuxf3KjStWKP2JIdqPr1sglakEtxIocGOHAlMwf2wEXA4fjkW3bOBwOVsawTEgQvv/hO2IMFJQ9V16eXyld+fu//0d++eUvnI5HkJ3vv/+ew92BXz59Zl9X7u7ueHx8pPfOn/74J0SV+/s7DncncMLd/R2fPn3G4ZgOFojRVinZPg6Hw0xtmdo7L+dXYoh8/9337KXy68efmVNimY/UfcX7RMvWWqTes7fOVCuiyrplWqvEeCBNifJyoVYIAV6uK3fryjt5x7pdmf1kzVitvGGbvHoCgRgnC0HshUOYkQBBIqkb2q+WxnJUQtoIE5weD7zP9+Tzhe3auIyWMNU6UuWZmAKn05HT/T2Hw8xyTBSt+BR4/Pprlsd3LKd7e++mibJ29nVFB35IvDeWbvD0PiM9In7GKewFpAdqEabjkQZs+QriCZMN/5SBDiyZGizxvRUl7ys+BvCOPVcuf/6ZaZmJAjFGYjds00UzDVN3XbRgnGKlGKVsZjGohTlN7N2GXO1Ky43WsNalm7o/z9RarRVQ7Kbp/Vjpq+H/5iWR64aL4L2tXUvv7HkjRbNGeDFU3OlgNBJgBP6E1m09d75emOcDp8OJ2rM97LSNCviAu/E6xViyh8PRlORuDbYOP0J2w1aFHXhas4Nz77y1QYo6q9FVNdSZTzasYA+VfSvD61eHHaSMYVqMXuPdsGIYWr/UhgseLZU4Dlsq5s3zXq3Y56986XgoOm5dWzosBxaGMwyZlaDgbNNif0Yb+HWEY4NA9LAEZytyrNpcXABnbYu1KUq1Q2I4cXdsCDt129CXV/bcrIbcN+KceHc8Wh16lDcGtfeBx4c7FnXk18zuKq1DLoXz+ZVZFJkdyXum+Qj7SsU2SiFcub4WlpBQb75XJ8FscrXTkxVjpBTooninJHEUbXhnBwYvHrQRvFFcWt1JMeAPi5EI8kaYEvfvPtDbSvQTPbyDeuH512fojZdtZW12cFC1lrTShzpfOqI7pRZ7b2KkN3t/nBO0Opa0obtjx+GdlSHtvRqHWNXW2KhtQ4YCHhzsPVOvhbnNVuhCsdBZq3Tf6TWgXenN1vtVhtjiZ0LbSCMsWBnblW6HXdcV3xWtlTYdBtGloRwo9Wwbigqbbqg2tDRK+zKGckFbpgwEoNYd9TMlCKVsb55Zr3aQ6EmQXinicXtG9Uoj0n3gmldyuQ1uMB0eic6huVI0c12ziU3iKKLksrNtG2trXPfMZS9jS9OQEOhbJ6QDIo69dLbzC/s6xJc42aFu29nyxjxN1CpvFJE972ZFUqX2zjzPVjxSK4d5YeuNsmYj53hH9EpCzcPrHc4PW2BrJCcclwPqI94XXIj4mDjOJ+7ng5mZBt/fY5QJNxowVQSHlTPpbfPDINboWJWI2Q0tV8AIzlnOwVEpmCI9bhiW20FA/Rv0ze4fg4IzWh0trGcH8DZsaq6b7elmy+jjKz3DlDHUalEGn/338/rdDch+YH36+PDv+07vyjQbt9bM+ZUQlJg83gt7vil8gdNpRlx7w1lpd3bS9b8F/6wEIYwLMBo+BSGlCe89rVrZQWumbqZpoWyF3kwxiNEU2VIK8zyx7hspmk8oxMA8zaRgRvybD7bWxvV65XAwjqiVFBwJ04GuVo1deidq5/Hdg8HxRfny9JljSnzz/bd8efnCebsQpsi8HJiXA+fzC3cPd9Q9s5xOtK4cTydyzvz6y88IMB/umVJk3y8EN9PVcHMnOTKliaenJ5L3xuzNmZQCKo3PL5+ZomHzqnT8ZOrns5zBC9LF0EfOvHq5QumdhjE053kiTZGWM6F2+uRo0b8RQeyQgvE9RUjzgZCchWcCiO8s0bBoGiJ7+wshB2bn6XWH3ukxcbpzIFdqc4a8aY3ShLvTCRDu3h3xEdIcWOY70t09D19/a0pbMMD7VvPwGAfYrFRAQsJrR8turXgScc5CZ7fDmTghOjhNCx5HCMp1VBQbd9gCGGXPpOAHHiggPrDuGR8Sh4cjPWdqaTQq2pW6Fbw2q8dWhVbZmwXIboSU3it4ofZi63ZxlF5ssKDh/fx2rfdRwIMawtBQfJk5xGEFsgPifEg4sba81tvwDU82QE8Th2W2pkSFPe5vodppOlFqJZeMqn02SitosKY9qcPDqTpKArpV/YaAjFrtNtjJYFXKflAlajMGeVfFOW/86bRArqPa3ewSThJerDSnDtXfEHcgLvxmu6qdNEV8sKS80S6MCMKomMf5t78PvP2Zav3rOaG35ak6efPfWy+bx2mnjWBPc2ZDCLf3DVBxBBFr1RoNgVMQI5B4b7QTOipmzUnOkaYjp9MdRRyuVegOp0oKVzs8YJ7Jo3OckuG+Ip7Jea5itcCH48kOyqpcX6+8Pr/yvD7zf//yZ3CJ9++/4XSYifORX0omBUfyjnlKbGIlKIqn+YAw3utR3GGquEOcYwpCEofvntIL0ZvvPIjHa4bqjVRUK9OysG5nUkhmw2sV8ZEUjqyvH3l9fuFSG/l8RkLimjeym/HxYFXdg93ds+E6tUHWTm8Z7yd6y1Az0Xl6CzgJpCi0WqglEJyw1uvYHNrWLiRBWiUPLJuPVs2+5YIPoE6RYmzjLpXeEt55Ws8WCHORrWW835lTRCSy1UJzjRgWpKutxffGul05Hb6h76ttABFEr7SajaqUL8YBH7Tb3iutWzD3FhG14qhOyyt5y1bzKPa9ukuEJBQqUhXvC63sFDFST26RtUVK22gIy3IieqHWjSxCbp0Vg6C1Zg2L5/XCnjNP60auVn993V5oXfnmD/8d5y+/cn39Qru+gFcOD+/RUPn1cmbbV0KM7LVZ+LrbZ9ShVBWEQKmGLxMRfFeiVrbzhbCckBRp65XuHKk2kkQCwt4V9UaxYrD7Xei44Ml44jJxuAsE5zk6Rxq17TLEsC4BPwQ5ESsYGhBDhiMZA3WqkWjUvzlEDcMmb9YpT3kblp2ODYfdDUADYMLBiDuZdaILnUTXETimgnSCKg2hO7N5GHPdNlVO6wgAmnHk1mh5o1r8Xl6/uwF533aWeTGv8PAgdlXWdR3Nd4GYIqVkrldLSHvv0a4clqOpdaWOvYQpqdfrlTRZi1htbdAcOoxaWTuB/lYuAg6aIaJAqRVaaZb4Hw1brY3kPx3nlRQd0mGeJ5ZpsjKKZeZ4OOG9J6WZeU68f//ewmiHE+/eP1i4UITr9co0F374ww9s2dZPvTfevXvk7rTwcjnz88dPTNPEvCzM05F128nDH+uD53S8J4RISIk///InnCr3jw88vn/HlCKvz8q0LNw93PP6/Mr1fOVyecGpVa2u64aifP3NV/z65RMP7x8tUNGU3HaWwwP5siNeiNOMuspeDOQuIkaJaMK276RDGKHGwnq94EepSB9J9FuySJW3quuAsrWN0m0L4IJHNRDDQq6V5f6B/erx0ZFkYV/PbN4+AvMpseViRItppjZjT677lXjwTHNimhLvf/wDcrijVDgcTuTSWA4HrudngvcGk08zbVQZh2D2Adcb7BVdGiLKvm+2fnXWkjRhZJCcV5pOBGdD57xMRpzADYShERva3tj2hm+FvBfSoK2omM+310bOBr+vOCtNUUAD22ZeeY+gzlPqhndmP3LijCJSGrVdCH7CjYNlGMG8Uqx6BoXmLFBVa2OZ7eemFIa/2FQFa65T6J3zyzMihjhclsUOI6UYnzd4ApHr5fIW5Ku12PeU8c+9BWJFrAEsRGMxpzSZfWo02ZViA56o4ENkr3ZNpBhw7UaasGunD/+z924s6j3B2UBthRPNVKIUrJ1xSlZnGwJv9FBnoUpbnVsgUhhqVK2QbH3u/xYmZLhlEG3bJTffoXFSb/E77YOvShv+aA9jEat9bAecEWH8sBctPqLiOasx1Z10piWRphmaYbG8F9RFXq+OvVa2fUUBf3diGixbkYAPEyklJAjvPzwy3y1W6HCN1NaMLd09v76+8JenC/+Pf/cH/vH9I3957kzBk/cLc0qE6AkayTeSENZy6pwNpXRFteG6MoWJ2gc7PMCNldxqQ4IFF0vvtlrXhnOe6TBxdzzZtZ0bH58/suUze4Xt+sq6CzVCWh6pKOu+s62mQovDqouxUG5WU0+dz6bWl43ohFgC3kViMW+uk2jEouCIAUODYgU2wTnzxNaMFsdhumPrO+SzvYfiSBJAHVWbIU3Fthu5ZJwLtL6boluLee6DDntPQtjpxXBul/WMp9vwLbZtbGVjz2bzcK0hGPmka0HLlXqz+AhoN0Wxakf7jhDp9YqPE9V5ooKvF8q1UAMUEUrXwULOrKVQ+86UZpwIe650J6ylUvaCuMaaO1utXK4rV1XWreKjp8eFFAPL6QMiwj/90/9F18rpeM+H777n9Xrm0y8/kULg7u6ey/lMPe+kZIzzXhthiLE5r/jkSYcj+XpFS2PFEbyQs7Vf3nCxXkw9noJHYiD7QAsJNy24ZSaKs60KyinNLMd7swSWYtsvFO0ZNxjwnmK2BSeI1PHZtU1t09ueSIeaPLjD3HzJbhggZFgnTCGO2t7YxzZUBwyZ4QadQrmVfAhqVgubaqgycG/S6fJbNXVX4067djNYCNr92GjZFlz4twH5X/VrXtIbaiTGSBcD9DsXzHPnPKVWmjpTsXLm/u6By+XMy+uTfROxMJ/3ntfXLxaOaCO17x29dcNcBWcXTjPFupQ6CBdjMO9WKVqrhf9inMg1M/mIFwsJ3SDctVW7SBVyL8zHxdilqqzbxunuSFoin58/8eMP/8DptPDy+oW8Fy7XC8fTia++es+vv/7Kp18/cTgcuDvd88OPP/L50ye+PD+RS+d4PDKnEznvY7os3B1narNA3TRFPv76K+fLGR8CX339NXGaqSWT5onT8cjdcmC7XHh4PHF/P/M6J5ZlYTqe+PLyzDRP3N8/Wgq2QskV7xPRBbxkulZyq4Rg6+klTfRcaMVW1tXBpTTC5MgEql+ozSMtItXjo1L2Sq0KHsQ580rHiLSb39O/KRk1N47LHb0UjtM8vGlQ85X2HiRF9m1jv16tZMbf1lnK6+sTaZpZ7h8JpxOHdx/YsiWfe+/M82QhxBhwa0G3bFaCUtHeUJ9wPqKtkPcLvi2mfvdGaH0Eazplv0CHoGF4++wa0tY4TonLdUfG8n+ZFqpafWvZdkL0FL0V0kCvAnRSsCazdS+oiJWi9J3zuiLO4YMQTPSkaaGqw4fJhpDdDoD4xr5nK0foRunwzhGCNT9570eZhg26Ig4/iBc5ZzxKjIk5RZY00XpFtbPmnbxbSFVV2bYNCW6UeUymVg3fvkZPaYqrxerfvSkorSn7vrPlnS59BPVsEPbe0QWqmK0j4I1Z3DKixnWVZupJShNoRweSLU4Tpf52PaKdSRxOnSHvmiIhUTqotlGH7VBXrbVMq6GuxLCNEmzlvzW7pv7q11ixigwqgMhbUx/DSwy2OTBb2QgQYjgTFQswKZnahS1Xmqu4vaJBWOYjB++JauUHx8PMNM+EWse1HpEeub5uOLXDvw77jDRTppvaAXUKkWWJfH1/z/0c2Qhs/jJ474F5PuGuK3k/88uvv/KHb7/mlBKHw8zn8wvT/QeznqHDVqHGfhf73YegRmwYm4HeOnOcyX1Hq5JCIGK4wK4Z50dhythaLfGINsdlt7KgrRrh4OX1Sq6wd2cK4Vp4+fJnXAyQEk0j9fyCw342PdNGi2JTO7DLoIJsKH27sgSzkViGpXJthal5Uk+gjhR1uI4iIhNpnqi1cM1Wn3xTqRH7bzR7n4x7BWQatSmHZEPcvm/sXQeVxuGkAtlCqRVT0cvKHCJtF7q+4JOaqFGqPbdaxVHN39+zteQ5aE0Q73Fqg3dVIbpIbQF1plb2/UIVoWuliA3FLVe2XmgdSofSmr0nOHKrqASuW2Hdr+xbZm+d3Bqve2GrSpxm1rxaoYpLuNMj1/XK8/MT6/XKckj89NM/88tPMN99QMJME+HL8xPalHfvv2G9fMbNCx47xJZ8BjyX1wtRBE2RUqppZGFCXCBim4gsQsSoOlNMaJxwPlJCNAZwtcrzKMq8JI7HI1NMVg5CAa1D/bXvext0m+hQidOwQjFUW7s/M/zcIKhrw2JsR2HsMWjBvHELsFKQ4Q5Wb7kFQNQ2WE3KONx7mpjCfBuKZVix0AHA7Jbyq85mFKd9EC5uNB3h1uzZXP3r72//il6/uwEZzEMTYrD1RbeCBUVNrWu2yvDO22BQK1++/MpvBSB24709nMsAl6ruOInk2kijKKEU8+20m7LXGyIe1T5wRPVtRS3DV6xduW6rda6Pw5bDDnchRGtg8gEXAq0prSvvP7zncFw4LAeOp4WUAn/56S+ABW1inPnDj3/P//f/+I+0Wrm7u+N4PHJ/f8cvP/3M6+uFpuB84ni8t7UMFaVyOs2s24UUPa3vPD/v/PLzT9TW+bsfvmM6LMaJls6X5wshJkpvnNeVeZ6ZQkS94+l8xq0rEjzX9UrOhfPlMhi7aiqnK0bqEGi9k0smiEHf55AGW3Nlc5Hl7mhfl83XJyFY+6EKWmyFnffMdDgYl/am1NHH2lssab9n87h6OMyJ4mBtBZxnPj3ixFSWlBKH5Yh0RaVS6mpWgPgV83RkfniHWxaaCgFoClOazXusxvn1UdleVlIcntdcwQfi5Nl2pbXMKXgkRq4h4LopfrVUrtuVvXeaKtNs7NlSMlUrvpnNR9RGZDfUvuwa0E1lLwXvHBBQ3ZiWyVarylgfit2Qe+E4H6ioDbiqb1aFtRbzqTkZ1g9LL7femQaaMO8bPmAq4vAo194NzyqwHBaWZbGtSq32/cVZQY0IPnh6s9/d9fV1qL8zoBQtw7NqQZnWKj7YJmb2gZ4z88Asmspi1AAX3ZtP2JQtGeE6++xXVbRZSLH7jJNgyC692ZcyfoQob0g3wweaGqtArtXKXwRq70xigZqijeisSj05U9QZKrIOLvItMBh8wMe/QRXrCMl06aiEoSb3QXwaZSAKiK1lBbOBjLfIwlOuU1XGdmIo6brS6obUzCyFuyXwYbnnm68+MB/vqblQSrQbVmtcLhemyRNTopRGqd08y4NqkpyjzRN37+758HjHHDybXE1tDRCc5+AdD8sBCZEva+aXpzNfP97zWorx5PfClIIxmzXiXCW4SIzjM0GwrY8PCJU9bxxSoovVXYOyloYPnSkOe4B4BHsONDov1wuxC9teeL2ckRA5Xyu1Ova6ctk3QGhhptWJsq3s9dn4992QaN7bNRURrudnI6+4BFrwweKipQrRe+YEyZtfs2llG0HyNRe8E6ZQzDDjBdU21OUGNTCHONbwjtw7rZt/VVQoUnEuUppQUYKzVX3LJn7svtOrkXmkNnKxIhQjJQTEN9qq7Hsml4xk+7mehnOVVst4Ri6IK6gKex2hQSBrpLTrIIyslJpp3dEQqjPeei5Kk07HUIgmWiWuTbhgDPItr+R95Zobr1tBa+HaG7l06uXM3ftvyNcrL18+8enzr0xzwoWF5iPXy5W9NlzvXD/9EUT49uu/w6eFul75/PlnelfW9SNff/OtPdObcLnuHA4L+5cnnHhCMnuShgmwTEEXh5aKBLPzuGTP67ru5L4bJFwT6bBwSsYUT0HQXpGW6dUG5FAdszl0sMBxpztv9+ibkivY3kdH8E0cos2UYCyoi7qBVzT/vYjitRvXXYQmo913fE+w+7vTWyhPcdpxI7DXxELat/8O+3ndNvEY7eeWeWBY2SzsJ6j48d/+bxSLf92vsXZHdXjY7bzmUXrJBmoHYjJfjQ6V5eYtds7hg2PfbEXchx/UuUBvI/UqphpJN1+h+WHtwXwrExEnxgHGwjzBB1qzTKrzgnjDlQWMIRq8kQaCD0zTgdbsoTanCd0y7jARXWCOd/z5zz9ZSro2Pnz4CieO//V//d9YLxd++P4HYpoQH/inf/onnHPse+b1fOHb77/Dmv0yl8tKSp6inZeXC++++sBl3fj102e0NO7v73j8+gPH5WCWhmG3uHu8Z98zx7s73r9/xy8//Yy6SFoWfv31Ez/8+B3OVX755Wd6a2ZVEI/30RrWhHGIsFDRlncOIdFbYZdKp6MeRBTNO1IibbuiE7QwTsFuGkGVnW0thDjRJbJrwYutKbsWQgffivnrVHHBIy5R+oSq0p2nrGc0b8RpQsTUv1ozwZkKk+4ekbQQpgVx5rvdtisOyJuF00qvBGdr33mZcW200cUJ4kRV8IMHWy8r0ylQKtS9WplG39i3xjUXuhNqLhDs2my9EMOMR9iuVw537xBteBdYoiPoROrKilDUgln7msm1GfrKR7QLW610MTdbmgKeboO2c2jdoXWWOHHtWBHHuKa7CDFZVXTOhqwLMb19rhALvwUfzFoxbEWlFKZpwmMHvNeXJ5pYtMOn2eqB08K6bazrxrxMpBSHZchCSuCotQ9KjAHrc64s80xj0GjUgiOumwLTtFG9o5RMq2MlA3iSVVoPHb6VaoU8XQYL3Ybb1joBq6EuYrXEg6RqzYOt4ZzgKYgPRBft99TMZmXfHWL01JrtYWJypelV9a8PsbihB6sOm0W/xfbUPmsweM+mqlq1rOIZdbPj90m3B2Vxig8LirDuF57KynGa+f6r99zdPXI8HonBo8nyGqVDxZT3EBPzMiNSbIBuFppz3jNNMz44vvv6PXcp4gXMA2m/iykEUkzMcSbOCy95pfbKFIVrNVxa0JXjPLMKNDI+BpILptx7s0x45822JaZKX64XToeD1YH3gMSAjvKQeBdQGrV3kjqu65WKI18+0n3iuhfqdaPVwrrvrEXZWsOnhbbubBRS8Gwl0wjcn+6opXLZM/36OigUQjk/M4VACMa1T+PeHr1nzZnkAjEKPnrmCN4pXpTkRrDXGV2HERx2IaJV2fNuKFAnaDWGdxez8jSUQ4BcR3tc6eAqEOjOU4u+hbvK9YwTxZWGw+H7jnTYcqduje48ORdSsAOVbzu1ZVyYSWMo2teNCjjxOO+pfTOqS3WUrlQR1hHM1i5ocxS8bVi0UptjTslU+loodSOvO9d8oWuz331pdG/2ms+/fObd11/TUNy88NWPP/Lx509s+46vZ1rO9NZZTu+4nl9MICmFy/mZPOw3SmFdr9wdZkrtxGQDn4+RWpsVitRKdB7pViLkQ2Qv2TCWNxtMmFjiTHWOul+5Xq7kZaa7e5Z5IQQLWfrRcOcEUop4N7HMiSmMNsFuQTz/FtKz7Z+oJ6gDafQRiraZtONGkNAShabjys0/PDbSymiS1GYefVX64KZ3p0ORtgH3VgTjVWnqBhPZWOeq1sApw6aFGuv65l3m7V5khzT5Nw/yv+6XqvVbWcWiGhuxrxbsEocLAW2GVDOVLI4ihU4f7VsWmDA3YoxxMF/TWDXbyfI2QHjv34aF3js5Z2scK8WYq4qlm/W3phn7GfZ9YrL0vYgFi7TbSsMFjw+eNCVqzcR5RpzjP/+X/0zwget14/HxkX0rZqk4Hrl/eOBwPPL08sxUMp+/fBn8ZsdXX33N8XDg9fWVWisxTizzYiUQceH5+ZWyd1oTDocj33zzNcF5YoyE4FEa78I79t3Chg9395RsKs+y2NDrxDy4tzKUfc/se0a6ozcl50rrlsStdSg4rdFdp4g9OAFaNbtKEGu/Or++kjrM8USrDSc2nJTa0NZZnPnNJ3+y8EprY1xgNKE1Wu3kcdhBhxc9eLYNoNPzmVYadFOkZHBzD/cz62gnlFbo1yv1eiVOkSrG8pVxui57gTr4zGrEEoeh3DJXog/mUwXmw8JedxpmW1BtTCExxZngRhARtQR3tjKaFKORTOZoKWcKASHEiA/H0YrXaAqldXprpu6obTUYyCRlZ548KkpydlP0IVHHoUy1WoilNbQ7umK8aLW1vhNvXtcRlDwejFbSmhLCwrqu9NbwON5/9UAvdbCnhdyLfX8VpmkarWNtsDdva/LhSxZPiG5sBwq3KJo4s0d5byFP+zPZECjebtpOPFUz2pUYolWbUwk+2T/3jlrMi5qmA61VbtiiWgt+jkQZQcrhq1PsYdZqR+Yb6cZaA60kxO45Mfox5EdUFO88WdTsVr391fc4MfHHBmJtA+tkalFnbE8AcWrDzUi0D9exPVy7qUBdRgjZDLsUvfLrywvt2Hk3H2kqbGPIiT7gpoTmzjUXzpedXmGKM129iQaY59yliXmq+DDx3VcfbBV/OeP2Hde8+XFT5yCBVR1b3/jDwzfs1Xy8LiS6rJYRUWsCLFXRuVJzsWBd8IRRra6128FPOjVZRiSKksWCzrU0Hg4LWy7c3T/w+vJKlUbTzmVvbLni9Mx53Sw0lY58Pj9T1YJQ26UTgqN7SMvXRD/x+ukj68sXcM5CnC7gmkWr1lq47ld88CPIagQNL54pBCY/EbsgpVImYU5wOhzYSyU7SKFbi6YLeITL3pBWEafU0gnOWXhVzIPfesOLZyuVqp4gpmw7NWpJ7tC00d1qwdV8YfYJv++kGNFquYLWOtd6oTbBx5l9b3bYiY6mHl8apZ6H0OTIrZjYNIpHSrOtzqaB4h2rMxuGc6Yudl0t4+MMbfa8rqxFWctuFdkSWXvnuhWqj/j7R9Yt45zj/vuZw8MD//VPf2T2nvuvvmVrnSUE0nKHmxpBdj5++pWSd0KMFvr89BGoPDx+oI5NUMPz6fMT7z98MDrQttGAkMyWKd0C80iliZJ7IbbKnKwV0dpfA048MXnYjAxcW2PNG6UlmnaSCCEk/BLBCd5Hgneo74bJdObdBRtuRdugWKhZPccAihpj+DYAd2f3cz+2aU7MYtXVZplbvX0fc4cpvGLXgwhCGdYLEwPoOrZQOn6WN3+zmD+5m8nEhKthr5BBuOi3e4r8voZj+B0OyLkU3v/wNZcvz7gO2ipRvAUVtKNq3NK857cHiX14geap0mnRvDlTmgfP1YZkK0tQhE7rNujGNMJ7tQ5Vw0JZquB0VMyGWzrUhkKtHXFmlG/ZCAwijt6VtCzMXnDRM9+fjM2bJro2Pn78aGr0srDMM703fvn4kXmZWZaZlKJ5jXfj8D69PLEsC4/vv2GaE19+/ZXreuXdu0ecDzy/PNuQ/VTY9iuoJ80Th8MR8Z7z+WJhpORY15Xzy4Zzgbv7I1E8n758MdZmdTx9eeKwzHz++AlU2S+Vy+uGOM+6rZRsA8/r+cK277iy242qVJ5zQZpyWAJaKw5hcw6f7Ia750ydK3vOpNlTG5bE7mqByVbtNFusYU8E9u2Mxw0lUokSoGXqvtI3S20Xgaimqra609RKZUIItN559/ietTai95TrmV4y1MbUGoEZ7Z582YlTpOfKFBOtZOqacdHbqdsFo3SojsoI85LFaaEedmq5UrcdKZl8Xuld2ctu4SkMH7Tuhcl5Q5CJlcdMs4WUUKtblTCRW6e4RsRTW6fUYjzn7sjFIa3Z8BbNJ1pGgDX4QGkVEatYRT3qIofDgcv5yuSVKFaI0PpgYKp5jGOMXC47c7QgXs47zimn6cDs4eEw8+unZ6TbAVJd/xdKsQVbvZ9Ge6UhwYJL9jsrNtAKw/pkj3y2fdTbVsilUdtK7x5DrTmodlvz3lO7hS1DVGoplO7wPiBA1YLDUdrYFPWIG2qKZjsgizNVOvpkR65ug72q/Xm8M++ddw6HZy+j3asaoD/gAM+SZl6vZ4r+9QOy3vBt2FDcRuNHwI/7078YhG+eRAUd0GQdAlIXaxZtLljVrkLWwDV3cr9S4pXXEpiOjaXDEsyHft12nl5f+Pj0K7kbsSU4ey+780iIpBCJ08TxbuLx7gHtndeXL+y7KftNyxuxJnrH3oQ//uUnpjnwejpQXWKeZqbpYPkHNe+whgClME+JeTogalXmIkKrypSGmtmMENR2K54w1vbOXZqH2mYBo6fzeXDAZ/bRoKo4LpdXSt4o6li3CyoTW/GUWnjddnqcwQnHh6+4bM3sDPnK+bIyRc/e4cM3f0BaZbuuXK5fiF7MxjUt1K6cJBC842W9su3Zyi6CG7YvR5gCs3jayKtUBalKdMG8uV2ZvELrVO2UNCqH67BOCIAdDHOv1K705hHNlFoJcTFaRN2gKk46W85c94w4YS8rNcxIy+QWkSCU9Uyaj3T1VK10Z6HI1myUQxwlOEo1+04XoFpmJ+diRVkitKZsZWcrmcu6s+27sYTnwDU3Pu+Zr/7hBwiJ8Ji4fvzE88d/5rytfPrLH/He8edfn/nuD39gLY2Pv/zM42L3x+n0ng+TKdWfP342+g3w8ZefcSiHuwe++vCNUVrmxL5Hau+2SVY4xETNGS/QtOPULBuWPbCCpCVEFpfICsc4sz9GepwJKaK9U3KhtUQ4RMK84MJkm+Peh0XK7E/Wfjk8wHi6pKEYW5xWbrXx48HWuxsq83iJ4do6VoPtOxTr+DBVeqjE6Ah6iynRfdSrCiC9M+IYSP+tMe82BMtQr29BYBmAgj7uRTL80frbwu538/rdDcghBF6fX2m5cZwW9t0qc2+1sOr0jSaBmi/ZFBlruLH65kJM6a1FT9VWctYaVMmlIt7wYu7WrCcy1rV2swC7NQVnDWwGeTe7xbLM9LwTvLWNmUo7HurRPM0l77g9ms93imjXgYmqOOeZ5yMvz8/G2yUSY+D19ZWUEpfLxRSx3o1tfDzw/PJCdJ5lOZDSzMvLM0MTY9ssAJbSxHrdWZbJMFkhgnhqaeRt49MvP/P+66+Y50d+/fyRdb2w+BO1VZ6/fLZg4OMjP//8M9u+c7mcOd3dmcrnHC/nV1oTQpxBO7070nyk5kItKzU3U9tKJ9fO5B21QXGN3CqlWmJbXLca0CkREKS1QXgYFd0h4MKMCNRqxAYRhyjs2xWt+e0j31qm7CtQh4ezmyowL9RiHtJ9P1tVZ7UCiNAdvhSq2PAlYgGv1i1coTIKamJCtCED31f2lcnbkj/EhZB2clktYJOLefZu3tvBnWzVrrsuxt5NIdKb1aSG6BGxG3JMgVwqDUeeA6UoudjhwHXQWamtEidP98relOtWeB10Bxcd7M0GBzV143q9mke6VbSJKaJqXvltK28lKNG7YSkyRFjwnm2/8sM//B2v14t5gMWhvQ17Qyekib3mtw1MCA7v3fiseFTj+FzZ33O905vZpsR7YvRoy/gg4CamZBaZrVZa039hewrkYuxes9jIWyYhhGC+9cbIK/RxWFZqLoj31n5Ggzi/3QdC71A76tzwY4+AnPc0HI1qP2eg8Zp0aq82oLq/gUdPZDzgbPHqblYLxvt3S+7o7TjGeDDaAKVO3sgxzlm6vbZuuDY/o+nE1jLPl42tT9A64ZKZxNNx7H2nrtehTEHRShDMo+0cLgZi9EwpcZjNL1x64boHni6vnGu1w1m3Q5qFlR1ff3jkdEj853/+I//w7/57likwL4m1Z+iwzAFRj0ue6MToO1QO6UB0Y0h33ljYEthLY+9qnPvS6CGy5cZUrlTN5J645Ip4446XXGnOU2oj1862F5oqmci2viLpjn1vrM8/4eNEiIHL+ZVcbSt293Biun/k4fE9d71TswWHrxXmaNd5CYmnraIl85IjD8c7PLZJk3VljYE4iDI+OxZhkDugt2INlcUQYq0rbXx+MyC5ESUSRQyl1oOVl/z/2PuPJtmy7EoT/PZhl6iqkUecRACIABLJqlKqpQYtPWnpf18iPelBd1ZWVRIAEQiPcPKYmanqJYf2YB81z5pWYABxgYq4+HM3e2ZK7j1nn73X+lYtRCy56fTPlEraM95mmC2lZMh6eNy2zJYquRXcqAEnzTbOaeUoI9UNXJdFJTpW8E656rkqGtLgGKyllp2StAu6F0NqkNLODtSk7OxYC1uzRH+HlY0vn37ENstl3fib/+l/5ryu7JdPfPnDHynGsZ+/YIeAOb1hv76QX37iv/7H73HjkWAbf/iwEqYDh/s31Bz48ukn9jUyDpX1+oK1R2zwrNtGypnJajx4s56Hd1+xff9HqmSkQJJbxH3fu0ulxh0pOul1BsamAiZrVB5ppknDx3Jkz1nhzjZgDZgWIfNacNrWg4fkFtGhEAEk66ROBVHcsMdaUQhieppdb1LU5ig0dKXXGVvtBbRK6hqG0g112kBoXT6B0IthXbVuskMp2s02fQrLTcAlPcHv5tdC/Q4N18t9Xa9/SY9fXIEMIPVnEfk0zdyiGkvVjppykG8vXTqxQovUTMWiI26V2DS2bSWEUbsupRCGgAuOUsorYiyXijUD3nk9dRrD6B21mzRadV1Tqik/AgoiL6VHWKtBiCaqxyqJaoVSC5dLYZ5HYszs+8bDg2VZPuO9JvqlmDQgJCYu56uOi2ri/uGeEAI//vCjFhlhJAwzL5eFLUYeHx94eXkhx8zdNHO9rNzd39N6OlgYZ5w3LOdn1Sw7w/3dkXU9s8WzsmCt5Y/f/QOtNZZl5Xq58vzyolKGXvjVovg9QUh9jG+MJcWoeii0kCm5MU6ekmFLlcfTSBVLrJk9F1KF8+XCYR4QgTEEPSW3RMmJtFek832tG7tEQSOOxVZKiVQSrSUljIh2/BCwxqvspRvTtv2KsQN7zuq4z10G4BzNocSCClIVTda6LrKKwTpLY4cmSLOK+LOWbFB5gNGEOj1HGVpSWUHrkh0nTc1pVbty0KhStKCIdJ53xmE5Hh1ODCVnnKuI9eQCu2kk27uFpTB6SymeLE01ta2wttQXeNfDLCqlaQRpKapXNAhhGKgpU6p+7WY+tWIxTQhDUEmKqN51wHKYldjyfL5wPB749PEFEWGyo77X1hGsEInEqHHV6gHQNMRS1A1traKJSqkaEEHTA1Cv/jQ2VlFDwzBgh4FtK6+x72rIAlqX7XjzWhhrgaiHZWscsZTORdbPlo6mw0ofbYJHusYXKpWYd7y1fRdTOUdrGkhinabx5ZwRp5xh/0+SNU0337TXovcWVftKq5Ae3S2uKxK1gFaphcGiuu1KRmJVdBfgmseGI3m7sG2R0l6QMtNM0C6pOIbBKc/daVRyjSthHHj38IAfA9JjyIOrDN7rRGff2Wpiq5ZLipxTIqZuqG0QrGNywo8/feaaBOMHxnnizfGOz3uktIo0B84TjFXcpqkMnaZipOK9IXi9X5rxXJPSVyATesGz5YjdA1ubSIBxgYywxsguwvPLhbRd2WJSnGIq1OFAdRPb9QrkXiw4pZiI4fTV1+SmQL1tXTg//TfS9axFb1Cm/XEeaNbijGWYH9jlyseP3/P89IX5cGTynnPJTMPI8fEt6/UT1lheRJjGwOg8wTZSKUQcvsaeeti7fS4QpJJTVHOpNUqakExuhVybmvpKgRRJJTG2SNyU8VxLpW6aZrfXyp4LY9ROcsWonGzVIKNt3/X6DgHp9IpaUvcVaEJcprFTKbmxl0QqlXVdWbZIbpU9q+nRH2cKBuNHPi9XHuYjD3/5G5blyg/f/SO/+0//kd/8xV/x4/f/iHOeuqys5y/cT546v2W9PCtdw3rCeADg5cc/cRVNMsQ79tgYhpEt7phSOIwHUrwS5kCMV/JeeX5+4fHxKz5/+hGy6sxLiYpJrKoDby1pSmVOOF8JdCNoa+QYcUPDjp5WCrkkcu3THOkxzIJyy187xNrVtSK9qC19oq1NOeka5CY9sL61rje/Jf7qmm1BZWYCQkaalrzZ1J9lF8Zi6u34fiuOO5FCumFQBFuhmdrDa9p/N4WyPbhMu8pqIFQ5URWVDVYcTv78Cdk/p8cvrkBuDShgxbBtK24Y8Nb1zmPvoDQNYLDdCCToTZDyTmkVL/IahlChd4Qgp107kVa1Oa3jfJxzBHHkXJjniRg3zTevES96vhKrG6MZZ6Q0/Bg60koLZ2tVw2utwwQPVUeF0Hj79g3LdUVqYx5HpLbeSdaul/eBGHcu57OaqfaItRDcwPWs6LLWKsfTkZfLyrpuTIMjbTtPX17Y9sSyfuFwmBlGB72DmWMkbkk7wuuFh+Mdy3IByX0jtnz3u39kXzbWVTVfz+cX5sOBdd9V/iBaFG8pQdMYbsR0VJjr6WyWIoXBeU1CtBYksMTI8TjTJGh3q2V8UIOYAWpMGpwRmnbuc2Uc9bDRJOnhBdHI1+qpzRP8kcaqKEDRqYF1I9ZathgptZC2XQ1dxjJ4R6uZmhJ2UNOddqQ2nLGYmilx6SayStwvtJwY3NAnCpU9ReUj2yPWDqr1a0UZyUawRrt5pYATQ7KWamAYR67rgjN6iHPeAAUrnpY17IFaES+vutdaMl5gHIPqB41l25RNHGOEZjQQAVDWXaOWwr7viB01KjtGXDf8aRypMI4zOSWG0bMlpX7QKn4YaEDcdqbZ9zGexu1+/vCFECxlb71LVrVL65UA44JhCp5WNmoxlKYb+M0sq+9JUWJB8Oz7TvBB70EqrSr/ORZoNVNipRoliBiDGvzE4IIWJtaCda0Xz7avF3rviTFUk1i2hXEMPQmwBwkEZe/uMVKMPrfJO3X1G0OuWakYJWvQgKHrkwG0CKdol+efBoIktz5Q3+i0m9yMGgoNGgAifQrR+0m9UWB7sa8doSqtb6p6oM0IxnmwjpJ3WtY1zwZDcwHjLA6UMpILNWsYxjgeebw7cJxnfHAMgyXFineNWnbW5cq6biwpcymFLUW20kipseWdvWReqlIwYq1sufLWz9yPI+H+jg9fdlqDMQzU3LjkM946XS8NWKOR2d4ZPfgWNR+RCxg1DYp4ak49WKGQlh3vA60K8ekTe9T49yoeO1jKHlkRyvkLGYc/3GOtURrChz8ixjLfv0HCjBjHtl1Y16uGPCHMpyPNTRynmdPpwA8//cQPf/hvjNPIb//V3/LVt3/JHqNOC5tQJbC8PLG0yvF4z/PTB7wY1m1ncIF5sHhn8VbfJ+McsVmVhpV+yOlmPcmq8/dGpQ57yiQc3gpbKRjricYx1UpLSlioxpGLkJuwlMKUElhDzKJhV7X0QJKua86FoXcOTdcU7xX2kmmlkErSzzclXpaFpcAeKy/LBWdHwmng+uUDrRYefv1X/M3/4//F9fkLP/3xH/n8pz/RauY0HvnHP/yBxzdvcN7y5ptvMLUQ6srl+oVj0ICVXDIpqsn7MI+UMnE6BmK68Pz0hSQWP4wM85Hj3SMlZ8bDe8ZxQoIFZ1iXC+M4smf1dtA0rKn2e8wZlUMMWAbr8VZ14LRMXC4YP1LHAVdVmlGqGtecWLxiISi9K2xA9eOiUinbtcN6G6pRr0qfCCGYnnBnaRrGUhvV2v7k9Hq+wRx1f75h29prg6AaQ2ng6XKJXtZadK0oVE2jbA6pQu79Znoh3KSCWNorTQlyN4gqEQnKLb3vF/L4xRXIOpxQzXEqiTWu7FhMMxijI5NadVRRS9ai1GhkqBIXREcJKFy+tISxUEpSDRGGFKNmyVtFTumm3sdG0ShhIkWMEVLJlBQpteKcJ2e6NlY7cdbZVxJGVVcZseRXbfPd3UmTwEB1RM32QmUgjCNpX9lixAfpMg4Ygkoznp+eub+/19fcYN13zi8vOKuQ+ufnZ0ou5KT60+PhyMvLmeM4sW07SOJ8fmLbVu7vH0jbzva8Mc8jxlguzy88fX7CWcc4z6zbRm2oJvsmPykZI43gHdsau4ZJu8YpJazT9CIrQuqpU70ZRyqN87JQvGMyUMZBMVI1MRpL2RPOK6T8hi6vOWpevRFq6aNLDIN1akQQR8ZgJWOc4MPcDYXa4fbBk2IllYxzqu9KaQdnMF5HyNTGFAZy2nHisVY75KpL1UCYWlR2kwFziyE1N6MmOCPgrWJ8MDg/UEpPq6JgrNNAjlr19XjV0wZvSPtOzUK1htVCa167ir2TrBHQBWfUFOoM1KwBD/vepSrSKLUQjGVfN7x14IPKSBpYUamJE6+HkZJUYpASzhqc1et1Wa4Y0/FZzeC9IZfItldOITCPE09fLjhjGaepB3tUxmHA2IoxnhwNEUUalpJxLkBT2UMuVV/TMGKcXsetNnItHA4nas2k84KIfr7GWkpJahTrOvWGauwcGvqhUyO9Bp3zlKoH3WH0LNfE9XwleI/zDT8EhnFUlGPOWMB5z+E4w/Wq9z6q6a5S0aXHdNnGTQYhasypt5DXP/MhQnvdGCtIpXROs1VUKq0D6kxPwJIuHRGpnSYhGNF46dZ1kM0ofsvbAXIil6SRyVY3CmcEL5W6LXz58pnredXIY8mkvGuBZg3DNNJiYU+FEAZiyWx74Zor5xRZ98SatEuZk6Yt5m6czrUxHwLffPsWlwstVbwTgredBgMlXZh6J3mwHt8LCS8Gb/Sgu+ba22IVJ7CnSCNiTeDlvPC0bFoMVtUnX3Km2oHlulBTZtsvKtWxjmY82/VKjhcyFjccuHt4JIwntmXhy3f/QEzqz5jvHpiOd4TDPdM8k+PC8w9/Yl2ufPPt3/Dm7TfUtGCM5XpdOK8X2BbaNOPuTgzHb/nu97/nm78YeXz3FR+++w5TFYN5tZZghTE4jAsM44Qb9XB3jTtWrO49FEbnsC1Tm7AklYwYqybebV95Mx4wdqTkTPEW61SHm0slW0jAtVZNeHOWuO3kqhOm22heEZURSUV1xTWhgWqVVDTZdYsaJLPEytKE67Zh/AR+5Jtff62c5tY4x8gf//53XD59z5en5z59Ebb1M8f7e775zW+5/vQnlg9/pC6fSVQOXrTR4CeOpzteXj5TqmIza944b3o4PcwzWYQxBKQ10rbz8HBkPk2cDkfKZVHD/jBgTSPuC3XXgyG1YFqFquQV09QzMZpBvUnW9KKxkkuCUhBrCM3jglePjnPKrKZhqurllShjO7e4ws2cJ04lEaIIQ/rXRFqn+Vht/UrXAhvp/095+rXq+kDpIUC1dVmZ/k6Rimk9JFqgNu2AKwTSadx41eaAfd2rK3QejtzK6lZvLQY1CWMQU7HmXwrkf9YPNdMpUs2J8im9eGJM3JQ8wzCoXhTVC5eOJrJGP/Jt23sktCGn9jqKlb4xLevCMLhXrWPtP6sViP30p6PbjGk6Fmti2deop3qxHOYJNyi+pqFF9hBGzYO3FlvBO43XnIaJVBMpVmqwDP2mAx3Z79umIQdGiPuKc55lycS48/j4oCEMAsv1Iy/PV46HI5/T1pPeBkBe5R45F4oRSlqI+94DVoSnpyf265XxOBNjIsbEcr1CreSyEwtcLmfO1zPzNJNShh4CkaOSGGpRvbQR27uTWkw2Y2klvZ5pnfW0qu993BOOSvaGmps6b2sBg2KHasa3AedtHx0W7OCRjnZrtSDGEtdr5wALgzRKTAwukGt7BfuH3p32fkByzyMrmWDVxIS1kCvTfMRaDQBIUT/7vWsyxeohrWYd7xoxGKNjX4xoKR+TatWKatEkeHAWP1lMK0hpxH1X86bXdDpEiHvizg140fF48EF/VzeStnaTcOg/zvcJBbUn41WNBG9CrpmDs9S0I4Oaiq77SizaYbTO6mbX+Zql6uezx8Q8H9QERGOw/tXE2lpTo1Gwr9Kh88sZUNlEGIeebJlJ6arKtaLsZmMKw230WAspaXSud17Rd9uKt0qnaQ2sGXDOsC5nrNHkPmfQgq02xee1Sk6JELzq5WrFuoDpMPuKHhKkJ+gNw0DJhS03YsnElgmtQK244JGKjlhr4Xp7XdJDUXLGOQ9NsVm1FwvGmn4gUkpErn9+D1m5FD8X+e2/k1bYrjvWBLkGonSO1m78X9O1gjeTn+KlqtiOzevaZBfAOMoeVSphK4FEWXaePn/mp6fPpD3jfMCXSMqJp/OF/f4dxlt8cIwhMDhLTpk1qUxqz4WUEylXtpzY46aEmaJ4wMPhwL/+t/+B+2nk+eMH5HBHSjAPR5yHD18+IVIYgnKCrdCZwxYQqI0hBFLdlfPbtZrBDBQy523juuxsJdN6V9FJI5fC5XomlsyyrOSU8AJ7vlL9xDjfse8XLRrSFednSoXx3Rve3b9l8LpGlJSwtbDnRH36wvLlA1hLK5nt8hM//vg95+fPjGHg4f03/Ku//Vs+/vA9P3z3HT/98Cfc4cTX3/6KLx9/4OV54ttf/5bzj3/g6dI9JNaSqmcY9PAtWaOFh+CxVl8vDbacsa2ScmWtyqj2zhLLjgWM85Rc2dmZjMeLp5hGSZnShGY9T9czhxCQ5qllf402d+jaSm3Euinrvh+cU6q3L7GXzJozcU8ssZIxhHHg4e7EfPfI42ngf/lf/t9Mg+XlsvD5wwvjGGglkeOVYTpx9/5rHh/u+bv/9f/DfrkSvMF4zzQMSqgSZd2n7SPWCClXUoy6p5uGFI0hxwdsE6TspASljjx/+YylsK+JVhrWDgzOkQ8bz9sHLChb3igaz4ohSD+UeY/3AW8a4+h5fDgh04AxOr05TScejie8s1iNvOxJpRUnDtc7ylqRGKoTpX20m3FP7+HS6L+/acBLL1Zb31M0HtpQpXDLcbD9663jKiGQTMfNobK4VhueRjWd1V67XAKDGN0TpRllpus2gGgrXYk93RCoEpKmxsJaFIjwC3r84grkWjRNKdf8elHFGjuail7QFrz11KZe0lJrH7vphumc7aPxTZFPXR6hpqEO/LcW72/oN//aSdJDZ6N1w1apRS3jRsfmFOUQppYpEcV8NcVS1VoY3MheM7UaUo4cDkd++uknHe/0LtztjGbFsO35tYu9LAvBe/ZtBdGid1kWStbUt7RHSiysYnGDHiTWdUEEDocD27ZpB9Q59rRjepKf9x7xnvPTM23ZEKOc2X3bmEJguexgvepEjVdsXdOiIGYNWlEpiiElRVCUkhnGgX3Tg8vgBwYrONHReM4ZCfaVSmGsYU9RUwVHfb9NEzKF4B0t9yCY2khroRrDNAy68N2g7yWrScUbmtXgkVwq4jw0JZuM09A7+v2UXXQ8W00/Y7uAcY7L8qJdlT3DFChFDTkVLeBML/bUT6HubpXmaBHinGdfii7k3Vk8hEA9r7oA9fdMVzztPrpOX5iGUcf7TXBi8GKxOHCatOf673HOUXLUroEDW3pB2jJWYBwcVWbO66pRvH2aIkYLPGuNhrM4SxDLum2U2ljXjSEMnfDiWJbIMAxMTicPh/mAGCU5tFYwotSKuO1qdKUwhIAxhhR1IZaihrbXkB8xuK7Z3PNO8GCqbg4irseve3L27FkPHCUmNPugc4GLdqpzUQ55LoXa0/6GMJJr0k1HjEZsd1Ou6yPy0jLjMGKAHCO5ZnJSDNxhGlXqYVpHuWkqVulx163p2NdhutzD6PSp3w9/1hqHat1vZCXp/75xVM2NWQq0Zmg9lMD0Ylq7TULFYlCNqhXBouxvZ4UWGjVt7CWzlx2zOnJKXJ8+8eGHDzyvC36eGWc1PrV94/py4XxZad8IgxfqaPHeENdKzJlaVQmdseQaVR7UpwYlF3Kr+Jo5jke+/92PPDwMtJAxZeDxcM+Hn77D5KjhRN3Y2VpEJGh6omi4k22KC/QCsWl0rqlCyo1YCslYqBnvHGQ9OMZUyNazJli3jKeyS9XDZMw0o+u8q5UkjVoTLj/TrpHn6xljLbEarB/wZM6XK2XdoETGw4GUM5+++71Ox3NiYeX54xd++v3vlD7gPY+Pb2nWk7aFt++/YsuFL19+5O7ujuF4R375QmmNNTf2snQGe+N4nBAK1Vq8qIGx5EKslb0KW9nJGPa00NLGwVhezk9MYeBwuqMaPSDHqtJCQWhW94CWNWHQW480HcO3Eqnt50K4dLxpRT06MRVtohSVygQ38fjVVwzesawXnj5+zx+/+z3/27Lw8vyCGO1yBj/rYYbCNI/YwUDd+MN/+5513ai5kJcCYqmHkXZqDPOkzZCqut/gG956YtZ7cb0sahidZyV3mMbdFBBjuTvM+DAz14STqNPbtHG6OxIvz7R9x1lPFcVKOnEEN+K8VzKVEZy1jMPI4+Bp48iSBakZN1hsGCgiDKKiCSMNawZNgUR6J7nLHTrq1XavCaITQWtuYgj9/mZ6v7ab/GxfBJqqqTRNutHjpQ1aR1d8uzGPoaF0EdOlHhUDFlrr6Xq1B9aLwTbpOLiCsbXTMQy2T22t6KSq6HKjsr9f0OMXVyA3gTXuHafURwdFsKI0iVQ7zipt2jEUyEX/nFJUjaS1r51h0/+OFdW2Kq0Ccm44p91oRbEFjTsOnpL71ULnBjajm3DTC72YxlY69kuE0iq2FGorhFp7Ip+e1HLObNvGOI4E73m+9PQx71iasF41ZKENllYqfnQ9KUeRZbdYYABTKr45cm7IQO+YRub5HmM09neej4CwbbvqjIzherlQSsWPM2nfcUaoOTE6S94jUiq1RXLcgMaeC8QMVb2tJUViLLQKJSWayTjr2ZftVW+aS8V1cL5zTekEos+pZEMpPTks75SoBbAJgbiv2lE1HjN6MEb5v6Xhh4k9J5pJXc8tPfo764aW1KTmzaATh+BIXUowjiNbSn2EJqzryvH+kTCfaNaQSmO/LjhnXhmjIRuM60ER46xjedSwFWPsn4MytWvpC1uDmgXTLIdxQnjuJkZdJHOXn9QeGWvEKC3AeVLZ1SRT1bRUnWBMwBiVcVhndbSeEqb2A2CKVGmscQev8pZWjY75aiXuhZRUz5qpau4UdW4Pw0SUiuvO7lr1YCamkXNk33X0tiw78ziypazaW5MZjNI2RAol74TjAW1DWKRlLMIeE8Y70pYIWFq5WT/0uddOgoGsshcG9n2jlUgsCRdmam6UXhB5G7rJhm4+rJStYJxjyQthsFAqrWWNEK6G0Qe2HIkVnA3ahWwoScQIxVVyAhML3kJFg2hqKnjvqElZyNTubtDsYHJVOVct/wQc5KbkgBumEtEujv6mymtfqjVuHgvonR/M/ymiFpE+gu3TMCpVLM54QphoOZFS4mnfmIvlaVl42RbVgx9OTPOJoxxZzl/Yt51PL0+s286jsWSv6w6l4YqyWp0YXJ9wUIBmsBisVb3mf/gP/yOXi/KF/+3f/M+YQZGIg+i1ewwDVQK3iO+WwRohOMsUHE3UjDT6gVg2vNf4cW87aaFpcSsIKWeCFYqzbFmLybheoHv+U21U6wGrExpjKAZmrybF67ZhkkaX196Fa0ajqIeSac4Qi2E/X9hjJu47Zd96I0EPKXG5quyoNl5++qkzzS1/DAPhcOTt2zfE5UoplePo8GEEqmqxm8PljTAN+DDy8vkz51oIXq/7XBupNVrn+mvqHzxfL7w9HglOZVLBBETUwJjJbDlqAwHh+brigmNNezdk6Vi+ttKTBJtOXWJU/GZVnWoVyzwO5MszaXvmwx+e8S6w58x+vfLpyxed0FU1kFlTqbHooVNg21dFqdL0MAOI9zSnptrr+cK279y/eWA6HDDOKa+/FlopDNbQasbUA9flyvr5A8467k6PNAkqa3OeGHdarhyDxzrPYix2CMR14/LhBywVipJEBMHaQLAD3g0E59lE2cmzDRQ/spcd6LHgtvPHRdMLm1TtEtOvf7RQtjfZSm+m2I5pk06eUTysTvJuqEtnGq1J1yw37I16UX+uOwzKpFaiW3v9maXpeyw0pBoN1GmNjEP57WBqjwZp9VWv3G7knF5AF4uuLw1cg3ajAv2CHr+4AtlZfUk5VYYxaNfKiLoyqwYJpBSxthHX2LmrlrgnQHSsUButKeki9ZFu7dHTzjk1KAHbuuFDoOTC3iLed8Od00U5WF0wc66vMozaMk7U9JNr6WEgAzfsGNK74FUjkq4XHd2nlIgxdlSVoXQEDb17LEXHy+uydOOex4jwcj7jxVBy4fL8jOBoWN6d3vL582dCCIjA9RqV7OAC+fMT+76pq9Va4rq/mqfivlOsodWEcQJFT8cpJ1ItqC+maYR0VxY459n38trpNrfYWxG8V/MVrZGaYKXhBteNeIZWIcWdXAcu14XRHNhqwQ2DykGy8m2dB1sVpC4GatL3whgN/GhoR7WWqqikbugwzuHEkZvamwSDOMeybt0sKOwpcZpPXWOcSOvG5fs/kdNOmAcdQW47a1s1CXE6dNmMGg73bWEYBl2p5OfRuLGuL0oVP/jevVXtu7G2dyPVQDEMA6YmWi2q81LbMc6qI1kZ37o4qWHwVqgV8h5xPmgUMxpuUlt7DS3BmB4pKj02XZFqIQy6+ZeCWKfddqvIKQSM0Wu31KyHOhugFP0ZrbFerxyGgFjHGldqVV303enI5fzCMMwYo0Vj6ea2khPeOVrW7rSzHucNpXZXuBis8exbZdtV676nzDAcMOLxQbRorkqtyCZjnddY+L5G1J4UJcbinOl82IppKuAVY3ANYo4Yb/DOkWrW99sr+rC2hhjfgfwahFBb7ZIK1WKXonKr0jI0Xrvzf+5De7/aTVfPxW0MqghERAe0pn936RutEdUqyusPUlUhTahiFQnVvyim6+KHCTCkVtnXnX3NlFQoqajcxHqmcQCBc/yB83rmkjbezDPsINV285yobrKqadlh8WJIxiC1YQVOD/cs5wv/5T/+b/ztb/+Cd48H/CDUNgORu7fvWF4+s+0VMYoBDH5gsEbDN4zHWMe6X4hRta0xZgw6JhcxOBHm4Hi67hQa2Ywsl4XqHFxfaCWqdyJHxb/5AfrPNf2AaoweePwwYdEmxr7vtKT63qeUyFFTMpHOowasE4ydGI2OuEtVo+PLupObEj9Cg9AgpYX1fOXy+RN+HJjGkfPgIVXGoDHHx+OJWDJP50WL7JTxg2eLK9XqdWGMGrmsUUlU3hO2CKMdNWylFqRlYud3U8Bbz14yNni8QE7acdz2tWtQVda1b4lYwRulzuRcsX5AyGxr5PpFMYyXLRGXnbhpYJe1htlaxaOZHvxjFF0oYvUw2hSnWGqhpEiThOuHu3Gc2LeNJe58+viRN61xOJ6w1lOMhrGoxMIwTA1xKm9w3nN6eIMJA8MwsGw70+FAGLxKJ8KIn074FhXn+vSZukUcYErGTY7RGSY3MLmRwXksFWcHqjPEZlSOheh1XgrW6AEAsZgadZhsVOogvTBFuVl9Te2HVbl5fHXqoga51g1ySsPQpvHt7tcCGKO2vtbJXYqTo3d79U8GueUEKT2KiFBxTbMiaJZmATpJA+1G38xBptdTah8UaK5PrBTx+Ut6/OIK5NqynopQobr1jtap+MoC1ZQ6jYdRl76IZ55GUt5JKTIMjn3bsK7HyNaM61gy0FQvYxzG+q5Rtn07UuNZCKGbV7TICW6gio6rb2NpH0IPFNGFUqxeYvuqWq/n5zNDmLD2VlDRCyElWaSUqK0wjRO5alJfzspdbq2x7zvl+RlrLNZ74qZFQ22Z+Ti/orpu/973yDCMrMuKA1I3KWwls+5XRITL5cI4jNqdKButempu5FzZ405OERs8UtRlnVtjHibitr1qqoLTsAnbtDuas4Lj9X1QwkCtmSkEsncc5xMpXthiwVoNhhitJ6UEuSG5ka0mTFnUYXtD6rTaelGm14PtHfFSCxSVZgiWtkdc16HeIl2cdSolqUVjqK0hp8JaFl5+/CPp+hk/TEgRpIpuKpeLSguMp3rXFzdeJw/Si6mbRiZXGMaJLV5fFx/VwWewtqOa1ES07xtTUI1rigvzNEHToAixt4ULINOq7zHLlckJYgKlCDVrZ8w6S5DA1pRBu6f0OsIzxpCzssOp9CAMZWsqvSNSekc3eE2m3NeEcwFxnmkwbOuZrfNwY85dd6sH1lYrJUfmae6pTRmpqu/LTVMQp8NRdYNVx7jGCOyZLP0z6lxpakXczKVmclVjbuwHuVIbXqwme6FR3yLqvE4lK7v7eWMYQmehK1JRDSpaNAZRdJ8fgoa5iOrlxTWkZkqrPcgkvbLOeyBsj9YVYo6E0SNiesrVnz+CbGLA2C6t0LnqjZcqaCfKSHvFSWlHybymZJlbV7kn7bU+JgVNBJSmUcLiHMYPSK6YFFn3SM6FWJqiwIoyp0Usx9MdphY1hqFStJorbQxICDg/gGzayS893lgMptIlaw1S4T//r/+JSuH01XuOb97T0oqxJ1r9wmEU0mLBObZ1I3iHEwhdf3/ZVh7niWk+UM1OXjKDcaRWeVkXnWSVyjDMHA/Cl5eF3HbOlysZaDnjXWDLmvRm/UxxSmax1uCNYq4yOpV5+vSZbbl0TKDFh4FxOuCHgAnqDyiih9SaVedcSnw1ReVUiLZwFzy5FLZlJeasa3EIBOfIKVNaU+PgYrDGsa56z79cFsyg64w1Bj8MuDYwOjXtVrG4GhVzKY5aE09PT3z79iuMLVhbmQ53GGewUii7rtlZFAc4+sDmHBkNWFLuctakVPFUCaS0sOe9RzLDsuyknBEM63Xn/PxMlUJwDu+MGkDF9L3A0MRqRIbrXXqxBKds3xIjpsHheEdKOzkWYlHSkBsGjk7YlpWXT0+aNxBGrLPUkvVe67LHWzc3DAPGaDcYETUxl0TMQrOB0/2B2Qv7krm7f8ROB0pMeOPxoh6VMQT84JTBHxymZDXiWUtLKus0VnqhW18NeZb22jUWEUxn2hjRZgndeEeTzuNv/d9qsGvd5CevpYDp92nXAUMP7FDNvUU7/e329f5nbQI2Paw2NeoKltdtqXmlW3aCsv7i0n9Gey3grThya5haO15O1xtv/qVA/uf9MI3gLXUrUBvzeCBl5TKGMPTNX0/3KSc1AeVKLlHjca2ehnRko4aylIB+sVdaZ8Y2DdK40QqyFr8hDEpEMJZUVA/Vmo5A933X4th7Go2UFdzug6V0k1PNkYZ5xZmVHnAiQInaIYzO60nUadenNnCiRijv/SvjldaY54m6J0rKGNHkP+/kVU5yOp202E4FG4Tr5cLpeMA5BdI763DWqdyj6E2wpJ2cdyZvkCqvtAUrhnYrXDHEGLnkG+tRu95i7WunM6X0qnE2dNqDAectw+ApZNXB9Tz5Jjr6b/29yjVpEl4xxJQwOWjnNWvHrpodalM8WjWUoulzRgxFVBeccsKPhpx0JFq65ryVRq0Z5VBaSgHvRq5PH0jXs3Zfm8H6UeH1OZPsrufo2tQpXDWNSDXmQbnZknBeU9lq1WUI24DMtl+127E3Lf66KbQ0g5GdZU/QDJO3+CEgRrXOUoVgPLGjgJRFYClVmZexhzHk2kilUqy8juOM0YXaOk2Ry1XTD4OxdIdL7zRYck7kUvHOEOOKcxPX5UJwXp3r24VqwTtlM9fexSktE4JDautGFacbdlYsmpo+DCUqc3rfNqwRJV0Y7bSkpIdcY3QjrTkpY8h4hjDhvY4+S9q6lrLRpGLFI62nvPX3VMMkLKWZ3tExtELX7+/aUe+jYzGKsEspYcdZNykLMXdznxRqSfqcRUenKjnJFAEfDpScenqgfi5/9hLXzThy07mLdoVMuwUL6CSqGMsthfCmxbC1guTuL5DX6UMW14kXpk8uihbgLoCNsKrURGcsejDLKZJSJOeBwQ1Mh3sGIjhLs41m9OBqstUOVBFs1cZFLRloGgVfG8ENLOuKyYXT2wf++t//O5g8ue38+utHfv93P+CM4e3DO3768pE5DLRWGbzDO4dpOrG7bkuP6rWM3nOJEaxlcJbnqJ/3ZV0pIhymkY+LhoGktOga0ZzKgESlWnSUl72tOyXz+acPXD5+JDhhOhzU7OeDdk9dYDoc8NMJGyaOp1k7+BXytvDjH/6e3AotJ8xQkVyoe4RsOJ4cNaVXYsqaM8fTkSqwl0LorOsqFtN0PzCduV+MTvFCSFTn8d6SxZKNYQqQ1sKyLRxORx4eHzmFkYM32AomN5w4vK0Ms6ckoaXM83Ylo0mSW8os10jJSWPfizaQKpVmhFRFjdhVG08fPn6kpExwjuA9N7RnEwPOKU+++2pyyXp4K0mLRCs4Y3DeEBBKx66d7k9k4OV8odWEyxrzvi4bl5cr050woAcT6ZHuGiyk35diJgxqHj6MM3enGbGOfQds4Gld+Mv5Dad3R14uz8zzkXa94nDMfuLgJoYwEoJj9E7xqVtBrKV21Jy1ek2M04QYS0mZLEJw6q8xIiC+e1Q8TYqajtuNX65PusrrTLmTJbRx07p++Vb46gvUApiuS660bvgzXSx0S8BTs2ERvYe7807Z7M1R6dHWr3++eWjs6+9W6pIW2aZBs6b7bqTv4f8isfhn/dBEL4PNhsGPvaiVzm7UVKVWDTUpnaDm0kcUtQvj9aRmur6vVQ2RaDUrNtbqmBC9z3G9E+xDHxcJOKd6V+2C9RGVBe+0U7CuK2I0oMGK66OWTLWKf3Oo6z4l7XT52TO0RjAWFwLWO57OL8QYCW5Qc1iPiLxJIbz35H5qPS9XvTFyYvCefd20yz5o0MjLy4K0yr5tlJxZ1xVndYwcXMAWq8WC89phyBrIUWqjlUIpSgCZh4HL9YK0jp/qfWNjLR7HlhY92YuOrxvaOb8diwXBOYMz0rsakOLGIVgVkoqSQ1ozasgQ0a5M9Zii1AvXeHX71qqHgNAGKmpo04mASmUwRvVZRkglkZOOQXNM2B7pnHKktRVplULk+uUDZb3ijMYHZwwlKgrIdLOE8QNqohas94RBcG4ilYW0J/zYsNK5wKVgTGMIgg9CbI3SBC+wxZXSPB4oXriWyCAja2yMMWNEx7JVDClXci8g+2VHA9aoqW6lqM6ttMK6FRKNXCHlRm6COENJrWOCbp2O2tngaHKctXg/MAahlQhNKTFDCIDqi43pm5sB58eOkzOE0TJgcGbEh0ERcoOn1pXaImKaotWc6+Eg7ZX+YYxBLKSsgR4m6EhXjBZCfvBd/qKFtoilNjVapqIlqXZ4VfozuYlcMgVHLFGpH1a7JT4ETXfbN7pZG+gm0biBNa8FdgX2mhB0unFbPxS/1BBjUWiF6QQNx7rHP3+Razcsk/wcQlAV+dRXwf4ZCrxOtxQHp//0+NmOhhMRel4PN4byqwHQWsLhpLxhEdK6Is6Sa2HZd04la0x5QidkNbMmZQ1nDOkmLasN1wqhKU/WSE9fdIZYdVIjBvzk+fbrX/E//PXf4uTKw/09sp9ZXp44Hu7ZK4SXK7VuIIbBDBgaowuMUsimsSSdlnlrGaxiOaXodW1KIifd/nN1tAzFCiVbStZJkhhlCzurEhLrnJqsU+b77/5AWs6c5pnpOOHGiS1VvB+xw8B4ODJPMzEnrssXnl4+qsekNdZdTb3Gi+qqB09tlbSupC2S90i1FimZ5tRTsl6vjIdD14mXV02qNNPNtI6cCs6CCWooNLVRmsNa7YgvW8Ubw9fvv+bh7T0+V7YSMcWSvWH0nlIN2Si5aZaIGwcWGl8+fGLb9SCb+sSgVs0RqK1RxL5O6qiNEjOfPn/GO8s4HBGBcZwwYaC1xmXd2dPOel0oRSUGsaoEThMhKz54TncnnLHMITAZixPDuixY53hzPCoRJW1Yp+FB121jagdy1m4+PUDFGV1n97Thg9P1ozcFTC3U1jSJ8XBkiStLyfz64Y7TAC+PD/zu80dcbYrXG5Rc4Zxj8K5L5FSrvnVU4TwcuDvdMQ8Ba0Qjq43q3L3YboTWhaUh0AxGao+IV6xaFbC9cwx9GvUaE9/rEqFrk29yRV0XmogW27dJUJNu6O2Trdb3SHqh3U3jtEYVQ8X260tuv0T9KaLNnm431P1Y29Y6hTI/Txl/SY9fXIGcYmJvWnyu2/ozDg00DrjcUsCkF1s//6MjZv05xpiuZzbkXMFYnAiVrAaqqhegD7ohl1rxzhPCwOWydIF9ex1L2G6IKDX1/cv2wqX9zCXtxsDrdmUIAxg4TgeqVLZtw1sPtVBiwoglxqz6MqfYp23bGYLvCXsq2t/3HWsttTSmeVbHeGuENmBFuC5XYtyZw8T1esGIRayGUDjvSCWyrCu5aQFbkiJxnDGqT25KYaAajLhubOrUgHXvr0ttQ9ZbqKp9DUE1t+1nYahqg6satGwfE1Gz6pBzZjeVykzMldl0ndmNodoaJntEHFK7N8pZcmvEVhmM9CCF2h2+ldbUOS+p6VjQqokuF2V/OheQvNG2lZReiHsmXi+0nHGHkeY8xqlhxVmDnWaaoLSOkqgGingtKKiUZnA+YESNkq0pxN2HgB8DcxiYZONqDME6DRrIhufrRs4GJwPRwG5gjY3BSI9Av43tFU7vbXg1KrowsCwLGO0mpZap6MQjlUouFnGhMzkbdhTasvfOo4DR7oQxTtnNVKZxJMeNJqqpvR0QW616TzhNXVPlKwxh5BAC3lmcNYx+IKesxp5aqKgm3PQOrLVWdcS9OxbCqF3pmDUohIazlpJRUoRTtrl1BsldRyxdMiI9iKVBza0TZFKfVugERGUlhb1GPIaWVa+XKHg/6mFPlG2t49nO+0yxm6octaluXAoYC8E5YlJNMt2UFqxjGv4JRpC3M6WY16L2NrbWV29QwZFqF3t8gCYoiiBdE2nRPVAVJf2QarQTre9d/3824GZHSYlhmvHjgCxG+e5pJ+eAtJ0YC5D4dL6QTg+00ihVjXljGBiCZ1kjXiwhjJjikKJPoGIIwVNM5d/8+3/Dw2ng+uUTD6cHvjx/5puvviaakd/94R8wptJEp3PGKInDoOtoBXKfDNS8Y43lMB24xsjAzuW6YaxDmiMZWPezvm9+QtA4eE1CtRqYYrQ7WFvhxz/8nrav3N8dGQ4z03QiF8Pd/YgdjgSvDOY//fA9Ly/PrNvCujeM1ylPrpnWHM07SJH708zD4yPjfAS3Y4Inbztl1/TKFBM+C3FbOZzuwGrSKzlhrEesR9BiNcakxujBY0eNwSnVYh1M84E393fczwdcA49OlC4JjM/4HbJreMzr/bnkzN00sj/ckT49EXeNvU+x9OIObbr0UbwzhmVdePnyxDzOet07x/EwY4zjaY18Pr+QmpD3nVYTcd2w06hF7TCpP6VW4nWhesc0jcrOL41305F4vnA3j3gMwzjqumo9Bsfl8gN525B5QjB4q1xnMQYjalIWMXhnGbxhngZS3BDrOcyB6TBznCcuy8ZyXfjqMPLXb9/y4bvvKDkyBiEETcoc/MA0BDYal23jvO0sORIGx8PdgftpZvBqaKutvcofTDdfSy8yRfT5STNI5w9LN/DdeDRqjVGKRmuVajT8qKIprXrv6oZ3k1rooqCNMt1HVS18m9Q1uX2v6ZIO7VoZqa/SitKxGK1VNRyLpYnB1aoiRKvkkGr0Gqyose9fMG//zB8G7RC2Vsg5M3mHGGGLsf9/LWRbT6ObpqknfPU44FJUZC8qHXBOY3GvlwulJfykKC9pemrWEaNqaVPSEAbV8al+E6nEEpFG1y4riky8bls/F+iVYIMWzC6QSmIeJ6x3mFbACdM8I0CspWuQbl1vxTMB3XSn70EqmZYL67LpeNvRzXdwmA86VvMjKxvb1okSTsCi8P6cehGnOJdSu3SjNiUxZO1aWyvEiBY7lZ52Jtig7531lpq6NsooPib4gcse8T3l7wYgL+Wm1csE7xmmQbsn1pCNsOXEcZh+llsIiOt0gKaLgIhQszKKxQWcnfRrVUHpuajrHFT2YVrFe9VUSac1NFT3W1MiLxttudJKU5yYF9zhiEwzrSWcoE7rIXRMUu9Y3sgCTRiGoJIcYxDrupFSjXe1ZNx84DCNHP0zZxomJe4OJ4Z5IGbYm2p3s9HX26ylmcqeVa8cc+kmLP3sjdymJoJzgUTWCPMG25ZJrZJqJVYhoZrdPVa2LXXOtOsdWVHNuIVWIk4McVnx1iHB0ZpOSFoqDN4yTyPONkbrMBhyawyD5zYvrKXQHNRa2PdVP+um3Z7B/9w9tn2aQtPgmVb1GqylYI0aLm2zlH0jR9VZbltm25XRPbhb91e6QVGTL2ttGOOJKZFbprTcQ3p0q3/lB6NmT03dE2WZG+3qScvQdfS+t+qN96RUtAtWwYpSG1rVw5u+jk1lO3/uGtd+TsfTjqJ5ncJU0W643k89FEVK7zz1VK7+twuNZm4kjFsHr7vlu/TCICBK9hkPMykeOO0nluVK2nfWy5khCPYwIqZxfn7hul+hJw7W1rQomQf8dsAtCdcSAdEpg5u6NtPipDKeZv7d3/41LV0ZaqFefiT4AfP4ht//t78jXq/UqtMDMRpoY2/6flQWFYzlsq/EXAh+xEpFSmYwlnk+8nxdqEZY9puhFJUsiAEz4CwUI2AdWP3ZLz/8CZMj82FmOhyYjyeNN3YnwuhJOfPh00d++PCB5+czKSacE9zDA8YHtn3HdzxmsyNG4KkK68vK2/dv8V7JRD4ExriT94R3gZotNmfW65X57l4/2z6uaFVTSY1YrBdi2ln2nSYwG01wE3yXDTaoO8XpNK7VjM07S1qRKeCMoYrjeDySLawikCvGBowP5LaRojYjrLeU1qn1rYE01svG9XrhcDrhrCMMAT9N7LlqcfzjD2QahEGZ5seDIv7Q+4R9RfyIjDMmKY6UU8BbAylxLQWs5aenJ949CL4WwnQgmcpwd8dxfSHuK8PxqHLAWvCdoiLNcxxG9ZWIXo9SdR++nxxzsBznift54sPHT5wvX7izJ94+znz77o5PXy6MPjDbkTkM3E0TQ5h43i58ul65pkQYA2+OB94cJobgweqEpFiddrVaMP3QWkU1yjflPyJaIFv3KpMC0ykV3WyNIKJpu68mlq79FboHweh0uxldH24a5BsDzrS+Dvz33oQu3dB+tBbuFYO7FcgYmtF14HYAr6C8fqukC9N6BLZpxF9WA/kXWCAbwzyfeijFSmvCNMwo1sWx76sa54aha3yrBg1kHd175zoRoPVkutYd+uq+tghxjz0Vr7JtC87azjHssaboz221EIJn2xNkReDcAhUEQ62QaqZFCIMjxYya+YVcEiKBlHZukbsjtXdaDaXuGG/IrbLGnTF4MEJuFZ2JA7WRi46vc0m0XF5v3CbCdl2Ie6bmQkw7N9RT2iPUhkfd1K4JWYRaEsVZgtPOhPRwgaoRcJSUqDWSSlXAetIu5Z4iRhz7vuOHCcSxd9ZwSZp+1qSQDQzWI6I3vendJ01UK8zToacXKT86jAM4Q6bzq3NGnNFxlVPddEsZEYexyvjNKVFi6loaHUuXWyf7FowBWozGhf3yGdl34qcrbbLMj4/sqYAPr8mKLWe2dYVJwJheSHfMGup4T2XH2IHUqpqKUsYaTxYH1lNdYJwn7g6BS0qkVHFU5mCZByHvmdIixh7IpXQSi0pErNXAl9aA0p3rffEsZafRFGfUKjUmpVw0LQ5KAzpJJFfR5MPWyDXSjEPpb5WaFw7jQEqlp9M1SErFSCXih4FhnjQ9a0vsXrFng3PgYIs7NQqHeSKxc80bz+uusochMI0j1dyiiXvXI3cTbbBY27BOebpWDDRLcJ7LctVrvAoxZY3X9o5iYCmZQ5horUDRzotxjtw0FTMYR6o6dgzO06JqCAsFoeKNpXXjGpIVx5Tya0fY226Qaoa8KZ1FDaGmGzctuSXVnIJe5/WfYMntm+gtstb0w2XtJssuHOzXuHQdo/69m25RDP1g0nRqRO2ltumj39sYWK+j2ioSJubjO/a9si2R5/KJfVvY08RsTgyTI+5bN6U2sIoRNIN2j51YxAd81fs1W4uhYFyD6rGm8Nvf/jW//uo9ZfmMT4WUrsx/8Td8/8NnrpczNWd8p4g4RElBteLQWHVpFbPvzGFAHFwvV6wVhnGEVLg/HAgh8GVNsEWMDZS09bXe4AbbO+yGah2DceQU2Zcr4xgYDzPH050G8PgJZ+Hl8ye+Py/srfJ0vlINiPek2rDrRlw33n3zLT/98TvMNFGXK9V7ZD6SnWU3I8kYUtk5OIsV8M5SUyLmUUf8LnK9nDm9eaCijQSpyjyny7u80zj5ZY+IQU2NcSEXT8qeVCyj84yT4xhOhKoGtuAtp3kiDANrbpzjgi3Kpy+5QFGs4r6v+t6ULu1xDimZ7Xoh7pHj3QPGecIwMIwTT8vOWqQfxAvucGBbd9w0ayMIleyYcVQJkhWytTQzU1OiuoHkDNZ5WqlYmdlj5oenJ755eNCpklWZ43S4Y/vyRY35Tu/ZWkvfz3uGQPAc5oEpaEz8ICp7GKxj8o2HKfD49Xv+8+++8PL8xNdHz7dv7tivO8MwYsNECI45KL3mvO68bCvWG+7HgTfzzDGMiqOzugankvoamaBpdH0f/PQJUIPajbdNA6GsqbTai9ObFENa1wIbEE3WVRNuQ2pHw4kC30wPnDdNuh6/dR/Uzain+1wDmmk/F+p9ziTwSl5p7SbX6lYZS++AW2iKd6Obels3i/6SHr+4AlkNc0mz3rthLqZEjDsxbqpB7pSHG1ngNX1MNJCh1KSOdBGsNThnGcdBzW+td7JqUT2S7TG73QQEN0ybIl7irmO+1hrzPHO5XDo+DI06FoP3Fu8CpVVyTgSnXdAYI96Pr7HFe4yvhAxnXDcd6Zkvp0QzmrY2h8C2x47ISeo8rQ0zWPYtEnzQwILeALi5628858Frh31bLhq3XeGaNu2oW5WG7HHvkcYOY6G29Bo37DpY3ajEqvOAdeibUyWXBW8UXZb2RNqTGqrs7ZSshIti1MyoxiyHN53fSsVYpQ4403VPTScFguD8QEo7zmnyXk6RaZy149JU8wsdi9M/f62PCzkWqEIpibgtEBP7y5m9VE6PX1H8QEsbiFPkmjW4aaCVpNeX6RKXzjlV3mvt2J1GtQY3jcT9CYPGKIdhxk4zp2/ec3+9co6VLVXEWUxwnKaJl2WDZsml0vyo8eLDADEzDgaNO0VjqlF9WEzp5w6EqLZa59DaXdfRcQYMtcCy7qTUCSDSWPcFZ33X1eohxfb7x1rb2c6O4zTjXO8utM5OtkJMCp7fL/EVO7jGHYrhZb2yZU2bq8XgS8LRx8LGUEUPtGIsMe5oRCoMzugG0CrruiulxDmgIVmjwktPqbLGsqeNMQSc7/cL6CEA+zNrtCoBRJziBTWmWhBsDzsRkpLh1ARZCuIN1xSZx5EhDEhK3dbCK61ElRkWaT3lCgh++CdY5H6Oa5eqP5vONra9G9RE+pTphgHU+1H6PXljs0LDVDVjViO38rjTlPvm2HRa1cQg04HDm3fs28a2L8R9peYMOeGtYxoGKo09RsiJuEXaNDF4wTvVN1pnmcSz9W61Gecu/Uj86q++Zg6O65dE3ncqkYPxLC/PxJyo+8IhjCST8YjSaIInbgspGwqGcR647pmad073R7Zl43JdwRimOZAzzPNEWCNmXfRwINo5K+iUKxhDteoFePnymdl7htHz7uGRZhzFWuqe+OnyhbWCTEfi00eaEex0oha9TvK20dKKK1UPD8OEP91r7HjNtDBT3Yj3M76u5LhiMphaOQ4TQ1A6UbUevOV6OTNMB123xJCjpoBiOmfaOva0sRqdnExF2fFSB6xMzNZxNw7cTTMHP2CNZbD9ms4FUyKSd2pumCLU1LgsO+uWWWMiePBWXk2h666JhXcPbxnGWe9DY/l0ydhpwgs8X17I1ioZJBSMC6SXF+4O93z49IlqvQZ+iKarYizi1Sw6TCcGKiZXstkZHz1lOXPdd1otHO7vyClj/MTxEDHSXlNEb9r61qUCbpwYx6l3vndqE8QcdH3AsSZ4P0385eN7/vDxR5J4jocHTnNRLboVhqCs9FQKny8La9wYhpnD4Dl28oheH6q/F1GSidab2rk16CQTXAce11e5nWB657cbpJuud7UZjNU9mmZVQtE/A6FoQEdT387NjFeNruPSusegod6D27rXbkW2PjcjjdLXRZVlqPZYz9bSn6fpBfKrkFl/LyonCa8/75fx+MUVyLU2lutCKYsm3NVKW9cONs8EM3QjXsFYR62ZmDREYNs3TfQJrvdkehel9UWqVlppxBTxQd3OrWVy6YlrvWgF1CxntfPSau1Q8qgRvk2DMErWcbaxjnVdqdVgbVDsjddACWgYByWrltAYTfkzTTFBqVZac/jgWa8rhzAhQRPUmoF93xnChBOPFEOOlSE4lm17RevsKZFj7MzgTHVGTYNNDUW1dI1xszijHXbVVDlS7idN0VAVUxxrjGr0EXkt7kvOmriUNn2u68q+q1HPWe1ULtcNO1rC5LSXJXrYMIMm78W4sJnC6tXwfPBeJRI37bhUGgVnRU/rRg8Qpa4sa2LwY9eaowxlQKzon0vuGjChbitSCvv1gmwLy/XK8c3XjMcHUhWqq5ghUFqBZlXb2gTnhlcdrbIidaJhXcDUiqkJ448aWS195K92OcZ5hvfv+GqLPJ0vsGqXu7XGHFTTuyGUJmxJx5yxZkbrFDPlFQkXURKKqT0YIuv0oBotGGPayFYoxpObLqA1W2iqsQ3BUFtWXqm56XlVcmON1Vhuawg24L1nnieGOZDzTimxp9vFHumsE47SGeJ+mnnZdrCG65aIKTKMg8Zu9zFiipFqrE6A+vi4tZs5pVBygq4ZrsVQW6IUZUobo3IZ4xylRGVytkpNhWy1eAjWY5rFOEeqiVz1Wq2tYtHfWYtqqxV6ry5t5zzOBbaUqAgK1ShsrSAlMlqn+jxjOuu4d7+twTjRKVUp1D8/SA+MlsG2k3VuyXjSbrEgN9hcd803tKPbR6YKPJTXzvMrm1mgNEVNqWSh/91ecNMTwby33D/ck/YzXz6s5PVKWieMH/Au8HJZuMbEaCxLSWx5ZxompnEEpwEONgQmMTRjGKcRJ5WaV+6PEyIbpIV9u+KOM9u2kM8vkITD4RFDosYIzlO6lMBNB2quzIANI+J07Pt8XfFBo4njvnO5XMA4Rh/UD2AspllKSYil65q7KaoU9rKT88rgLXeHEe8MqUDdE08vzyziSGHGDo5CxY4j9nSgVo2lT+v3lHXhv/6n/6+ald98BdMBWiGI1YOYDfjTCTaDlpgqW3q5XDhMA+MQaLIzHo4MPrDFTBGlv7QqSlLqh1LpqY45V6673l/GahCIk4qtCbNDsEItu66PrlFSIxpL7rKsVjN73tjyRkyF5bKSctLmToFx8KzLldYqh/sHDscHpBUuy5WlgJvuCdOgo3gxGOcR75QyNU3Elxc+/OHvaX2dkeEA3jEOjrIu1KRJq/PhHkch7REvQtk2mrVIKnz++EmlHIcDJlikjvgxsGc9QBrRtX0cRuaTMtdzKcQtY11jOBww1qgBcY/k+oU795a3D3d8ePpA7s2LwxRJWRiNZXYjIpbzvvJpXajGISYQK1xLVdRpLxxLgVZ0QmO6BEE7t6YPMIvGvPNzeNBr2Ifws0lO/s893puvwHLTM/PzwKhLqTC137u98Sel4x9vhr2GKOFZf2tTWZbtNr2bd+82qrol5FWMkmi4GYWbNsH6z/6FefR+eQVyya2nFBUd45VMxWJFtZi1/uzShh7HW5Jq5qS7c29Jdjd9GmrCa4AULXYVHON7/nzSDkRpuKCpSIpWUqTUjY6qGlsdbW/L1jtNsK4aZpJKVaYidF6sIrmcCzjbQGmTin0R5eummnq3wjAOAe8UlTaGQC6JYpwa2Ixqj6bDRLXg+mLRctSF1RjsLQmneXKM0CClzJ67Pjgntl1xcg5IMZJzU42bCOu+k7ozuABbN17dTs65p4jFXbvXNSfFydTGGMZuTgCxrt/sGl19mxhfl4XJOi06BayB0Q3aAa464rZOi0/t2DlaqZigSq1Scn8eiZgzDavUgrizp/gaPdtiouwbUjQNcH77ntM332LDRLqu5C4lMUbZwqk08qZmsZIjxjbGrLxP7VJbjB/Yys50mln2hW1fMPuqqKZRI0uHYLl7OPHm/XvSD58p3PTawjhNbFV14iknkhWVL1hHbkLtLGPtHhqKVHLJBKfFUOvXci0QS6I0SywN64auLWz9fXudrmNMr+XFdHJIxRvtLBgP8zgwTQPDEIixUoqyosFTkmHdVrxX3V9tjSXuxE7VSKlgrMda1T/mmGhisSF0yU3TSPBWe0x0Yt8ztseVG3Gs29L1e+HnQ1xV4H0sfZIkiufyXsN9Uk40K6z70ikY6BTIWlrRUAnvHaVunUFuMU3NnYVKlQq39aDBnhOyw+E0IqV2c6whl0zOsVMiwDo98F3WP59i0dAOUJWbGZG+3tDfD1UKagcYZWV307BIZ8T3zbQKGjuLKP3AqLnIvPaoe+dYRKVKBozLmMOR99/8GiOFdHnhq+PM6TDz8emZddu55J3JHsml8uW6MA4Th8FxHAYuteKCx4aBLMJhnhmcULNwcI39fGE5LyzLwsP9gcvTZ01WyzuH8cC+X2l1Q4rBiEdyTzJlI8YN3xK1Zk6HO3wIfDq/6OSlFpwNrK2yLs94aRyOj1zjR8ygKWz9ZNbXXPjy9MTBOWqrHMdJr+P1yucPn7DTAcYBG0asD/hhpJgEw4izA944ZL2ybQuSlIpCrcjxRItRk0ljZBwcfpg0Ba5mVYGWhATPxw+feHj7hnmc8AbmxxPPlyt2ClyXjevlQow7rnk8Dme1GEslUkpm2yNxb3B3wEwHzDBgg4PDUTW5JSnRwkunD0EikTFsubHvhfP5zOX8gh9+bjAs24Izwni453g4sq+rdpmrZReLSAYnGAJhGHD7gAwj1IAbj/j7THp+AnGEwwlzPGIOs053xCKpMjy+xx/vsbVQy7NOS1Jmy4m8b5hWuD4/8zAGDfsqjZwq7968YdkWaML8cIe1SmFqZWVHGKdG8BMBQ9kji7kyDANO4LxeeLTCQKYlbURJi3hxHMeJeRzYcub7L5/4sJzZSmW7LLxsO398fuHx7sTd4cg4BjU2W0ewrjfUbvHwusjKa/qlrtFVqhIrBG4hWSKFSp8Q3opk0/regBK1+txIw480/Q66lKPnAtwO0NIMRdRXVNRtR0d1IdUgRC2IxSCla5xFuoSrT3BN6brn/jO7iL81bQT8kh6/rFcDgOoM5aaTtAasoVRhHkbFQ6GnImt6gIODlDQEBJSwkHrMcC6VZhxhULkGTjm6VizGeKwJtGrJWce+raO2wPSZJlpMiXYSU85aWPXAq1obpSrrOFcwxVKXxDQObEUjmu9OJw23oJMjUuk3GGpG7ClhgqJhc0260Cc1rMQUyaiDP7dKiZGxu3z3nHVsbgXxljCq2SannZK1G2daxTtLSpEwBnWGDyN5j7SSyXtk3yNJwARHTjtpL+SK0ir6qdXYrAWrGGy4mfsitywwVUApn3UIAz6IGnAARBiGgWEYuS4bfh5eOwKud6idc6ol7ppiZ93rmGrfMzJowbXHSC0aGJNTpOZMTQqXl1ggVdK2afd6OjG9f4s/3qGyvMbLZw0ImA6zOqhj5vpyYZi0UzOPnm3dGMaZPUflpx4esUNgeX5RfFTckKzpUKY2WkwE67HOMJ9m/IcLZS9UZygtUWsl10JOBRs861YI1mJywYQbXVdHeeIs1QgSs+qVRSNnL9tOaoIqNsEGT66NMA28xCupKcu7tIqpqvH0VjrOSToT2+BcZR4sbx4fGeeZbd8pZaNh2FeV2ljvkaZa/ZQ3DHo4VKKLYxxHDVfwnsM4I0OmpYR1A9Y70nXBDoY9J3wI5LXg/aRTGKO0EhcapRWs6Oebc8FZx2g1cUys0KqyxmupnSneD4ODdqatdC1xa1g/klL3CWB1zFlUEx36O6xx9Y3aEs2qFEmMBqhIbQzWkovKglRqo506q5oqvKv/BGuccBvICqJYQ6t6xdIKjooVTTzUsIL2qn+kabKfEz1sqxkIEEV2VSzGaoCC6hz1uro9f0HAVezRMR0G3h4H3vjM28ORz5ed67qzrAvX7cqv7k4Ili/nCw+Hgcl73swHihjcEBiOR4qpTMOENzpSL3ienja+PEe2mODTGeMLz8vGknZFc5bWfSNFNf/SyFEpATt6eB7GA3tulFR48/DAGgtPF9XKxlJJe2ZbNyqGcQzsuZAb2KZGNJO1yG4lasHWhGXLbDVzvTwTU8KGpHHj3bcwDwcu+xOj9ZjBE6vF3L1hDAfK8gII5nhPGCfsOBFswFiHGyYltUhD6gpScSlSukH8y4ePbKcj8zQyT5av373jqfPqU0lsKbJuV8QcdHrlVAevfP/KmldiXki7p3hLqeiBsRbtPGePqZqklzLUbGjVkvbKui6cn/T1GufJKWv3ez5yur/jfpr58Kcf+fDxI8evfkUUxagZN2LDjPOB8bDQPj8zhiPi1fxrx5HhL/4GrCE8vmM4nfDzgXW5UOWCCXB4/BprLTZtDM6Rq1ejeIpQCtM00gSuL2dEDKf7O9aYOJ8/czrd4cSSKaxxI+fMKQQexgfujwecWPaUKbkQ2zPzaWIYD1yuV0bnCE25yeSMxI1xOnJ3GnEWPr584fdPn/m0XFlro67qWzDOkPZdqQ+cGGalrATvda2WnlRZK03qq8ZYpWmifpjWm7bVqHSii55ueSJNXodtXRaZ9Sgr9LS79nooBpR5LCDN0SS/Tsbbbd3o64mac4t6JIwa3q0Yqmj4Ce2WzHk7eKtUwzRd//RILp3v/Mt5/OIKZOULi3Ikm2KmRAxZGilGRUEJeKMpec45atOiTI0aQs4NMWqD93KjIqhDPQyDLsx9/DEf5teEnJR0flp7XO8URh2ZSO14OcWeqcaxR58614ufjBUh7wlnVL85DOqu30sk7jtII5cRkUZuWbulK93VrB3aW2e4ptyh5PTRuG4WVdTUYI2jNe3I+cHTKOz7zr7rhqU3qRosamsslxeMcaR1IxwO7CmyLQvBDp16oN3UUnQzzjm+xsHqCLtnwRt7m928BoXcxsSl5q7J6kxppOuKVS6QsqaXTUPoXT7V8AKvEZfSNKq5tcYed1w/xbdaqUWJI2qWFHLelIltuoZq2yHrAcI5jznOjO9/hcwjIh5ahDEQt8SX779QrHDZM0+pcrluzHNg8pb3b+55/3BC2pXjw8x0N1Nq4fnjE4fTIyntEDeG4Cm1kbeNul9ZUqYkwUkgVyHGQiwX3GQpYmjGKSIONTHuBSRnxtbVk71DZaUnadnOQy6NmDLXlCg+kGojo2EdWrxatqhhIdSKRRfJ23WNVd3cNAYO88gUDA+HO4y1XF7OpNaTE0vBeadRxDkyjh5ED2DSDRy2R2h777AiDMYgVRnc3qkbu5ZCpRJzwjqHDyPb2jp9xGJweGMZrCdlvUasMTT3c9T8q5TJj9yc9mL0fstVi+pcGyVlxGjnV6xqxlMsfV2IWO/V5If0cbAllR0nus0UURa4EYPzlpwSOKd0DAEwGGtJSXnhmn31Z65xFZSfqhuTIl+189usGmZM68RcIzRRVJmyD/S/S5dOmNfiWPX/FjX5KX5K1cjaP+pygEaPoQ7cBcNf/dV7/t3Xjzy/PPP8v/+dynPEEAWqE4yznJcLn5483z6+536e2VujOM/peMIGlaC0VMmbpVw2Xprlx8vK5fJCSpUwZ9Zt7bIkLVpLyYgVfMtYM9Bp92qMLAkM+GHEtx1S4RhG/OPEeU/U85mcLpxORy6fvmCxHIdADiPWCV5bsHz69Mz96ch6vlApPK0LHsdpmHk8vOGHp8+0kvV39074uJyxrWIb7DGTjcXfnfDv3uHvHnhzPyEmMAbL588vnMLA/cNbnPWEVsAFYqlQr+QmSlFqheXlhWXZmIYV86Zxdxh43lfmeSLnwuUlUkuFQRszFj281ZyRmvAxEuLOHD0Ha7DnF83HzDrmp1OfNMwH1i1ScuZ6vbCtG6XTmayzTMcDh+MdLTe+/93f44Hq4LotuBGGceR4vOM03RPmEarn08efoBbC6StN3HzzNW+//oq9VB7nA+/vj/zv/+W/UgbYl4XHr78izAdsUsO4NUa17nHjLni++upbrtcza1QT5rJdiF82vv321xpR37OaRx+wSbBh4Nv373mYZlLelZHfHD4cWPfIebkyDwO1ZraszOs9blhjuZsG7u5PHOaZZd3409Mz55oJhxGyBnA0ozkHh/nA7ANjGDn4gRACwVuV/UlVTB/mNgZC0KJYmhbFmk6n0kxDhX44+zn2WdcU3UIbYKhSkSo3L93rZOhWOOemx31blX/eXoVYnUnReJVkNZHX2uaGfNPaXb9JUzz1r4H6WLRjrWtSa/8UDYB/Po9fXIFsrW4c1lpSzjgxWuyoE001vOUmgG+9q2UYwtgd+hXQ1CjXkVMqd1ANT0oZ0FScUjPX9apGFJSG4b1/1fJKaf28pbxBRXt55nl+fb7bpqdbul631YYJnjH4vklXxBksytx1wRHCDLPpJj1HSls3qmy6kBT66Fo3vVojVgSsJQQPVFpJ5BQ5TEeCH7RrHCO1ZfZ91djPVEn7jnGm30f6/GLUwsF4R85FSRXbhh4PNEDkVqC0pqzHWjpCywhpz1iv3Xsj+jpSjCBNGatNKLmQm9EOaq04ZzhOh1cDnDFGiR5OJS3W2Y4I04OKmq8g5tRdzJValYNNs6SUlX5jRGUmpdJKoeZEyTv+cMQ8vMHf31FKI1YY7k6Y44w5HvnTf/4dJTeet52PsbF2rZj3lumnT7y/O/Cvvv2KZVkIPzXyrzJ+HFTPaBpbjZSq/OrU8V/X64XzUvnd7/7IukXWWgmDJ6VIbMJehNEaDfUokT2VV3qJccohtsZSaqaWQqGqpvam07aWiLA3iBXMrgea83rp3Ua6Xq5zcq0mFIpYvBfG2TOOjsPpQDVqGt1zZN02jDYnEXHc359YtyvWWUpLGnfeZTMlZ6zRcByaSjakqQhpng9Ya9VsZp0W3M6zxp3UdpopNKnksmNxBKN0i6VqApcLRoub1vDeUCqUG6a7F3Y0wTtPqUWTpqqGVQi3xd10mYSGkjireuct7n1NUJ3K4C3WOZZ9V0RWq6Ss2EUjmZj33oHR6/T2+nP+80XIlQpSXrs6yvUuvdN5K9zhxoKWLq24FfjqhNc9rnIzEOomDBmDaCcZjZEWqVSrKWi2ZYyByVreHAK/+faRKQT+4Y8Lf3p+4sPzZ4TK0qB4h7eGmCwfziunYWHwA8cQ2KxwnDx3h4nWGk/xhRQz68tCco5rzTytK9ZZ3gwDLfeNv2Yq5TWPUKpqqWPKUFemcSKboAfnuHCajyQcn69XDZ5pCesM0zwRl413949cYuLp+YqVSsmihe22M/qBPSVi1WvAELl/PDFPR76+f89hPvKPT581tU0EGUeOIbBsK3W64/TVO/weNRUV+NWv33F0hqctsaw7xhoOp0emwwOhVmyOVNFjTBah5qwTOmv56ptf8/T5I8PpyB8//MR0CfzqL3+FrBsp7ZR8UvqQ8i8xThnh1TvEqg7ZDRNmPFBtUSZzrThaD3fwjIcjVgIlZSZzxlw1JKiUhut+g/nunsf378jLlf/2X/4L0grz4wMtNvL+gXk+Mdai+24YqdZz9/DAu29/w9OnHyiXZ8L9W+7fvONv/vK3/PTlmckb/uG7H2jGk9OF8Xji9P5XhKam+aHLyuq+EET4zd/8D4ixXJazNk9y5jAdEG95+vSBu8OB+f4B6w+IVB7uB+bxDmPgGq9IhdFrSm4xPV2zNvbLBetgTYmX6wtrLhzuHnj7eOB0nGjAx8sLn9LK+HDPr8JIqt0A2EDcgB89p3lmHgKzs2pqF113ikgPcFLTtm1GfShqBEC6Wa/d/AJGpXHqpW16uG63CKhbEmbt8oybXwB6JYuWdx2h2rLuB12XTD/gq9JUoBWayOvvkCavtYs0lWF1S8KrBE+0hH9tRGp3+Zf1+MUVyKYpdsxZ26+PSimxF2d6QVpne5JEJ0+YpnzKWhXZ1r+X2yJVb3GOjZoT3js9XeWC4LWl0yp7TJSaOv8zd3kGPZDgdnE1LpcL4TVKWnmNe4x9TNqophKzahWNEfbrop0318kLakNn39VMZXpxeNNaeacFqbFBQzn8RGmVIo192xi9ZRoM9+PM3gppX2itMHk1pgQRtpKouaq2K+rmm2LB9bAPU7I60J2DIbDvG6kmxMMWC/ue1NBXM9ZLHzsbHfeKJvK0ZjslIWshZS3bupEGYcuFySs8vtG0MzXq2HqcBoytmq62R+Ywahe9pw3d0gS1Y2moLWJQ7aqI7WSO3A06hRR30suK8147T6cJmU/Mp7fUXLpJjE4Qqfz23/xbPn944U+/+wN+CJycxsXWJpo2tQo5nlnPG7/5+ive3I3U737k/uGeYfREajfX6PVUWmGPie++/8I//Oknvv/wmYbjeLxn2/dudtRixwePQ2POmwEbAjElfDM/I3aMEItOQVKOrDHSUHRVzlmLS9vACdJmrvmF0uO/S6na1RNNhfRWNfRv7++ZZqtklriTc2ZdF1q1HXvYzVLBsG5XgrMYJ8xuVtNPa1gr4DUp8iYsz6VQLFRr2VPENdWCGqsb87bvavYrSqIxN98AGscrOLwbSelKbZkpeGiVGDMGr6PMlnEmIEavCR8867L2bojR6Y0TbFP4fana9Ub00DGMjmZG9n2nVmEaD6Syk/aoqDFngEIRdZlLkn7vmm7SUV9A61rkP/ehTd/Wwf7SO8GqMXYYncagBj3X9Laotaj3Ak11o5eYVXqn2Nwc/73LJKq5dgpiwzY0ra9VnDVMFg5UyjXy9x+/8J9+/4/8459+4PnzMyEMLNeVaoRxcBgZ+XRduBtf+Or0wOysRjh7x93dREkbL887OScu5xfq4Mh1ZyuZH17OzNMERhMrY8yUAtSiJIi8A8Mr3m7bFtw4c5hPLOsz23VjODxyf/eW675R05mSIlTlMceU8eI5HkbSvlJrIYthOBzIcSNumxIeauKrr97xeP/I4/u/4Zvpka++/S1/+elH/vMP3/FcC8UH5oe3bB9+oD6rh2C4f092I5bKltXsHWMjXlYcjjdvvmayHi9JCxgaPiVc6Sx959hzYv3wI/fe8+Wnj5SS+LKsfPvNr/jm3TtcsDi/cn45a6Ogj+qtqL5fjOAnx+HhjvvDPYe7kYfhhOSMpwK7kiBq4ZoN7ButFrxVD0Vtjfkwc7q/5/Grr5jvDkTgr//6b7DiKDTcKSp2zgQGZzi4hjt/JJ2/QPD8ehq45J26LTSx5OORf/jD73l+esL7btJ+eaJcX3j3F79hDAGbIlISU0vcSSbcH/nqN39LysLn55+YRk/FI8ayp8S7+cBwChgHW9o4OIc3AYtQ8sqSIs7D3eEBI0HlFXnHDp5SMsuSGZ3hEjc+bZr6aobA6e7I4Gaenne+e/rIuW2cHr5mPNyRmrDngpRGE0sIloN3jMEh1nC702rTLr1OoyzSmh5SblVt1S6thoFIN/F1okztyZaUV9oFcvNH0eURfW2or1UyglK3lIh+i6PvjLmmzbvWbkW3yiW0uK5dYtaf2Ksfoastbu6EpsU+ojxr6X/+JT1+cQVyQ9Nuaq1464h16xdZ7fWTdmppULJgrG4I3jvSnrUTgcH7rkMW3Wj05CVgKuu2Mo4DpWYG8czjwLItWHtL4qtY1w1nplE67gXQUX+tqmGz2mVNMWnwSFZuo3uFuVeM01S0krq2Uyw+eK6XKykltn3VjdB0A58VcooI8HKOWKsGMOu0xdeM6aEahlQTzVi2faOWxOAtwQn7utKK7QEosCc9FDinHcZlXZiHQE6FYHuB5j2uamxoSqXrg1X/6cMANCUQQNeCgrVqwFMKg8auOtFNJBnFQYGOu61R3WFtytuqaOfMOk9DSDVTUmXAayVSNb6zpV0XlxDAWVLS56SECI16brVo4SQGO47Uw8T88B4/jdqZ9AHBMISBdds4vn/D/+3/+X/n8HDg//j//e9MAMNIAmJtOvKnsa473/3wA9fLxG9//S2fPnwmHALHuyNxj9RcqCmxbhtPl5W/++4DX9ZMtBM1N9oe8abSih6spmnCO51emKyHr5i1EyoOLRrQWGZlXlb2lDEusCU1QxrRIlEXtdbH1regloaxYEzTA1rWRftwPGAM1JpVy42llMK+q3zGiKLZXJcZmKIGvsFZhtHrNZ6SmhfHEy0Lzy9nalWNf+3hPaXfp7VUJPduZ1+0bwv5zWxp3dCfsTKiT4ejGvBQSkvNTYup1pjHQQ9NvfjPux6YVI/laKT+87WIT0VlPykWqihXWYQeMTszDAOXRTeV3CU+1hq9vm+bU3fQB+u1i4Relj9D+v+vPyw30FK3Zf7s0OPWC9YuEH1blFdJiGk6gr8NQlVtDaWaPn69mXnUCFxuMoxauimnMlrDYCI57/z0JfPDh2f+7o8feHo6U2rDoLzqJOAHj7fwlCIfr2cO1vNwOnI8HTFOu9PUwugcd2HkvF2hRoi6VmwlcV4VJbfFnWA8LSdomWYE5z2tqvHZWs84B0rT9Lk3jyfEjjyvkbpdGKzjdHzgdP+Ol8tK/PgFqS+slzOXdddo8JI1lQ4HrTLOA23ZeHx8y1fv3jA6g5PMfGhM92/56t3XvP/6G/7rH/7AHy8XzHxkf3zP+eOPWkg0qMPMdPeWdo6KRdvO+Nb45q/+NYfpgKfh98RcMpPzzA9vqPOJyzRSWmKJKp9o1vAWh1iLGzV983R3hxknwnTFTDPXs3ZVDRoYY0pjMJ6xk3RqWalrpewJX1tn50KzqnjNTjF1szTMyxkrwjgOnE4njvePvP3qLaU2xjcDp/vHroEvuBhJMRGaFkrj8S2naeQwBWzeeX5Z+dt//e/4w5b4fslcf/qR1VvWfUNyVClBinz99a95fHhLqIk7EkcpeC88fvtXzNOJLe18+vgDKV90yuM9xnnGYJV2UiuPb044F8g0jGTSmnDOcLi/583xiBW4LlHpTQ28ES7LC4FKsSOOxpoygw8465nGB8R6smyUJojRwKdmDcFoEFbJTTXsRvDW4PvEpYqGlhhpWrze7t3eKe62O4Tacau3cVe/m3tjDvTApIsI/TBbeQ03uqkcxPTOMtRWePUqiB5+S+/26HNQ7Kn079HfUn+WWeiz4vasW9P7v/ey0Ujq+irF0rS+f5FY/LN+1L4ZixhS3jveCLxXzfGNHYxUfNAACdW1de6xsTqCqI3BB+28GPOatBejFgW5FILzmgiWtAhutb3yk6WbgSY/ajiDtFdjmKZAmc4RVqOesps1btUgiPWkmgkYvPH4AMfDxDRpFzMEDR0wMvXYZH3d3qqTuZaCGxRj16wlBIckLY7itrBsDWMF4z1+mMlRXftiVOukNIhMLhlvPS037fYiWDfRQ/yoFe20GwN1IK4XHck0TQTU5EllOJqqZj3vfUdnOSgaq+pDULRWimA8lcp53ZlHR3AWZ/UzKyVi3aDYu2a0W9JnQGqO1KJKFPOhAHqnFAKKFt/GWH3PsiYE1dijpY8z7njCv3mLGSYdkcfSaQqNdYtU68h543g88Jf/7m+Je+Tv/v4fWc5XnLNI1zhLKXhxxJL58fmFcTzw7dt3nD8v7Ftm2xeWbUeq4bIsfPfjBz5dM8kEqrFc45VLvDKPGsPcjO+FvKXmncEFUsksWyYcJjLKJ/XWs6WoCW6iOuNcFCQkIZCWFT8EWsk008hdI+696o9v90gPocKIwTvwFvZl1xjuWoixxzU7gzjBOUuwXuVAtmGlMoaBYCxfnp64uzvivGE6nfj8dOaad5ooTnEQq7QT65Tv7Dwlaty1t4FWKwc3EZultqyx4CIY47hcF3ItiCnaUa0aLX7bFAQhRr23GoJYp8zmAoihbhulaGpmMsp39kalL97YLjlxVJOpphH3lW27Ulp5Df65BfmoEVWZ3TfZlLUaKkDTIvqfIolV07Y62g06paJp5/imNb5h2rqU4patpxuldpH0kCC9cO5bXKudE37TKIoWoxikWZyB0QnOCHtMnF8+8n/8/g98/+OP1AZunPGTBsosMfPgB6Z5xG4j12Xh2a+Mo+VXhzfYeSDHnW3fmayDMbBsF7Zt7eFMQt4LXy4XZmt4Wc4YRiaray1m1DhrVHpjxJGSwQ4jx+CJqRCXK36YGAdLqYJvhlhh95a3j0eV7TjDNO8sayEXy2EYiHvhum3KwA+eu+Odyt6s4XL+wLMklpcvnI7v+fU3v+Lh7Xt+89NPfPfhR/7oAz/4iS8vz8SnD1SB6+cf2MThjOHx7Vt+9a/+Laf5niGuvLeN+yFh3RErdyoLixeKXFmj5TDNlKZFiRlGsIHcQJwaLq2BefCYN4+UqN1ga/QQW53gHIwizNYyHO41bbUV2vkFa5QoErNeP95aDs6wmsBxmDgcDxxPB6bDHac377DzHUOMdJwBLSamQZDUqFmwJeNrZQtHvNXi9u7dr/mLf3VPzZH/caskO5El8ePnZz5fXljPX7igeMS7xzuOsnMsmXH0zA+/whtPznA+v7CsX9jjBWqi1MJhUmPt6AJ2sOAsuTdFrHd4Zzk8vOHxcORwOBCMZb1ceNkjy7KytcqxnVhaZa+FbBq1VPYM94eT0nuA0TqCD7w5PRCpRCzrHnGu4ozBG4MUDdtp/Z6zUruhzvXapB9rm1Ikboa714K5f82IqElP6M2Ln7nndI9AkaafYW/Ylpvrvxe3rZODrFGsY0WUd/7KXNYGUT8SoybeLtfqckqVZhiVJ5bWZReFWwy2TtV7YV3VrJrLvxTI/6wfORdsMDhnqKmPPEU0Kre1V1kDaLcobsr/ta/8UjVAafhA7YETI63VzkUMiocSi3OG4DSiGCvkqE761tFL1jn2lPHBQ8yv1Iyc1ZDXbsEiXSYxhqCjXQylgPeDakhrZRwmNSCJEJzj/PzMdbniOkvTYHF9gbsdEErJ3QRYCMEyBsuybtp1q9BKxUvDBDX4maLyjnEKio6jsyRrVs0UXRMtFStWWaE6WOlO6kTNepAoSReHIQzUzom+aYRj1HShWipDGNn3lW1VPrJ0pJRxltP9HY6G94HWdpx1iuIzBusMwXg9ATc9nRu0A+l78pIxlmI91eiCJGL7TEoL51IqY5h09O8Ejgfa8YCEiVoFExzN9pSy1nDekWOkJF0Up3nm3/6Hf8/48MB3f/oRoZLyzvn5hfP5wn6N5D1hrOMfvv8RIw47On748omX5cx52RWP1hp7gbVahfIvK1Irue6IO6hUIiVKTphmOA4eaxypqkb8SmF0Jz2wKHyZik4matPUslL1M/JeO/5itStfoqb2xVLItWo4x39HBZmmCec927ZhrYMcdUrj3SuWL4SAdw5rnXZFSiLMHu8NfnC8+eqR+9NRDWxiOL9caEiXtDTGYWScJp6vZ9VyGocPgvcWhyWnxr6teq90m7czhtwS4+ipzXeSxAIIo58wXqDpQcEZo0bN/rxvprt1WXoAzYSIdiwF7Qqbm85dOpUCoeXCEELfjDzG6pQFo/d/V/hot9x0c17Jyg41VpOo6s/M0/+rj1u8dN+m1Bxz6/RSX3vJ7dZ9Mj2a2Gi0uoaumC4N6873myHH1N51ViyVGtBU1kHT1K2UC2uDtu2cv7zw4w+fVKc6HpjHiePsaFK5bCuP4x0P08DLOLKshadtYXqBx3Xn/ddH9u2ZdVlZzxeelisv1zOXfadOU59UZJ6XC3YM7Dlx3TwhgEhBipJyrHXk3Kgp4cXSJPG0b1QjYDxUi22Z3CA32LH4ZgnNcAoBcsI2pdlcciGmxBgmpmlg33aCNB7vZkpvRFTj+dOnT0w5E49PzPsTh2/+it/89rf85i++pdTCh88XfryuXGNkr46cd4Zx5N3jA/eHe+7CxFh28r4TvJBqJMcr5+sL1+sz615JrWIl0wqEMNIwpFpwgxDCREwbL5cV6y3XJTGOM8NwgrZgg8PkyOTUdyLeMjjPyXiCEaSNTG8Ctjaq9XiBWhNTU4ypHRxfvlwYXOB4OjIcR4w3lHXDA6MfCM5hB6+40H3XdDobMLZyPw0spRKvG2a4YvcdG0amYeTd44Hjw1u+ellwrWBbZlkX2HfENFKq5AIpZ3JukLb/P3v/1hxZcmTpgp/abV/cAcQlmSxWdZ8WOTLn5Tyc//9zpqurySIzMwKAX/bedtN5UHMEW+ZphvVQktIuksxgZATgALaZqamu9S3u24X326/cLq9cL+801yFMzOtK2DYzoaXI0/nMus5M08Q8z8zR0cUj3nEcu3kmrhutZFrvHDXj8k7pjlMwDvv9vnFK5s3Z2sFWdoJ6WlPmaWV1jOTDztHLmKjEx6oxv9HwHT3kUMqYHo2i2T06rSNE5INorGqEKyybwbq5ni5trHwLTMKNjvPYExzmNdFHxcy0Ml8gAAEAAElEQVTQBo+GYFehfUwKh9RCh+YYRmfauNqPLrEi/Ej9NdOgSS+G0RAHfZwxOHwf8ILf0et3VyA/opgf3R37d/gwbnlvqXVHzuOgtDOrt4Y4i6dEMkEDtRaEzuInGA9J7dBGCENvB24GRkCEihoRYgj3JXhqLrTdUvvSlDiOw8IWuh+FSDY4ewNH4+VlAhFu1x26IpOYoS2O5KtamZeF4M2pHpygTTmfV6oEtLWhSQuEIVvQkQDYeqcVG036GMxV/xi39G763KNDstAIsMPHBaU5G8f0Zq7iFBfcMCDcrsXwSaMAEmeHd20K5UC76UmdmJGxlk6cEq0VWn8YlxxkWKaEwxFcIB+N+TSb5rTsTHHmFD0eC4Tz0s1Q1prFZ7dOEYZJxdOEjyK+DUmHqDd5S4h0Fdw0E9NEzgc+TcTlRPQma3HiqM66i3EUiYIgtVGaSV6YJ/7lv/6JMAdul3e0mnwnTSfeljtHqVyvO6qOP7++cadQ9WDPldqsnJE4sUnn7XKlNovQ9kCpjnvuNOnEIa2RILhpsjGcN22o641cM04iKTrUDbJDMCxcaZmKp4ujFOu+9QYEo1fspX2YTdTb8EzVup8A97sRBJw0RK0jZVQIg/zP80QKkaMWHMI8JU5T4tPzmWVNhJQ4n89cbjf+/NfvqESbBIwOR0iR2ir5OCzGuluQwRpnypHp/LhcgZntgg+oN8PYaNbaQaKF+3Yh+RloeM+QPnTTxt7vhGBBJA+047xMFg4xDhcfxgXXeeK08tu370xTYkoTIYrxQRVCcAQf2cuOd3GsF/+x99ieoUPu6+2w/w/Q6Olo7NpR9IgKsO6vH2SLR8FsQSGm1Zb+I3q2jY4zI8hhqApNliGKpRWWoVseh7tWKp57qVwuNzjulNvNpCdpJixnnp5feJo99J3L5Y06nTktM59W82TcyoWbdt72g6+1cFomDhp/vb/z29uVb+8Xvu831v6MBEfvlWtVojhqVXY9qHEy03E/6Hjq3lgnzxQmqhOk3Mm5MgVP9wXkYFNHPg72/WDvna12sniO0qnaaArzsnB++mx7SqnkcnBRxxyf+PrpK//vv/4bIkr0nVvJ3I/CrRycjo3ll7/gpjMvP/3Mz//y/+L/+b//i3XB08rNn/j8vNCl0mon//lGuX/n2N8oc2Lbd/LlO5fLNzY8l+urJdkFb5OClpGeqYOnru2g7Af7PeOWlWPbiX6ilcrTaaGXHUkL83LCH2+cg+NlXfnpyx/59PyFFAW37/i604PDt0qaAnv3xPmzyQ78xssiLMlxWlc7725Xaq7sCu3tSouBgOB8JDqFUogiuDDjjo2A0IIjX+5s3bF+EmovXO5vXP78r+TuCTSyswCZgCFVt+vVgmDIXO4b7fF3Xl+5HRbp3brw6eUL0SvzKTIlYc8bt+1KRVm7IU23Ivg44WuxVNlaoRk+8iiFUjvdZ+YGqQfuObPtd15OK65npE+EMJFbZzse6XvmXfAKWju5NghuBLXAJEPmpwKuWXE6ZBFercBshhwa+LaRy6B+BD13PkI4hnzhIS9TMENeH5MgEzZYzWF4G0QtFbKLpYB6eYixHvuETV3goY12mAv2Ycyz4CsZKXxUPyR5D1mFpfch1nzp+iimzRfye3r9/gpksQ6QqumA3egKP15tSA+M5sDoJNrjk1Jk2wyPJkPX17qybftw6Au9FysAq938cq04GWlmwySlAiUbrk17/0CZ2edqH5oiVaU0uyUGF8c6UNQ10mS85dY7yzTjnVgil7eCYl1X08+2Tq/miu0OWldiSmzHTmjVxmnOJCGmRY5oLtAheOsy+2odOUEotbHfi3WKsdH57dhQN5LfWmNKke3YrGPYleMoqJpUJMXAkbNFWeMoA6MoAvSKp9qFpVacM8mDafWUWiu33kheOU2eVjvbfWOaVpwYz7m4ACRqq3i1jPvgvN3cveCd/eNGp96u6zaCcpKQYKExKo0pLWhwFpm8zEzLOtLwhKOUj+fFj668yXdsm1DnjVTiPeLgNEeiW+jdvg/fv1+Q6LhuFcJCzpU3hPs9M03RtGzeQfAcufPbtwt7rYByNDOj6SOie7jgayngA0msW3qUw4JAQqRUJXpze4cp0VGL5hUGy9pwaj6AVpueHFpBHE5MdtBasZ+pGjXEDKUXpmkCrOi2LqIwJTOwxeiZg7DOgaVb5PrXz0+sk8XYnp5Opjl3Fi7w+vbGbdvGaN826HmZKNnCdsSZBEdb5X6/m8lyBMzI0Ds7sSlQrgdoN3PkYRuzmV+bRaGLyVJyySRJdmmVH5STEG37K7mOcWEfW4its/u+026HvR+17npT8ykIdjgg1vsRdaNo4wOP5x4X0Zo/nskPI+U/8NJx2A7yEuLMbKdigP+OWHT746tR6wzbdEYHL5Wh75ahI/Qj1YuRfiaYHsT2LodYcowY8nK736m3i/Gyp4Rrhp1M62oEhX3jut85eud5CrycInubuewVXc640xN535ij5+V85nz5xm9vSqVzlIzc7zw9PyNEtnxH65VaG5JMOhWctyJexCz2TfEJUkiEMCPREWgmPQqJEBLzCk8+UBWaMwNa7faNzL1xP7rtf8fG5X6l7JnPn8+c55Xolad15e12w2uhqrLVzFYM56bSmUPk8voLf/nXf+XzpxeiC3z9pz+QTl95XyLlspMBt1W+lYP89j9wU+S+N6RV7rd3/PMfmNfP5Muv+KqUMBOIqI5zaZxJNhUyPvqBSV96PZimmeX0jEwJVJmYmFPi87zw5B0v6xPT80rw8xDQ2NidVji1jPZCznC5Keu8siwLc1Fyq6Cgxb5WwmTyg2CXWZxnOSd8M/26NMHFQPIT0xSoTBwj0GhKge3tnTidef3+Z4K37qekiXK74rRxr51aDqqJ57m8vVJ647JnpjWNCaGdYQjMU+JPX77iYuQoB6VYSFVEWHwixQhpxdXK++1OUTXfSgWOneod91Ioe2ZNkU/riad54vPpzNPpxO1W2Md+2hVaF5x3BG/G7Ny6TXBHnLpog5ECarrfx85ie4xNZAy3pmMtqgz5QjeejDgZ3eZH71jH+n8oi4fzX2wKbca7IbeiQVfqxzW6ffgj+NAM2+fRUUijgjxCR8Zeabi4YpfrwXdrao0SxmSpq4yEPjj+4d3tP9fr91cgfzwFMuQJdUhzZOgW3Yfsog4tYxhs5NYq0zQhEj46z71ZeEIMCUQGA9kKXO8ComaK88Gc+Q+W8qOTJM4WgZme3N+V6sYQZErMEpAOU0x475nWSN4buTTTBYsSk+N8WvAxsB/H//LVqkDRhkyR6bTYIRw8visxWPrVsd9JowuKCNoKMSbTK/dGqx3tdWihhFKHqUAK3gsVpY60ttu+WyhCMu0RLlFqM/2VFqAS/Eizc8nS0zA2bW9DN+UdHUPPVDVsk3ZIcQJGsSIm+j+Owmn2dkCEyLFnc9d7RuqaJbMtIVhh2TpVOz6Yqa/VOjYeM/VJ7NR64KN1u31MhHmGYJKWj1jx0VE8jgPn/UhSM052CIEuamOr6DitiWW2C5P3n0gh8Hq9sKzgr4V///UVxXPbKq7ANCWcqv2cc6O7yZLb5LHJ2e7TWyEMbXEQb8SEZoEYvh74FOliEeWKGbBa7zTt1N7BD+LKSFJsteBcpPluqDvxTMvKkctIW3xc5ox8YD8LpXfrGsTgcNKZUzIzSogsa2KegklfUuDrT59xLrAuC3OyBKjb7UapnYYQokmJXLLLylEPrrfriGu3j1nHaLC1blzzEX/svOnUu1qvpXUd3gE1+YCzkeCxZcI0UY598L1tzTw60SkltvtBrcaNFgfOu3GRM3lR046Pk7GztZoPIfkxrbALnfMWAJTzQ7blhy7ZkJAOxYtJMX5YYf4jdrhuun/UUHK4D12yJYEKVcakxXrwg3467Hzdbq39Q5PobD9CR2FsH9MN/NRDeualk4KzzqAqVQWNCQmZ3DK3+5WDgu6vTHo2D0NKzCHwFANOZ6bTE8uXn5AlQD1Yn1b+a/8DrUINRuDIqhY44U1LvOXBkEdopRJmG2mrVtQluiS2pvSjcgozy7ySfKOHGd8VF4TcC7XbZfe27zYdqh58peVMyY3bfWfLBw34409/5GmZuG833q5Xnk4vfL/duVYrRqoIR6vszYgPLk4c2421FPL2HZcm/va3/06vyvK84s5/ZD1F+v1KrpU0LwSZENcI88JqiQ4szyfeeqYcO5M2limyN0dRtQh5Md35PE3stTDNi8XL+8gynfBh5u32HdFGCMKaJs6nF05PX5m9I7YM3SEhDipRoxLwLuAkI27j7gOfn7/wcjpz3QriHU0bDSHFZRhoK7SJ0m7Wj5zPECOue2IIJOlIjCzhiW3/lUwg0OjqeD49kevB6qpx2ZvjNM+83y9IEG77wb0UQpppIXI9KktyfP38me+XGykKrR90TXx6Mt322/3O5+fPfH3+ghcL3qo9jwfe2YSxNlqp1NzIpVt2gXZajNy1EwX+6eUP/PHlE5/PZz59eibMC/n1zj0fND+PNdZHKIul0ppGdzCRxQ+6DKPoxHwxBjs2es5YjaptaI+x7vEopD2253asuHZq+3hnfBx5DKOGkPkjn5oPTJx7GOp03KblsfodbmjaG0qXMPaAzkPUrIAfsgxF8QLamvk2xAgWbhTlOG9Tyd6GEfH38/odFsjGBnYOUgrkw9jH6hwyDtMYIjEFjsOie52TYa6DWq1T+pBjaA/EmOjNump+hHwgNs60jlv7CAmxfPWh46ThNOCDJ7j0gXSzItrhVHCtosGN9+WZgiMSWF/O3LfNQgF6t5hPZw7+FCdulytTiOztIM6TZdAfO+u6mDa0NqYpsiwzaMP5TgoT87KQ647zUI+djjJNM8HJGEUrOHPgibfuqordjjsWU5zSTHQB782FXHsbZjiD/rsOc5w5tow6C+VwMkx0zjSl2i3hznlHTLMxnMVwWUIAaThnyWvBeQtj8I6UFpwXkrPxcGlmTMSBjEsJYgub0dkoWzHecfQ0L3jxiJtwJJxfiLPxbqc4D5atPQ9dO847WsGK8C6jK6Ac2ZK2upqDvnQzMU5xxvvGPM3wi1K+XdCaKfnOfhiW6yFniDEgwUNIuBSR0tGajagRBg91b/TWqb1YZ6FbWAbdOpetmL4c8eylUHonxWBdQmdIO3kYOwa+zEZoRqXYc+Fe6xjZmQwnxRl6JxeLze7dLgTGTTUIf5BRLEWgHdCFeX1ifTqPLi6IV7qHt7d3HI6//fLG9XonxpkQPSlNwySZ0drGWjKay+QDqta1f3CxkU5w1pm2brCZaksxeoWglOOw52B0B0OyAIbW2sfF2DmLh/fBUinvx86yLMjo4AtmUnUS6GOCoPSBjGxD0xnIpRgESY3ugrfLiXQIyZkGvja7JI/i8zj+cROLueN/sCweMzLT4rfx83U4TPb1UD2r7ToPIzzGY7UY2kcS4weYSh7Odzvwh9cWJzD5QFxW7m9X9lLBRdJy4siZy/s30+kfV2KH1jI6nXARYhLWMLMuE2kOTE9nuHeQwKfPX/k/nXB6mng+r/zbb29U9USx6cd1N2zk4SuFBi6YzrODk45zjRRGXPD9hufO9NNntFxBHMe1ct03sjouW6V7wcdI7UL39rHSFDhNT4QpWTJkE263C8kHfv6Xz/zttzect4jzXiviAj3Yz700ZVPF984t70YzkE6UiITGtt2J+lfW07+g0xmt32k4+lGYkyfjYXmmHzv765sVoJM1HhS79Hjt9LqBGG+/0ElqJrt7K4Q4c54TtWUu74Va7pyfVz4tCycnJBdw6QxLIiL4Wum5I34mybhg+gBTZCmOUwjMIRHTRKvFEKO9gzZa6YhXtGzEEG3icr8wp4Xzy2ecOkIQjrZxK3bBn2OiHRu5VDq/0V2gupUqBQmBv31/hbhQooMWCKmhLlB6w58T3+93tGWSF6Zgl3FxgXWe+NPywlbufN8uvB93XpaFNU3EMemRYjrg+76x7Tt7yZRarQGm1hxIceKfP7/wX//4Rz6dn5mSx6dILpnX91eTWMwzGvzQ7ysRM6zW3gg+En0ca8ykTDx0xL3RxDq2blxCfxjzxLCfMnjGY10ytMkwmhSj0A0dcJ02uscyyBSIoRq7mIzCdkRb6Y//bxMku7g/iMq2Dzx+rUNqZUbg3vvgrNv+oNo//p4TazpJL4A1Vdr/LpD/c79G78d+rXa4OfF07w2fNrq/tRamaWIfTmWRQWTAqBUhhKF1fCRLjTS4Zq5/7yPS7aHzPth/7/bwoIM76i2FruwH3dnIRJrFW8Iwo+E4LQu0glDRYh+7lsEhFmFaV+v60emlsC4rwdmNeFpmc67HyCxiSXaYke1R5M9TIk3C/b6TJm/dQYXTulBqtrF2cLiRyx6co0dPyZWuynHsTMmkB1OI9NpgStRmSLfjuOO8sWm1d2prUO1rZ6QCeW/ETcN6jV5aF2qxS4M4y5ZvrYBO1skc+e41Z9Jso+n9OAjTzFYyqoU0h49xfWl1sK4V9WIR49US4trQcD1Kg+ADTifitJDbQYwzNogykXlX5brdkZGC5tS07a3tNtpuDW2VEKwbULvgfKBX09lJ6Hz6fKZW+NsvbwRRkhMQx5zCMEzYM7Nd3pGBZfLOZD/2fXsQJdJ4pjq9YYWrNqp202YemeY9for0tpvBRa0ro2oaudzMsFoHStBHm35YjoVtpc45gk88yiXnAoyEPueEFKxrfFpW0Dq6yWqXtvmF0/lEWhZzTw+e+Ovtxvv9Rs2V+74zzYmUJlKKBB8o24HHESUyTYnWK8mbO/5DetMbKVrMrRPT4FnY0+hsi5m5LCRljCmdIM60e4+u8YMw85gildpw0Z4p3RvnKQ3md0Bxppt3Jj3B2/fHB29d0egJYrHHMjSE6mzMWFvBNTO5hRjozaQtqOBC/If3OK+mM7SkLFvvbjjjHXwclHZAGyf5gXCzqcgIMJGKV0djdJsfHx/TxlvX2aKbuyhu6NjxgmKTp3274p/OvMzPFIX9vnFrV3Y2/v3tyq/v7/whnnAU1piYFM7eE1RxLtLVsd3eSQnO52e8S5yWJ+a08q/f3ijSmNYJvWFR6xps/xCPU0fuBY/p42mFMM3M80yncRTjf4sDXV54/vRHqjrO4oHKujwRtJKrkrWSjwu5NY69cz02yl4QUf6vf/kv/PXXX6ldWeeF+76zd5NtRW+64DAnSit0b2mKUZRjP3g+BZuepZnTz//CcXsHzBynraG10J3jqPZ8NBolJJPtNJt0hTjjoweBdhxEZRhxTULoVVimmXVdWYK3wE8RNidM3rOkieg9Ug/IV/zyiTA/42cht45LEarlA/TLG6FACJE0R87nhfj2bpPA2gnBM80r0h3RKS1vdO/J2sA79rojb78xpYkcIjFFshPqoSZ19avhQpPCVggpcK87iHL69In3LXNaEq/1V7qaGdVRaR1yqdRj58vpzBwS0/yED4mqdnH905c/8CdvGNK92HQyiWOKaUyTlRIaW6goO1UrSmNOE5+ezvzTl5/5p8+f+Px0RsblvJfG5bLx2/sbFZsePQI/Wm9UPzwxThEHwY2gMsb+hAx98KO7O4pefZSmQ3ThfhS6D5tsH4l4vo+mHTbhbeIN2ffQDo9a4jH95VGkmuILpQ+yDdTGSLYdBbF2i6PGmlZ9GHZtOmMMZttB2vh4P2QiD9oF45KNdmsi/Y5ev7sC2RLUbHReMpR6EL2jNjsIzM3+A2fVWuN+r3jvqbWNQ7SPzrLFW0bvxwXNjchLhQBVsIKy/3i4TbZhUcnTlDBqqaPUbMlGw/zmnCHd4hSZfAQGGisG1mmiDSNRK8Zw3I8DF2bOywJg+jwRLtcrPnjO5zPfv/1qzN4xIl2myHlJhCDM84pIY7t+J6XEsWcLG3AdF+3ikIJ1gcQFerWUtKNm1Jm+uZSGdkYaV+N2P7jveYxYmpkde8e7RD4yTgK5tA89dy22wGutTNM60pxsFC0SLEjBy3DPG9d5XRfm6AnONKlrmLgfO1MQ1ilB62zFNJ5BOwk30DjeLjBDi9a0f7BSwYxgKgXvR3KYC2ytW4JVKRz5IPdmmzpCdEponpw3kxI4h3PDGKUN2khEco4UjXzgcUzR8bzMXGLgdb+T0kRINoW432/kUpnpdlnLGUsuEgKGT/NiBjhqp0qhOyHr2DStpYP6gA+BnA/T87mA4GxC4Dx+TvS7USD8IBocJVuanFjATB/kBjDpUWsdcfpxURRgSpElJetY64PkkAixsZxXTp+f6SMUpGIFwPV2Q2ujbAdJhPXlBYnBoqW9Q0KgHJnkJ1SVKSVCiCP2dvRzfRhyHSFER8+FlCb27sh6gBTjdquAGObQqB92WTbpiE08WvtBkTDOtuJdJwV4SCRaNUyfrWU7WGJMuMdERYWqjwQ6Z50oTL7hvDcMW3d2EI10zOb64Jv/4weINY6GllEsBVCQjwPRYwdxHxcya0K5Hzg4Kirh47poJYgOTeKIeGfIQVSHVFlsv1CopVKK6f+PfOWpzZyeZvyycjxnwmvCfTec5F++feP/fP7EJBhr181mIKbiXafpwfe//SsSHen0GUcnxcS//OEneoyky5U9F75//86+7XSZedCenbOLUlMBIlWFrVS0VFyAxSXSlCw+OkbScia4zl66rRs98CIEsQhwFTjer9xu72zHzs+f/okv//SV63VnU5t0xX3j6elEex9SFDXzsajRXRxKXGfEJ7QVsgjBJbrCvl2I6kAK03mhSMJNcJSD2gr3veBSgt4ouRh61Dlar6CNxSemaeKojaNVTueFe7aAp/O08rSeaMWkIudo58ccA3OM+HmlxxkXZmKDvu1oiDbFUgOJSS5otuK+hMASJ56mRPCOqLYH4gIBi5332skixk4fJnWtu4VMNfO3zDRm5/DJ01ymqpKzsuU+pALBvmaxPWhOJqGJ88KRC8d+5b7vHEcmiPD8+cUuWg563fHB8/X8GdHG6/U7L+sT//zlCz7OHHnnODa2bKmj0jvOd6IH541KE8Xx5eUT/8ef/pl/+vyV02yx5dfrHQ5PKa98e73wfrvjpxdaCBxqE8NKo4qy+jFxcjZp7Jie19aT4KR/zHnM/Dqi600kNmQVDtSbPEJkZHeMzu8Hf9gkeA/Gqo5oGSfY38WMeo/wIPnAvY31O5Cs1Wpz+7QaAJNK2d95NBetc9yw4tyhY8rYBx3HDUWydZ/Nu6Ajifj38/rdFcjgaa1b50TGaPkDXi0WyzxNlFI/NMgPhrB3fkwX5UODKqN7JmKxtbWYSW/fNuKc7CCWke71UfzCPE+AocRqtSCCGAKlV0IwPe00RcIUCArrtBC9/Z6IxUzO88Ty6RkczKcT87zYfwdO5zOocrvfUYTPnz9Ry+iGk5A08fVlJucbKa5IDDj/xK9/+8XeT+/k40B9o+2NUhq5F0sv2ws5Z67HMYxZnZwLvTem9NAID/YzGK6rVhDlyBnn7EDKR//ogMqI/zZyRqM1+56ogre2FzLYnYjpupwXrtcr4emMC9blzqUQloXuobSGq42QAjEG5mlCmjn0zWhsFyJL43OIGMDdPXBNat1tdZ6CSWZu9w2aadMkeo5W2EtmaoWkxq2md5MyJOt8B/FEGF3fQpqN8OE6TDFzmhJPU+R+V7RnKIa9m0ToWtDWaftuY1PVj2AU5z3OdYIz6kNT6wS3XlkEgjha7QRn+rMYJnLJIB03cG17zmM0xxi/j++xsyCMvVQbuX/IAGzjfEgbusIUA9NsBWLXhvMBT0Qxo9PptPL556/Mp5V8VIL3TOvC2/dXZgncy41zmpGvP7G+PPO63YjxxPa+c5pnDhXclNjyxnqaDKMWPHkfZroQhjwp0XrDBzEpk7PizzsHMVqaItDbQ/oygigwuUOMkWmyQvxBb3HOEdbTCPxwOCcWA14fIRzWuew5j2Af0wk+YqlDCDjnDZNX6mBKm9b+aI1lWcmt4LRTiloE8j/4eugbHxORJmrOehHTBQr2649S8oehpskQZKgiziM0UxtLsL3SWfHtdNBTxbpZ9HHg1koud7bthooyzycoBY4b8xRZloXJJ+aw8H75zqZw9EZCafWgIBwH5O0OOaO18/r9wi+3d06nK0yGDFzXE19PZ4JEjqPzb9M3bvcdM89bA0DVvu5SO6VVfItErSZz0s6xZ3qFuEamlCj376bFV0W8o1SjGNxvF/K+sXfrnP30888s5y94lKNmvt13SmvU424mYBzr6cTldrMpkosoEyklQvB4F8A7lnjCIeYFmCa682xicq5goyLej4y0Zp3CJZIP0w0TPOrNiOiCscCbeKITntbIKQWO+51zCjwvCU0rcmTWILwByTvWGFljZAkR3zEVeogQJ0gBP62Qs92hVHBqsqdWNpP/ucScJrwTJp9o4qjIeC+d6XyC7UY5Cj6MBMY4M82O2k0CcM2Z+4Nbjgwur52xyTlSFHozU71oo7eNrRS2o7KVnVoKOe/k+52vTyfWeaBQnZlRq4Cj86effqLUnff3d745zz998nw5nemnM7U2tn3ntt/GBHOQlXohpsicJqY004Nwr4W+Zd5e77Su/EUvvL1f8G5iWj17h7eSudSCd5C6I84zySerEwAZ/hl9oNMe8t+PNWtSws4Pw66HIe1k4NoMv2gs846MLDzVH5HUA/L4cbUF0ymDdYUfeDk/QqNUrEnYxve/j03Bd9MiP6gVTqGig71tJt+uZhOUQeSwACH7Ol23faMplP8dFPKf++VcZJ7Mdd7V3OmtGvfzEeHYWqV36yw6CbRxYJre9IdWUVWtC9maJeOp0se/fRBqPYZWR2hDbsAwA+77Md6PGwX4QK54YVmMwhC8xyl8en7i0/mEtsLtdkWC5/zyzOn5TK+NnA9wwjTZba+r8tPPP/Hrr79yOp9Yn84gnfOTFc0yusfzAvUqzE8TyUdut87T+cSv26uZuFoj2LlImmdqV/L7lcUvpGUl6yP4BLRVemvWkfQemuHjfLQFrKgVCGMD/Hu9p43obRzY6m6pY63jQxpSEPt+Rh8MZu6ErRycNYJXiMIcI1MwpFhIzgpGMdlKCoElmINaVa0rhKMN3nITCylJPlinHysIO0LuUADfGtuxsx8bRTv3fUc2I4KAWEfHNxIWw+yHEMH4yraBrfNMWE4wJRtbz5neHD8flS3fqRTTe4vgx+fOpfD+fuN+VKp/mBUbcVo5WuXoO76bKU8GRSEGbzi8pvScSUHQnukyoh26UutBqcdHgE3HJh9OMt4Htq7cWkZdomSLNW+t4RCOBqV2vIPnaWGaJkKScbAHfErQbCQXp5n16QWfJhqNMFls+uXbr7RsUpBlimiI/OlP/8Rv31+ZUuL7r78Rw8xeCst64n67D1Z5N+pKb+iQRQ3wHDH4YbhkoAQt7nzLmRAirRw2zhYL+4gp0VWp1SZFf+8B8N7jQ2DfNryPRrUZRIrUEwhs+454j5sm60o6h9dI7RWxpBGbMhUlEghiewUOpDs8Jjp0KvTSLDlS/vEOsgD18bNG8Q88kw5r3RjfCmIyfGT0NnV0PAWn8qFLxIHvjS6CH5dWEWcHvddRkD7aToV9v/B++Q1FePr8E3m/8v72K71szOdPhGnlfJoQzqgol5xZvLKXg0ve2VrAeVhCQo5X3raNf/31FXk/7Hl0jU/nlZ/On2x6oGbUbN2K7SoOvKe1DOpxwRGMT0dTZc+FNXjCbPppzaP4dYl5itAL5XWjB0HSyul85g///E8mA+vKVhrXbef1dmNrB0Ur++3yQZLotbKmRFsmjuyGrC2j0mhE5jkgKDud6ALqAho8O4q4akElh6CtGj97mqFldESe0z0pOSQkpujZj8w8LYBYqmrLnJ4/f6QWRu+ZvIU0eLGLTUCH7MbTOriuJO8sjdQHonPG5l8W4/HvzYg5MeJ6wR0F1xtRBVo3s22IVFGUAM7R6kFtmXSaULFJqUdpJVuXtju6szO2Y3I9e147R1ZycJAP+/61TC3VLqMUjq5IsyK5a+fzl8+cUmLx2OXee05+5mlKXLc33q+Bnz9/4fPLZ/bjYN8u9F6JLuJxzCEg88pROte9oW83hteS21H4H7984y+//WZyoqLs+24T3GxThqeXP9BRfrvf+Pf3V+69scyJ56fVBJ3OIr0VtXPJbrCDQPEoYBl7gzWBnJpMwuBAtm88eMgilj3g+t8VyjwY544uA/0mzgyXQ+IwTrcP+af9LTM8uyE0tgCQcdHUTh166q42P+rD8NdHrfGYNHXsEt5Qa0KIjGeso01GQMr/llj8p37JuAk9zHfTNJFzNhONPoxeyUx0bYzdRxewjxsXIqRk3WFGVKQ2GYldzorGcVusrUHH+jSjGGxjPPsD92SdKeskW3d1WVZiCCzzxPPLEyl43l5vlN55nleen84czYJJcIauK6WwLDN//OPPHDkT0sRJHsldxTqamHHpy8sT2/VXvnz5jPeBL5+/cL28E4JjWWZyvg6zUialmdL6wF4prRfmtBIf+qoYOPYDkXFJwMxItTVs+GIjIWtOmRlPqSNsxQ7blNKgetgCDHEijPF6CMGMCqo/8JFOSDGY5IKh7/KeFCO9VYJzPBy33nlyzshINgwhDSKC6SRRQYNHffjo0HZVO7hc5MiHjQdQ9pzZhiGlbBsnrBsjKFKVJg7xkRgsmXEeSLU+z4Rkhp2uQFN66ThxfPr8QloCp7/82dBwtXNeT9y2nW0PTM7xdt95zwXr6TWOY6MyzDk+sO+H6c61owV6NCPFOie0FrTmMeYfLmvtH5eUNpzjpkNV0pRwFWCz75M4KzCxbmlp1RLhHIhTphSw3GlLnwwxcrSDGBPzspKmiZYLIhHtmeO+Wff//cJTNHPq+fmTmYAQXr99wyH8/IevtNppufP6+p3zaeXIxly2dMhGa1jyXYAuJvs49oOUhNNiCLn9yPij2qUlBCrNPldrlDKK54FXNM9B+JgePX7fTIgmsTDOMyNAxpFbYQrBdOt4erVujht7Qe9KcIEyniGUj3TLI9tF+YFk+4/gIIMduo/uUFDBrHk6LoDODmLnH4mxOB4NgoFse5TNQ8v9kIu0IcMoo+vsFYQ6JkCC6/LR1VvXZ9aXT+xT4O23zNvlwn0/mNaTjfJFKMAvx87LyXS0vjaObeP7L39jEkFo/LJ3/nZU2n4j9zu3kkn+Nz7PvzHPC29557pvdAwBl2uh10RwinorMkQb2gviPCmM3lx17PVCJnM+K2Hy5K3y/Hzi/PVn1qcXwFI1S97IbWY/vnG5X42pe9m5HTtHrXz68oVaMn/97TeiN3nOczizT41tzxY8MQqKnHczaKqjh4oLgYxNlIIb6lTpEIQUvXFpGwSEeIo4MbPh0WE+nSFWQlUu+4W0PoEGaj54eXlBykF0IL1yWhbjqEeTTvhs3cyuSnOJUjLeC1EcripdGr1UqBXXsl3se6Jz2GVQbNIZvCc4m4xUEdqY0rauPH/5g+HpFFyy9eTFoQ5inCltUJhCoDQLW9JWIFSO2tFuhCfthdYK+7HRu4HNBfBh4uX5C5HOyQu+m6FPcRYdPi+sP33m2K78+vorX5+/8rKuyLpw1EzZN4IL9A7l2Kllp2qhOfMvlAbfLze+v15pg+OsDz1w6yQfeTk/U1S5bTf+++s3/vzXv0IK8PUnTlOiz0rrEMQ0yoA9k48i9uGKRT/wjEYXHMxy7Za5MRarH5NN8MgDwSYj8RKgD++ICK53HGGcm1ae6pBLeB4ehMdUEKxX3UaB3IZEQn4IQNSaDlZ0j0v2+BraCBiyqZz9WkWMhYzH98fX8Pt5/e4KZKVR6gD1f5xF8lEQBwJ5dMwQYZpneq3kI8Mw2mnvHGqHRu2F2ocmdBS8Mg6V1hs+2mGrqJnbupLSxLbdP9z81oVV1nUizYk0Ge1gXWY+P5/prfK+3ylOKAjr+WTd4U9PiEDOmRgjt9uNp6czx3Hwt19+xYnn+fkT9+3G6XQiH5nnp+cRaLLz/OkF7z2fXr5w+f4dEQghMM8z291G8S8n0x07se7sHhM9F+7blRS8bRbOtJ6OQK2Ad2zHhvoHGxdiitSjknP7MC3VVpEYKaVixZh18XQQGGqpZnpopoUVMbZn69D7kDNg3fi+F9LzC71U5pgQqum5eieXw4wR2gneEqFCjHgn7LsVS2YSdLhoHcncx3ShVyqdPVsYyNv9yr4faO4EMbAO3uOCYW+mZKB+VYuL1nvk/vbO/f3V9Id+RtWbAa1UmnZyM+nA//Xf/plcKtvrO9EHJg//fr2ySEWjGWbuTQnBm3lGFamO4IR1HdKALgQax34QncN1xWNBB7UPTRvYz807ei1DdxsM/9Yz5MjRgO5oI2JW1cybpSniJ9PlRiFEj/OGW5umk8VLR89xr0ynM+cvn8h1ox2BOUzsx8H97WKc5euN+Ww/xVIb19uFy+sb5Tj4/OmFWjaSP5Hbxvl04tPzE3/+yxsxetY5cOwVkTa6yB1tZtxz/hErPrjfcRpa/YiqklLkUMMSCoqOS3BvzbrK4+Lw9+g3Y5UH+gOtOy5f27bT6aRkxfBRC00LKSYeqZxe/DhMjC/dtQzMoxpPundatxS0Lf/jEgs3OlOPcbWNQU1v3N3gFsvAgYkbmv5HbW6ldXeMA3fwqBGUYAeCNMDb2BX7OD5O+OgJ5W7deZ+Y5pV5nokDjXlcb+R84367MsVMmoxWsvdKdp5liSxauR+Bayn87fsb2iq/3Xbe74VDhNJh2zZqr/zibwQfLWmyVtNKdyU3e2aDGM2kaaWqxaYDuFbp3uFaY5o863wipIm0nPj09Qvz+kQrN2q+oS7Z3+uVdvzCfnnnfruTy0EMkS/rF9L6ibe3C6/bFbqFO7RSkJiYkkl7So00fRi9+8BzWaBFq42uO+s0k4vJQmKMRj2IEZ8zYZ7smfZWWNbc0dboeScQcXPkeX7GhUCQM57KLOA0Ir5akYRnLw2P+xjrB4FaMqUNbv9R8IvRKnwIECPDHY32jusKQ4aiA8npxDj5p+ApImYAFk8dG83kA0i2GYX3ZG97kKePbrop5lNwVhy6ieA9ykGVhu+gGvDB8KRgzZogAWLiPEWO6xtLmql5A2nI2CdLKdTD888//YGtNi73C47M0+mJNSTc82qhINcbpWVyPui103NFW6VkeG9Yg6QUHEpwtp69D5ZgmyKdzGU7+Pb+net2YfYn2tCuNxqlF4JV9KCKpxtjWPnYk23IYeWqf5jqtH50m81/MqY6YkUu6sH10Z0fq10aXRyPWGvkMd0xI6cM+Vcf/eiHWVfFGMYM9bCKFb4ig4XOo8vFx2Xbvj61/IJul24bJllX2jwVNslo9KGv/v28fncFclfTd/5IswIwzVlwAecfGiCllcpxHPRq5jlR+33vTa9YSkHwI/75R0rWo+C2UArDzVgXyv7O8/OZWou5qVtDNZjWaZ44nVZqLZxOC9NkI+BcGyqOEDy137kfO3GeKLlyef8rnz9/QUQ4ny1P/u3tjRQj3geOvDNNE1NaeX76wrqeyMeG9sj5ySI3W+3EZeX4W2FeTxwF1tOCamWeZnKpRkogsKwnitxoVXE+su8H3jumeeE4TH9daydXG+f0wa6t1ZLlgrPCxBIqPLVUpmkesddihZgfDOqhEba0LsPByShkWrOIaymNl+dnZjfRtbPtu7Gdx41cxJLelnUhl0JcJsSZ7rt7bOTdFQ1Q6w/ZB+LIrVKbdYC89+z7lbfXd/L9wNeOq4V4PuPmRJo8eEfF8fbbK/1eyfcNr7BtV/b71RZTVVKcCIN4oE5w0dGDs0M7BTRnLsfB/dg5ru80iWjphNboudBDgrGpxQhKpQ6Nnohtss4Jx7aT1pWKjU+1d3ItzFPiaIVMp7ZOUzMUxhDpuTPcJBaSgEV519G9SHGmK0TXid6ilUOM+DCiTEU5jszpdOLz5y9M8wSNEVFt328vjnWeKUvm+eWF1hu5OW5vd/Zb5svnr/z0h69c3298f39Fq/Ll62feXr9bME6Y6cUS3lqDoAlV07bXVofG3aEqTPOJ5Xzmz3/+M3utBHFQC6iSy0aMQ0LV7cIRtP0vk53WfiAavTP7WykWehFCRLLJM/aSqb1bqEhr5C0zzZNdIJwSoowAnEJIaRx+9v23aVZCWsf/BzRYnAhRfhy4KkbWGY0mPB2vJqswlogV++ZMN5apG7ugaYwxyg6PA93hHgfrKKP9GJW7OBPSwjSf8GlGXGJynvbkTQO/TRz7nSk5vjx/4vPTSsJobgDGBQz0w/G2N+5l520vbKWQleHMN2TUtZaBpLI3JmrM9H3f6HoeHhGbHHQgOkdyjilGk5EA07SwnE+cTif8fEY8HJdvSAiIj2gplNuVfb/bft87X778hMZA7xO9q2lXy2bs9JTwAns9cK2atj14fDBetoohzbqzgBIrhtNIJ7RgCedtaiRiWuQY4wiZSLQKTe1q4mgEhDRPHHSONnGaTiCF0ANrEmJWFOPYS3Rcc8H5RgCSGO5Q1Z6J1pVedxxPBPE0cbgY0FbRKZlZuZaRBFt/CHNaRVwniJnbokKLgaJCTJ6dhZq7pdGOn0Prdml3IzBKnaVmenG4ebKuaBaiBmKy73NrlZiqBWs4YQpmOJ9jQOPKXqolV247aTKfx7IuzDFQa+Onpxf8pxfeLm9cb1c+rWfotgqijyiRpp5O5qgHbZz7bhCGjGYlIw1ViVNgmc1UWmsml0ZaF346/Teel4mn88qa4riEm5jXVksFIg/ueKcNDLEFB3R5dJQFxJ5eIwm1YZqzxEtVj7f5pElERR9CJzMCO5M9DJCndaf7R96dpWgyLr/mrPs71bItSJv6NgsWEqEPdpx5LPooyRkTJh1dZxN39SHrQH/Qu/6uK/m7eP3uCuSQHl0Q06OCdUCPVkjO0DzBB3pvpDRRhx7x8cP1zvH3MvPgA87bWOxxsH7INgYRoD1iiasZ8N7eXvFe8MEzz4kU7bA1fa7iPwIZoPRGmJKFNmhnXVfm08rldiOGxJcvXwkhfoyF//KXf/9gHffeeL+8cVpPvHz+Skd4ffvO+TwzTyfEeWrzxPnEdt94en4ZyWUnvsXvOJTj2EYDoRNCIsaGtkLr2S4DzjbZME0WOqFiGxUTR854cWOMb0SKD25sE9RHLJ7a+Lv2PU/2e0Ob5b03p3+rtKj44JiCXThyzsxeLMBEInupCJm1N3rNzMkT8agz1rUTM/qVOsbqtVGPPMZ6mIwkRVvTCOqdJeK1g1orf/vbr/z27RuUDrnaiHiv/OHLC9t7QfeDY9/JR+fy+k6+HSZx0DK6lMIUTR8dvMcVIfjI8bYzLzO1d7qzcqW2gjjTCe7HhpPIKpGePG81G9tVrOid00yMnj0XRKyPUHunibKXihfrVGkX1CtHLez1oA89pkpEhn4ScdTWqc3TnTNtee/0DrWZ4/nRCMGLdUq7MqdlGFUtpvp0MukEqrx9f2P9py/Uaml4x33nfrmxnk6kaea+ZbQJ5d5Z5if+y3/9P3h9/464cfn04IJw2+5D+yq0OogjzplkZm+ElHAhmzZeLWnr5eUFFzzfvn1j3zaO1plcJAZPbtDURoWtN6bg7T06saLlsT+MiYdz5iyPY0SdW2N6dGa10lDSnMi3TPCBlIIFiKiO791AEzq7NHrnyUfGu8ADPRej4x9+fWgS5SM9r4obeuNxwAkjElY+ukw/pBQPRaG3oa1A0E5zw8zK6CDhEK1GJ+jFDkQ3unveW1R4K7b+vLPAkN4JOHwQQ64tZ3wvXN4tCW3yM1UdxImjZm5H5ehYsZoP022KoS6DVo7a2Huz0AuvuN65Hzu1ZFpweDEdZh/6a1DzRiRHk5U4nU2nLIlIpe/W+e29U7brRwz5enoiLWcj2ITE3hrH/U7JB+24UssO4vj65TN/++Ub8YEUbDJ8EBCnRFXTwGtwOBdGQ84kOOICPljqWHSBGOxMiS4QmtKGHKf2gpeASic365QHF3DR4bxyigtSD4I0nPcIgd7tshfEsTULuUItxa0rHHmn1Q36CqORE5yla1IVp7YGfO88aNitKU3H89WU3sEPxq6jm55fG8s0cz+u4xkHumnkZdCitBknV0TAB2rP1tl0zjqSg+mdc8enE8XZZChop9dMOQoBZa93XIws80JrndVb57N5Qb01Fea4sn6d2Y8rJWeiCj1bMVwqaA/0Zr4BxCakwRu+NIZoa8cVQElpZU4B8RanfEpn/tvpiRCTXXC8oE4I4ph9ILnhEfpfVP8fTAmQ9pE41zp4MXyd1cruQ+og0kbhaf4m+24PrBsPn89DYWzYOTPttdH7e3xumwoJphcWtWJcx3hB5GFY76Mgd+DMfPdgYQjBzLpY+NED+ybyeH8dhr/L1Y70/4D97T/R63dXIOcj00XxIXxojbdjN/pDV2IwCoNz/sO1H0JCdOiexFi8inXFrGOs48+F4Xa3bnIanaIYjW36+HXvg5DhbOQaYyCM2OvaKvOSeHp5tk51mOi9s5xMqrBtG60ryzyTpgkkUrKxXG+3K84Jvdt4WHsn+kApmVYP8nEnhEeCYBjFp5kOTRcHec+oVnCN7b5x3O8c2509d56/BtSZuz1GY7xqbWj3uC6U0jl6ZTt2tj0DYg7rseBqqx/fB8EuI71Zh4PGeO/WgW+t/DBtOGfoM8EKm95ZXYLuKNqoR6OtCZdmc8sy3LaSmOeJ47iZTlwUwgQEa2CngO8Wk9y7Guy+iI3iRWgqI/Cjs213Ltd3auls1xvtKHi1jlS+H+ieKbeNVgyB1rUzp4WtKl3D4C0LxQkuK5Zi3HBaDSPVNkpv9p5ipOaGD4HAxJKE2mz6MTVl1Y4b6YXd6TDdVba9Is7c6LSGU4Hgqa1zjPGyqtJy5miVLp6qgVI70UEahJbWlP3INtYbP7emxu31YpeUR7BpPg4sHVFHZK89j2WqhOj45Ze/MjvPvmWcr7y/3Si14l3gftvYt8Lr65XrZaPWymmZud3upi29fyfnzMvLC7/8+hv3244T424ztJO9C11N/2sbc/pgTzsH+74hTvj08sLV+ZEyaWl8Jx8puVhxtUw2dvYjAENleAOGjt07kGYs5WFgzdkmSEsKaLPJRvKR5qyoKiVTWyFNE7XYRSPEyN+TjoM3e3eMg71c/iMkFjoIE6A60jnFJEAPljHyGNPKDxLFx38DGdQKN7pTTXS47+2PfBhQx/9WVWJTfHL4NLHjIO/0FOhusvEuigsBbZ3cK+9HZjoyi4NLqbxd3vn5bAd163b5I3jCHFnaCjGZr6Fa9LL5sTyuFPZqxYQHtqOQW2dJFoYSuhWCtRsnOyWzqU0O9ssvLJ+/oHUjN0dc7OIcp5V625hiIj6d6dUmec0nc+uXgtdMPa7stysvL59Y/Mz312+s84Iewj0XajFZl2pBgtEygo8UbbihVRaXmNIynjcbcQcf8GIcc3pj3y28SVUtpXF0Uf2YyPk5EX1jTomA6Uknb76ZY6sIkVx3tFSkNqDQekFLoZZCPa709ky536l7IZ0XC5XY9/Ec8TERtPAKk51It85wzpkcElMXmnOoVpIP4JSqmWVZrAFQTAYVxMKabHo1GO6uQ70TfETFm/69i0Wct8oUjbtOV5I41Al1L8zePl/wcJSdr89fWaOj7zdO55XTfDYZlpo+KvlAmJ/JfmO/btRS2Y47+djIx8a+3y3QB/AipBSZ00wKEcHRQ8C7yHldiWHCqeUNPH/+A3VaQNzQCTeKKt5FJu9Hk4YRHf0w51l8s/9o2DVbU2ppp6YXtiJTGHQOfRgh7cIrj/asNBxjwsLwEgxJhckjxnRchldFjGPT1Y/rsEfJQ04FgUGuGGg4Oz/GO3SmjZdHd3jsmaaFNm9ClxFyArhuso8u/1ti8Z/6laZoo8zBQvUhkGLCebF429HpfRTHMUacOvxkD3dtlcmnj/Hrw1ymmBaYYexx40b8+Di9d5NUdJN3pBSZRhhCCInjuDNNiZdPz0yTUSxEjKEKirZHpLF1vE6nlT1X2pGpR+XXX3+j9cbT05nr5fZhWru8v1nimzNm8MunE7fLuxWjCMuysErFIi3NdGVSBjOYXd7eKKWQj2LoJhyzMxTMcWT6QJ7t7BapWyy684G18yEYEUQfh7EVJ0Ub0mwk13mMlBwD8GiuWrGfR4zh48bsfaK1g7029tZZo0f7oF6kYCER3tGLYcp0AgYPVdwYZ40gCFFFgkebxWCaptpx1GI35hCRDvuxs213jn0b7Fxh3zM0uJXOhQvSG6dgshbFdOrXlqHb9+kxFlx1IgWPz1Zc3C8XTgk+v5wfPTny0Tj2Rq6VXR1F7H3XMWKemJAm1FbAKbe8WwEw3MvhMa4daK+YZrSbkbOh+CkBliTnYiI68NqIEcpu0oXemo2hxTBZzZkhpeQD6KzrwjR7pmkmJhmH7WByAiVX3t+ueK/0nvn85TO9FyOZkDj2neeXZ263O63YzyROiXmeCT5wvV3Y94Npnsm50KppIH0yzakTS9QTFz/wasEHjtGldk7YSyZhHW4HTGky9J8K214IKRKDeRFabYOi0nEjXj2EHzKLnHfmOVlMs3O2V1SLmfejXEwxUWsmjPWjahOQIx+Ic8zzwmMs2Woduv51PH+dED2l/OMdli7QBpGH4ZWImBvexAaDjSzWwfIYSYOhT7ZI6h84OFX7M4iNgrtYh0pHN9/jxmVlpAxOARVlv98IYRTlYt0znMMNM+xlK0S50KeZWj2/XO8Iwk+nE702ShECkae0Grmh20StloPSKr02au3sJeNLoJUDeuaeC0epyOxNLyud4MXkUsX0nS44cs2cT5E4R3qHNAdqFXzy7O+vxOWZOCUYnOE0TXYZKJneCzkXwrzy08sXalfe7ztfzgvl2Kg3k/N4Z5dvHdrLhuHaggs4dMgOsiWlYR1K7xq9WKFSR5exqdrURCKieZi2TH5RneIkMM+B2TloFe8aJQ/8JgLNqAd7NuqD+ogTRy6V3Jtx3XOlTwdsd2RZaFPCOZCjIMG4wpVG92MK0aw4L6VQUA7vIQbEO3ATtWTSnBAcLiZyLmTpTN7oBvvgiDc1k29rHTO9V9Tb/tOqDjN1HXHWEBS6NvpIm6uqTD7Q3Qy1ceSdn9YXnp//hPfQ7t9Yvv6BeV7wbkRyN/BdBoIxk1tjr52tFm6D8ONFST4whWBFcpisuEyJJSwsKaFSya2T4ok0Lx/Mf3GOgH0vRIYZffSOHzQJHRJANwrNH0Y5N9aMjOmVXVaVcUaLTVFkVNrVAUQLCBqdYUM3htFJroNlbdIH9whYeVAtxPOQWYmaPO9hcBcRukTQbuEjmPQHbMoqYh+1EewSPWQeooLrZilXqaCeLjAEUb+b1++uQG69Ep09BM4NA50qUdIwXAk///wzl8uF/bDRC93GCa330V2RDxRULWboU30UvtZhKLXSumnQnDPGr8kujI1aciGF2cwy3Ub7EhzTPI3ixA7p3ut4r5buNE8rMYaxoWXyUWl5IOm8p+Qdkc48x7FRmWLwdFp4fjmbR0AMU5ZioFXHttnopYly3254F5jTxFYa07yQc8EFj/ZMik/GDi5u6Jw74nbj9YoAFpoSgud8nliXiW27knMDTcNQaFSK2mz7j2kihmidyqFxcqNjoYh1/QTm4Ki50HplG/GyczojMeIRtFTisgAB3DAF9M6arAvfpVObw/dGdMMkJY69Nap0JNp0YDsyMU1Wq2ujHhvbtpGmRKcyB8dCt2jU7UBvxSJhXaCWQogTLgq5ZmbvKMBWDmqvxH1IGZq3IJncuBahSTH/SVZKrWxb4Z4L3QfrlIiZvfZaQSYckUOsE3eUzpKSUSzmODSaDQ3C0dvgE5vsovdOjY3uTW+staJd8BFKsa5xaY3u4L7tRibB2wWtGYz/UTQ5F8cl0IFagIaTQXDxHvHenrVy0L19bxzKfI74zbTvtXXyUREXibNnOi0c5TAz3TRzWs/82//4VzMCxUDAkgFl8sR5ovcx7Zkska4PnFeKnlnEdKMuGHdcQOKZVivbYNfaAWRw/LIfpOihFpvshAltHSeept5GvN5MQseeEfEmN2LgmlTwybokTsD5SGud82KsVRsvKnk/LJBIQQeBBiClGQn5H9/knLOOk8hYk6bh76N7ZN1kh3SBkU0ySp4PiYVT5TEPN1yTHa4f7vfhC7Bj27rMtXWqusG5TlzvF67v75wRXJrs82nA+8D9qPSS+dYrrTSoB29bZrtcCP9shU3O1lELIizzQhCGXvxE66Dd1sptuxHuVzYRjqNy1GrBDxKMXkEjiHUPXUwEcQRVUlSm+Ym6NXQOUCyVb/v+K88//wF1Ce3OUj99IGLR2GwHPgZ+/vJHbrVx10YVTyDxmn9DtPPTlyfyUdmOzK1UOmo0iebp+06cIuJGsSKVfigujkRDNT2vqoATarMLaBBFvWIGKzNhdYVlTpyCwn6jtoMUZpqA0jjK3ehJVTnyTqkHuRhZCYSjVMq+U0ujtoy4hXYc9CMTvYeU8C5Qe8MRcFpAhF47rSmldnLp7BSmx9QyRCRZ9zNUazyU3ogpkIFeDoRmSXu14sJMw5B3dOPUqyrGQ9MfRWF/RBwbpoy8Eb3nut3oDp7XJ3xs7PlO7p2YFp7XGc4nSt2JbTYxgijaGzVXjn2nlMZ23zm2zYr4EcIS8cx+YnKJyUVSDDiXUDxLSAQHt+NO9UKIke79EOsLuABO7Gf+WIHOLp9eTb4wrsrjRxHGtOdRmJpp0qgPhnIzVKPiHR8dYdWH0e7RkX4UvcoD6ehG+h06VrCM9zOkFoIfq/phu7VCW1T+l/fURyFtFJHH5NwNwYjtIAMGaO9dFLOM20RPRgf/9/T63RXIFmBh6KbefzjUa7FOrdTKr7/+ahre1sxQpqYZbF0/Okp+jK9KrUPWY/9NuxoWy3lMS9qIIh/OeIA0eeblhSkl25QE1tOZpmXE/VZCgJQmbrebpepNJv0otdC1f3RvH9otCyFR4jzhPHStaG34APM8kyZPzjuLn1CBEK1gR0GyCfZzLuAdJW94Pxtc35sR4f39jettx/vKaTmTc2aZT8ZvDooPketlx2sjeD+MsIUgkXlKeK/EYK7+/dg5skVKq4DWSoyRR0BDGwlRj6SxeZqsW6qD2DF5u+WOztX1fqN6IQZDDuVimrQwRdwwfzgRurNYcTMgCClE7rkMCoLJUlww+H1ujdJMjnPUTC7ZfpYh8Kefn3ma/gtP5zNRhduff+X1339hcQ7fOnOa7GddG6kraGc7Nlpv1o3CLme/bBe+3Ts7Nvove6V306tW7UTv2Hs1GYGYKUScw3CEappMGnPyeG+/VxFLQRNIIVjPwA/iRxHDGYoFhIhYqAy9DWOfo9GpKEX7SMmLaDFSRK4VRZhiMh3lMJrdrgenpxNCtwjalFjWZVBJDuZlYdt2pDamZaWUDSfCtm/U1gnekH7TshBi4PW37wTvePn8id/++gse+7lWb9OeKU00NdQcal0ZHwISrbMvzi6z4rwV7EDynvWr6aBvtxvaLUK6d8W5YMEhTSEOXJKzI8c6wX0gCcUOfwe9/QiSCS4g3f4so8CxQ8LW5X4UYkgf4UKM0WMtHSXTahmjTuUo/3iBPNDgdtSNTtNj7zEdiVhCpsgH81ilf7jlGel7iLnWZRzSDtMiGgtVkIF8EhW8Nlrv5N3SJ0Oa8WnhcvkGwHx+wrloUicXTTZwHJTqObaD0ArX/WC7vrGsJ/706ZmqaphJHwkxmqYTW8Negq3ZvOO8rTGhG8O4bFxzptRCDAyEp8X81hG9610k+Ymed5uOLBPeKeXyzvz8Ge1CqVe8JJx2gkwmR9hvpNMn0wCPlLNzWNnuV466s8TEP3/9Z6pmSsn89vpuU0WxZ1LVyBG9VWJY6dVMU7iO5gMJgjq7tajIoEt0Mx27SOlK9IngHvxymEPAHQfS7oj31LLTsQuE0SYKvTRq6bTaoBSk2+Ww10KpldyUY9vQ+pnSD3zemdaFVjsFtdZmM6N0vd7oelDznf3YULrF15diKDPfjZWsAW02+j+lSHWe7CoSjL0c6Gy9j+dIaNURXMdJh25aXB1R9WBpp7Hb3iSDdKQ1s0zTSHYt/OG08HJ+opVMr3dEJnw8Mc0zLWe0FiQ4alFyrdQOR+kWJpMzuRWO3bCeLoSBs7PC2LuJIBE3vBGlZ6o23PrM9PSExAkpOu6gD1OsDiTaI7wDQIZ0Yuj5h+zgY40OzFoXN9bmYAwrJncYjPLHgvUf6DSbDz14y6pgaY4eFes+m/zCjz898jF1kGxELSp+TJ36EFuIduvW401q6ky69YGDE0aNZJc664Y33Ic0xNB4vQWa/OMSsv9Mr99dgUxtSLAH5FHs6nggHqEdx3EwTZNpwka0rHN2k2qj6xSCYbFkdNO62p3+UTyLGNe4iyGsvHOE6G3Uus600niYYmI0PXSuZjwTTE4RQhgGQUErBJesiAog3agb+76ZKF8E572N8sZY70HqiA9esFPe3r8RorGR87Hb+DQE8r7zYC6GEPj2y6uNMHvDBc/tdiOXToyQfSSliVIzuRzMSyDEhC4dhuwkt0IuhXzfCPMMHm6XCwDeB4RRCKhSm8VE55zpHWKYaKWNUQ/UauD01uwQ9+IMg9MtAUmCHeg+Tbb5AvRGKUp1Ss3Gx/UpoppQFbZcif0xvjNtXS2mq8N5jrzTVcitfIwRvXd8Oi28nM+8nJ9I0UZP8x/O/HH1yF6o2872/o7umakLISbWZSYsZ0KKuK68v184xYn1PHO6vnGIUgpsW0b1Efrh6d7xth/srbPljDjHNKRAHSGGQO6WlJbWCCIUtUtZ1UbPdVABRsjHuMA9ZECqhp2KMSF0crOkqy1nSm0wLhumWbfnwosb5hnhdrsZkJ5OzBmc46iNkDwinnwcOO9JIVIOO5xOpxNxEt6+vZuGEmODhmCRtO+X79RSeTp/pW6Zy2/fbfpSGr3byJVuhrJj21mXE9JNFjXPs/GKsdjmVsG5RtdCKZ00zyzThE2hC8EL92s2nah4XLK0qxAsHay1hneWOFiy6Y8fBXNKlhSo7qFVtgPOpEnzRyiOc9Y5SdG6pzrGoiIBN3lq3cwdP8I8fpB1/v9/PQ67h/nOpEV2KXRikgeHSX6Q0TcyJ9AwappO0lTDZgJyYil7isUn+0FSUPww4Zqlr7SKE8VPC8vpTD52rre77bfTQsFROMilsG9Xkk80B2XfuO8HKp5v1xsv88ocV4LYXhadNR3ER0OQiaNWk2x0n2Ba8arQC2+3wttto//0bAW1U1qVIc3pIIHtqGh3BC0s6wS9cX/fmc5nu/TXgk+zGROl067fUAlM6xN460BnDSwnT8+NoxfW6IniCFFxfuX18k747IiXO+/bRk2RMhB09E7Z7yZ108GKl07UiVZsD+oyGNw+IRW8BLzvRrvRRpyj+SC04oNC85TW6V0NS6egmGyot04deDn1lrjWusli7iWPieRB88E07JKtFxnt8kc3aZnJRRxVhdI7e6mUanrqrTekNVKLOFEkZO5NOMuEK0qInrM4+rxw2zeqKnMUcj3s7KTQEHyHODjElkVjo/zWO0cb8sduT98cLOFvOb+ANFQbX04rvS20foBWtAWcW3CTIx836qa00tiOjdtofFy3g1wbR7VmWQCSs3MGLDzHS8CLJ4jpomvLaJqYP/1ESgvgUW/Nea9Du9sfCXRWLEuvNDEJksjoiA+Dm9HYHqY7uwB0MTmJDNmFaXpHHoCtPpA+dM0mrbMKtg2q0LAE6pg6yCi8e4PxWSxSqVnj6NFltrdikqpRyAvFmuP4B+NioOGCGWGxT+1bw4lNrDqjmO42efu9vX53BbKl1g2np+hgwDJijttHJ/gR5NFVCfMED1aq9oEmm4zQ4E0fm1v+6Ea33nHe4UP8uKn/kFq4ofPpHMed8/lssgwveDXTnB2sD7KFFbOCY98yRy4s3n8g5Zw3OoMPHuc9PmAF6rHjxJGmmdYab2+vH0aFlKJtAt5MhlortTZ6rRbXfOx4B3GeiSnRSuX50yfut41SLOo0BIh+JkWIs3Uqw7owp8S23UfnORHCzNvtTq7to9gqtRJiQCo/Irzho6B4XEK8s/x6RuHwKOBrs7SljOJ6ZV5XGp0eOvkolGQM4yNXDmfL3WkH9Rz1gNqYvBVtLkVaN5ZydB56pzszpEm3DajlwmlKrOvMH7985uevf7D34ATnhfXlif39Ymlq2vh0ZG6/vXH96zfyXmm3O9MUKJh7/Pz8hCud0DtfTjO9HNxqZp083s9WHLtGD+BT5F4ya7Ukqi3DfS/k3nDRs04LRZU4JfbdUqdUopkQYXCjrcOQm7LOE3s9TJtXbT3UWm0U5yO1Q6lKqRZmgXP0D2RfQwcNJPdG642SMyF4bvcb87wQQsJFx9c//MS//fd/5dP5GXD0WtFm04V9v7PnTCmNdXoeOvbG2/U3XBA+f/mKd56//Pv/pLdO8J55ntDN9MV9dDatEWKaeSeeXvt49g9E3TBLynjfSq4HFEjzxE8//cT76xXtnm3bAWcH9Yj5jd7Z31W7mEoynFIp2dbzw47P4xk2PagPDhpEN42OsRXrMXrDCOLp1faIps3CNfzj/Tdju/7DL9NyigT7B8PHPfTFdlpbmQzg5OFIt0Pbfu8HhMq6SUZ08YNMomLjfZwb3SSxg1ycdfiCY1pn5uOJS61c940VwcVIK422H5T9RpeMRJNebaWyTonuPN/uF55WIYV1/Mw9wUV8imOPwGYdIngXSCFQQiAGS4HL1UyozkW8KOpNwz7yN9Be2asQ3MRLjNz3jWmZkA7aCmWKlAOEDe2NFIzv3bJNp6rMuN6JQblsd87zQu6Vfc88T2eu2xvn04pzgU9indBDjSDTpY3LVADv0daGbMXRVI0B3G0KEYKDmgd2ziHBEHCtOJIE1vRIF7W44FoKtXeCs656aXY5br3S6kEUqAhBlDlNHPvOsW/s+eBeqxn+eqfddvRsemwtDYLQDjekqWpTJ+epuFG02VShKvgxNStHwYtQvIHNFg9r9BzaCcvE1gLbvhFCGmdDp3aHd9CqI3pBe6bhkTqkJS7QtBt7G/NFJBwTwqevX01S0yqfTk80WS2LQAs4yL3Te2DfLx8F8v042HOj1J2mzWR+teK9N9kiJhvzqkQxdCtUcq7kXomffmJ5+ozECN3WTX+sG6wEdfQPE1sXPyYyMnjEjE6yyYkY4EXH0COrDJJEHRM+W2sMKUPFJjoWPQ1erSh34z30DioeK+UEpeHV8gFEHpKMboVe70NfbBOuxzo3uqWOPw+PEv4hnfDa6VRcf8g3sH1G+yj166BZ/Adsbf/JXr+7AtnG249oVP4uzc1kEN7/0Az31j7kE7lVlnmyRdCc8QDNN0bvFjTRGmb6GilZAM7FD2xUDI55CtBldKbMvFHKQaMizmHRn8ppXUlpQUS432+8fHqi1M40T7hgnWg7iBMppmFKF0rdzSAQE7OL3O438MLpvLIfG8sys903tHdOp7NdClpFJNBKId92Q8p7KHQqjXLsnE5nG3ndb+z3N+5XZVmeCFMgukA9Msu0YLHQC6+vr3z9/BN7brTW2bZ94OIqKoZUcy7gvKX89JHY5ofD+6ENR6zYnWQaO8ZDswrz0HwdhzE+s+/c7wchJqiZr88nqgScKM4rl/vO01OkVpOOmC68UMdB73ywLmwu0JypK3tGFOY0cZoX6A2hk7wfuvPGfq8UhPnlmVYy1cHy81fi6YSvjfp+4fb9lfZ+IYmwpBmvUFq1Tox6WGZ8tZCA83Jiy7sVGihpeUJaY8sZpJnUJyY6wlYbPkbUBSRYrKcLiWlOlHxQtaPe4dXhvHC0SkyRnqFJgGamylwtUbC7yLaP7lqI7DUTBoZsmiZKLpRaqKLEJBz7wa7K03mFXuj1zv0u3O7PH/Hr2/UKKRCT43q/cxyFjseZmI7aGre3NyQ4YpxJMfC3v/07l9c3qKbn9WJWuDRP7PuO98EKPae4IIPEcnwUgLVWehuHUreCthbrPtXtwMXAvM7gPEijdKXu1iEJ3g7GkJLxvEdREGPkOA6LofaOXEwe5X0w13nvtGwX3I5SWsFHR66F+7GZlKMpVIeI4RIlmFSgdjMlSf/HTxERAWejzTA0jlYojz0Jk0x4rLP1A/H2MN6MDuM47D5MfSpjZKugAedGX1qGbITO4JmAVvy0Mj2bGXR/f7dIZOdYvKN662YdZUN6MZnJQyM8z9x7Y39/5WUqhhAM9mZcE2jGotXSsDxg85a0nqmtUrtyL5VSzahnXcBkGkutHPkgBiMiOKfse6M3wc2e4/5uRfjdj4mfGVqP5tD9ikvR9qIQiRLoxSRfQiI04WlZqN6ztgUwLasLJ+hwOTLSlOrdOH86rT3en5kdjUBThs4UpHUkmATJDeavqxU/BWKILClSrjf8ErnXQukjMKVW60Y2zOAsAaHgVSgoIo40J7N9eT8CIpRyv9M+f7aCOEX6YTHjrSnqFLRx7Hf6dnAcJj1T6TTE0JLNpoBUowrF0TQ6gKVD9EqMgR1LIKV2vHaLphdvLHdtiHhKt6+B0WTSVnFOTcvcHG4QLryDZXIEdTyfP6HdglxOyxnnA/XYUWfF574dqMI97+ylU6vjdhiiL4+JsGgfqD1D6EU83ilNK60VajvYS0aWE8/Pnw1nhxsdY5vUWIfXLtFD0Qv4oeu1MriLDA3wSHsEwDjkRmTpH+m94oaxjocRzyQXfmiBH1HyfWiOVTudgJpiAqcFEcP1oYKTOqSGQyPxiNRE7X3SPyREtqm4wSB/BAQpXvrAscpHRsTjYkAfl2YeYMlhH9TfV5X8uyuQzXxl8byPTuXjnxjjR6H8953MWooVd6WOUckAZY9nq6vpwWIcUgc33KODafgYST8+9jRNNr4NwYxTteG76TenydKTzuczIvKBorvf7oTgeH5eLSq4dzQ3pjQTvBV9bfBqRcWisQd/ec+Zy/XO+bSOUbnj9HTmvpk8I4XEfttpuZJ8tIPrXvCTZ8+Z1k3Hl2IinB23y4WmlZzvXI/GWk+saSalZAEoaSFvB148r6/faFVHhyDQOuy1ko9qejPnaLVyHBnUE2MfVJA+NgGDrJdSMKlhJSxWUJTukdqsoGmOWSK1d+7bTnRCrp29NKIHcLSio2CyokyxvL17q6a9ypa2JgrHfjM+cu88rSdc8KynJ04p4f3Etu2s68qed3wIlHbgXcBFj3SYz4F7ukGvxKeJ5ZzYf3tjf72wH5sV561zb42tF7oXgiocheoCR2008VwqFGzDvHXlULg5HXrGMTbTwJGbhX6gtLKDWKiKERsODC5mmt1WDIDftIKzy5BTZcuZ92JEDEXIh6XEVSxhrrWK0pDBvm7dxnyCXRJzLpzPJ0re+PP//B/Maea+KXW7MYdPlNr45dubPecxUstBlsLldkUFJj+BKr/8+S98//bNCr3wSPgzmYBFTZuuN4SAC+aOLr3Rh247zDN5SJQsTOSglkLLhZSSFdjVU2olpYl1XbhvB6REKbv9Waxz8rg01WregI/pRggEVXqp5FJY5tmkBmo0i9aqpSs64VDTg3at+DE6N4OWNzb144xC+Y84PkQ8Tu0CUbUj3iY0hs4yaYXpAq1LZPioMb6V4aof7vSOH10h634rFj+NDkoHWIdIZRTKgvRGxVLf0nIySYzCsZnxeZoX1mlmPzX211fq/UprSoozU5zxLtG08LZd2O87L+vCS38m9pnmCsFkrRbF25RWD2orHHnnsm/8cnnn6DNlUDV6N7nW5ANNOnSMU6wBCDRXca1xHBEtdhFT6UQJhH5QuhJiBFF8j/QCMxt71WFGtUuQuo5PCW0F5yaCqzylmdAqfmlMU+RV4ABys/yx6DxdhNKNXuF6++jMRw/BzTgRkvck73Ct4INjDsm6pzFQtaJ7MXpKhyMX/MgrNqWrYb2CQqZbiE61CeQ8mZzIiihH7YaAi3XB9Y5Gu1jJnOj1StkPfIg0cTQRC5FybtAbbGKTc2adE9KVI28EN+NbJXthViE4YWqd4BxH9ERVUE9tENUmG3UQLboEvBSTmqSBHuzCFKwgnpMZtKcUzOTcCut8prqNUq6c3AkXZ/a60WsmHwe1K1tVtryzH43bbafpMO33YvKioc/3ziQMvRWObJ6D3DI1RT59/Yl4Og2C4Yjs7hjrvFtQh0Ps3JIHl9iNtf4w4ilgvPthdx3dW6EOWZRZ3R6ltp1lqMPJj0YcFGSkJfbRuTPZhsk0gOE36KizxFV9RFUDyo+Gg3ZLClTi+KxW4o7UECyihlHsdhgR1t1uBR9fi46vL6Dj/drF4Pf0+t0VyHbA8XHQwQ9x/Icj1PmP9CznHG44ptvIgH+4R+MooB4fIwQb/zx+nUfB9WAiBwcxWndaMWin89Zl8y4M8b9nnmfmeaYO89r9vqHamedEzgen9UTrnRQD67pyHIWKmYWWpxO+WcrRdvxw6rfaCW7iODbW08rb5cqxHxZmEO0wPC0Jr51935jmiITEkQtp9QNLpXgxPuL1vpF7xaFc3t7oS8E5mFPifruwTInr5UKp1tHR3hEHFYsrbqof+kLTe3vyMcwKDpKP1PpDHx68JzqLFzaQvHK531nTMOL5xNEqvgeOnGmi1GViB2RJTD5wWlYs7tkPY1ckipCmiaM1inbQNgxjhvSaxMgJ87qwTBPrug5GtjEpDaFmt26tjw3P8367ko+DKQUIQp0D/qdPXPeNLp336zt7KeRmI09iQIKj1IK7vBNiJJede210Z6bFqp0qiiajKxhDWmjdIR722syAmWzZtq7GVlbrDdRcWWc/omFNw40XDPGnlpo19N5dDS0lzsxCIUa7gCmUI1tHURLeg/e2HlDB+0Btdmj2UrluBykYKk9z474f+GDd8NP5TKmdLR+8vHziy9fP9Fz597/+G8EF+sDxqQQ7OJpHnKVW4cLHWty2zQgWvVO2gzSlD8ygJXDZ4eWG6Qug1kKKE16ET08vRLnzdqk2NhQD79OV3g6QMD5eY5om+x4UK5ZDcHg/jWhYiD7ixcJLglgoTYoz4jytZUNIKmgz7XIpFR8NgeZG1/cffQl98EnN8KW4cdRZd+qhKbZx2Pg7Koizoq07Wx86DI4iVpRoV6MjiPCARo3Bt/2euMFUtb5RUUd0kbieWUeTKm9Xcs74GJmjJ/nAUe9IN4qD85Gmwv3oXPfKa974fr/xcy78dH5hSWOKN0xOrRtZ4sg779vGt8uFt22jaeW6ZdzzShgTNqed6iPqFS+m2a+90KtjywWRuz13m5lxW9loKDGtlAwxLkj39ONgzw6/RmhGa9DWaU5o7UBbBe+NVBEC/lZZlwVygyfbGyY/GXFWPE2VGGwNaW8EtchlL8IyOeiN2Tm0HSxpJnjlefLQldv1lZACW340SIQqSm+mNRcH6hx5P2ySFsTi1yWCtwIsOutOt9Yo0thvhfTPL9QGrhwwBXi/o8duDQu1cCwRcEPW0vu4/OnYd6qRj1yI5K4kFVqHozSC78xxImslijU3ljCz+4YUozNEwcJnRrfbD/Skd84SL10nek8UYZ1Xgg9M60xwA6Gogdo29sGxz7VQi7LX3TjtJZNz5n5ktrZTsk3lwvJMPDXIG12UOuqFzRxvaIy49YlPf/iZ5y9/NO+NgrSh1rdq08JSbLCCDpWvuB/qYpMxOEQfkR0mk2hgXHyrPsb6FJMrqHWdH3g1GWZgecgXxEQXqtZTlodkQ63TrjhDNGo1yQQP7oV1v4eMGaQPusootEf3u49L8OO9KePZx+O0jQmV8XJsB/BDg2xJwNJ17Bq/n9fvrkB+dH9r77aAFeh9mHMCOR9j/B4+yBPWCW5WCKnJMGrNCBbPqar44Mdifpj97MCsQ8/UWiOFiZQS3tv4XsTQWsEnM+o4MW1oN51jKZWSb9zvO+fzCVUoxeQHpVRSmtm3w8yC2qnHweSFYzcW65QW+nEQkx/a3cqUZl6/XS3e9zDj0zpPQEVL477v4NrHWJ3aOY4dHwQfbGlPSwQv3O4b+TCjxqXeLUVHhOAd237lfhSqd9TeP4qZNvi6cWinH/xUi++2uWLOthGnEECs49daQbQTkxmi3ODMdoE915GuFZjjQleFAHvOLOuTXWgE9nIQuiOlSBs4n6NDjxN4kyCUZqNaHbGo08DrUTe0qXV6VEEK2/aGINRc6a1xK7t1WrXzfrujvSLBEtOOWrnvG5fgKSTuOZlxRy1gpdVqDOYj42Iidft68sBwPRKSHh281oYr2VlKId6jwdK74oPzPKZmxoB2pATOmammdqV0w8k3tS51FeF2v3NIHNpb+7vOQa/ZNt4+Bmbi8C4Y9gqTaJzOJ/atEOOESKC2jBcd2u5KbQe0zlEaS0zo/eAoBVrj+Tyhdee3X35j3zdCmHAujNhwM7p1NaKHDo0taiEM+cg4HXHa0qllw4fFAnJatzjpERsuHaY5UlqjaiUfHV/NuDQts0Xg1m6pj/Rx6I8Rb2006RYaMjqo2kZHJIxysdURgGAHToyJMoKvUAsE6kPHLOOibb4Hmwr1/wAjix2Qw8Wu8Bh2Woz10ESqH9rEh4zCxqlOhgRDGfteAaxjaP48uzy4D/mFoGIUGFGHODWTrAPX7ULsfGJannDi2WOi5g1aY4qJp3VFa7FYXzq5ZpTObd84qtERLvcbl9vG7Xnjj59eOMdExNG7XbavufDr9ZX/+e1XXu93OsJ+VJM0iGca4UwWHhTQbrItnBXY+97JApo9rhXEN0Q9Wy14H7k3QzAuYtMU1crkA+66m2l1miz2vs04tWdcKda9a501TMaz953kJqQbNSJi67W38fNwjkofY/OAD9OImLamitPIKSWSs31p7+XH+Lo1cjNUm+umMVccVQvSOkkcTW3vVXHghaMKwTlDkbmOeKEpVD+Z0YyOa4166yNAR/Axsm/voNWmpt7jsKG8SMO5QAiRLhb0ot1obbV1iq+0GOhiBWwS4TRFMkqvw7SdbHLbxfwfwZmsp2nHD5a2854pRTzWZEEr0+lkQR6tUHsmiCN38wdQO/t+p1fhnndqLdxz5XXLbMdh6FBVmgaml594Xk7025W63eglU2Q8xymxfPmJ5z/8M+vLM8GbSVsxTbRTGXg+W1S9Y+8PM/nZ6rO1aVX1o6s8PB72XbSpz+DJ2+4ywlkcAwYwCvGxbk0abN3pPsJFVAy15h/x08qQr0B33qRcziaqgqHz6KaRRhudgkPoI9nELtBW7Io4XDdJRxuyCcWNjrJpsLu4IRjSB60Pxsz29/T63RXIThziHdrbSMuxwi3njKr9f+tcMka0Mjq5gV4HR7aUDx1ia3V0hMeYahx0IcQP1ztipIqYHsYeh4iNuNR2IlSVKSaWZf2gY3RVaq54EU7ridv9Zml1R2NZ1kHcKOPAtg9d9oJznjTNHMfO+enMr99/4/y8cjqf+Nu//81g6cWQYurta695R0uh58K6zLReqPmg1cNGPx3iFKmlm16zKzHNgBJyMzzZ0dhrMcNgTGztwPBV4GOk5Gb4u96tEzViLHM2XnSM89B1GqFBe2NeVmPZSqdroXdL3UvJwlpyMU0tQ77hQzS8mTaaWh68iqX2OWfdwfuRR3dQqWo6WhdMr+WnaAX4uN3HFFnWGaWSYqC0Cnl/1Ps2xuwVrRUS7NuV1hrROyrC9fbOFCOHdr7fLvx6ubBtB1LsctXrCOQIZsA4LTMqwRIXPXi77CPR0vhkhGB0FUo7uG83UprQ7FERjmIMX8F4xt7Z5S64IfmRYho3tTE/3UZnDeVo4KaEKEx4yr6TpjC6wzoKKBnPgZn05ME6CNFkNJiMqVZLH3yaZzu81UJNwiNePBf2ZmETMSSOfWPb7lzfr8MEZ+PN4EdmW9ePi6VqGwZO/9EDaT3jncmDSmvc7tvodim5dnwMVhxQUaeEhzE0RuOdjyTHlKKxox3kY0cw7aE4PpIxrXruBHEfEw7aMIE5k1UJFm5As7Wjo78i8jj2bBzbVemlID6hopT/gAPEfBHD8IodxBa1PEa8w54uavYgU0xYZxnUTnbxj6p+XEbcOOQGVeDj67HxuHPVNiANdtg281DW8awGiSzzE1OYRzzwbmZgPD548uC6a6k0OmnyIInbTSnbxuVy4/vbjb+8vvKnTy98mpdx8ex833b+8vqNv13erIvvHLXDdhz2DLSKJyOjyFSXUIStVpx6LvcrLQXQK4+EyHsAdYLvFl8dIgRXOcrBHCbuLeNFmFSRVnAx4ZxporV3652pyaZ6CCN4yOH3ysvLM+9vF1wHUrIQoW6UjRbjmPBYFPSM4OUHWWXxjjk6xEcmQHuntsLuFWk6CiGIQyouEgHj6cvovorzaFemZUVLYU4TwVn6G7VY0EhveO20YJQSvdygVlTMuxHEpHnP02xyFRFU65jARruoihX7IlCoFA2oelo1JKfWTvKOEIw5PzvDT0YXDIkZ1ahIInQvQxbQmFzCEZimiDabmj0QatqhNUHUJmelbPTmB6oTahe24+C+ZWtQ5EKvSvcQ14X48kJoHZ5e6HTDwvWOpMi0nFieXljT2fBz+ui6jiJXGMxhaGqX0oZNXLya1OXvIkKQ7qk6uM46jLX4jyAeRxsdZhmUCuu+qvQhwwA+Orp2UYCHXOtxAbdzzIrxbvQMHTIP9Sa5EEfHPFFCoQkf+8SPJM5O62O+pZb2aPvyOJ/omE9whAWpTSbBIxJQHu/tf3eQ/1O/ajFHa1HrBDkeXc1ILYNlrB0JP0x7IjqSdeKHHMOK4444WwYpjiFms0OwjRAM2zCs0HoUz6010pS4H/fR+YRp8izLzDyt1GaFpkth3MeGXmxObLuwribBeLCPa82kkKiDbJHmid7M8HUcB0/nJ56fn0dR3FlCIped0iu1FqbZm4FpuJHDlCj3DBSi64hiDFyFWqz4EPEcxwEqLJO3+N8xJrrfC4gVTzICUlQdpUCr9vXXPsxMgw3bmyJSLeBikEaWebZxrPejo6XE5KnVuoEBR3NKVkWGnGVvnaoHQaFtHX8L9DmR/EyvyuW2jw52oPkOPkCFrVssdySQpkivNjIstTLFGW3GDZ6mBVByPhA1HV0f3U13NJKzEXNtDa9CL5WSK/t1o2VlSTPRiW0yNbBvu5EjmhJRehAr5oa0YV2e2LNJaEyrbSEaEoTuwUX/YfAqtdhYr1lcdkxCPg5SiERv4984WVyvxZqb8aK0TuuNrZhu23vrSoUYR5y6FXlCoPcCdchegqfURoxxoAS9deebIYS8eCsuhg4Ubx2VGBN534wh7ifOT2eubxdqNcwd4i0cpXWca8YcLaY55iH7wKYOt+sdVOnV1rQ4S9Zq1TogwXtcsJASRHBBTBYlgnfOEIf5wMUEdOK6EkPner2TUqLVPDqpVnl4Pwg3EjBinowAID72BcWoOIglNKKN4NO4VNSPiYlzEJJ1s80i5VD1/1971v+vrw6m/2PA/mEcpILr0Pyjm2XxAM5OOLw6VEZBPWQTZiwCr8V624MiYnCZIeMQ6yGaYW/QZrCPKao0hEOE6MSekZhI00Lcd3y4os6xRZOY7R/TrwnWEync2PcrV1Xe7hu/3W/89fWNT+cz53XBhUBToToHLtCLmYAdjr20j9TF5CLEQJCJ3p09I71DF46uHLfMNCdyM9lROxpLCNxrQTyctXFVo4S3PlPqQUqm/ExY4elU8d0mTy5GHki/ng9EjIzSvEUPc3riyBltleI8zVuoCX4CNTawd2GwyI0PPAVv+n8yrjsCQnLG8DU/wChqhklUteIwWZKLnv8Pe/+2JEl2ZGfCn+6TmbtHRGYV0OjmcEgZivzv/0YjMkMh2U0AVZUZEe5mtg+q/4Vu8wRvB7hoKWFAIKjuyoyDh9veeljrW9qdNBKDkIKfQ+kCRY0l4M8Did4da5kBtHkmxOXmRINjAwm0kWgmfL1eeVkXPrZPTDyGPqXg4SZEIidTOz9laY4gFFJZSNJpAqtFGMZSLhzaGSJgjVSSe1DMiFkYww1mS4QmmRIhpZU4BK072iu9K3UadPfdU/K6wmO7gwqfx2A76gwEMTpG0Mhy+crL1z/RR2ffN0xgLeukQ2XSHE6EqcE1m64B8QHCs8k0iPgUXM1JDzqfOB98neIGJgTgDPXxQCJTfTatHtpzyiV8beMyML/755IQIWASZmE+R9gmMLXAgjKmLOlUcbnUOU59sN9Js4UmmE45hosmmMZFwfAwl86pc/Yp9tyCPIVX8wyY37crRWRKu34/H7+7Ahn8IOjdM90l+pveiSu+1p7P8TO0Q+aK4IRnMyeSMfglGEJAoiEWf4jm50ohpTDXxDLTs5RlWTmO5gDx6OQGR2Q50q315izbMTzJz/x7Gdo8IS8oISjbVkkp0fvhD7R5Kp3EwBiNGIT7fWe9Xnj/9kFZCi/XK4+PT3KK7I+d28vKkiJ1G08GakqR1jq1bsQglLCwH8q+OT1AxFdBPv0MTwe6mlFrZ2gk58zt9cb//PWvvvJRwyzODr8Tkxe6ZSn01hl9mgoAhseNPlTJ2Y1bXWa6lJ5TOHlSRtTO5EIPUGlhUEIgSEbV161HNkQiOfpEJS0Z087ofnSNGQIyQzrnwyyEkumTqkENhDQmVsx/profaGvoaJjBGB5Mcuw7ZkY/dsevdSWhrFGIy+Lc6RTJCLX72iqmyKMPLq83d0NLoA2hBy9Eba69e2/zAGVKgU79KlyWFW2dMXk7Ycpamrk04zgaXY2hRlelG+yjsg2ljunkNvViJnhhO8wQWehNHV9mnRjDXGMejKZYESz6BXx/3yglkSNU0Yky85V4yp7qFYMgKZLy4pzp3igpMxY4hjJ65Vqu6FBinFqBv7mMWuswFFHHFjb1gkd0UGKedAp5TnglBE+AHJ1WG9frjftjIyUPbjmOzaf289K73a7s2x2z6CbM3kDch6DmZpo+/PkO8XytpqZ0DI9CVtezx/m7ibOKzilj6hIZj8t2Jq0X4n//DWLiWkN/G9sPrJSccbX+NRRmyMBp5PHnqUvyC3LqBaP45MmnyF5wykzLOhmvKpPjLAEZfkY2vJjo8+w03L+AOJYyrZDGznUUsOHGwniQtFNCJJdC+RKpR+Xz48EDQ7vyaY3GnXtr3tRmZ5vnlBm10hVi8tfURJAQicmlXyVn+gj0/XAEJ1By4TEqre/0YdyrERMctdIQXl4XHq1S+5jM6o297VS9cAsePV1yR9Qo+MbvGC43UBGi2EyYjMhyodZJpghwNMiSEfNnXaRjEggpPhnhS4jEHMkGJQeCLD7ZnEXVJQr3ONiOh/ODJc5iprssySARp0xDfNMSIksIpBQJKDcJ5CUTciLQ0KZYC6zZf28NIGasficAIxgpwGtO/LysHPsnHceTxjAnnnHy6gmzgJoFZhDSTHTMkknJSMBIbnYPA3T45uiczC7Bz5ZQEhYCAyH0iuZACINhA62TZINhIbMdG7VVjnbAcCP71gaPrfHr46Cpkiyymc9Jfn65crv5mXNJmaFGyglkxivLNM3NoA5XHwTfRsLcxrh3wwuKMHGQXkyrzS3enLPaLDZ9wxOQoJh2ooS5F/NC1TnHU17HLFrP830a8kxkTphd78ycIgeCP9saZpk+J9iW4Ck6rrORDgRcPnbqqU8EnCeUzkJYhssvXFjl2xFODOuUdzFw8nF4om45p9m/o4/fXYEsMwWn2FzOTkKDRH/zDPVpLPAslnSASKQ3nROShHO2XRck8/JozfXLvQ9q3ck5UZtS8oJ1hQJnQhfmqw5TiCHy8vJCrY422x4Prq83ShDurXtS12mCUeWXX77x01dhDFz6odNpKsL+eFDKQu+d47FhJmz3gxCE9XLhvj3crBEEqzuLrOzf3rHaCCWyLpn7+ye9+oEm2fnLvXdyyk6nMGHomK+HFytCmXzjiDWja+PPv/yZNjpCdkOZeQFSluRrIgCUEGdYxVAvbJMzV4e5RtvwZz9LYoxZSGgnJj9wxxgeHdo67ahclkjTSsmB1ipZiuPQAuQlMFrzSay4oWTbDyCgR6DHxHE22aMR8NU7kkEKDNdjLUTu2x1tjTYGrVc3bEnwy0WV1isSjLJm9HGQckDCQBDiupJiYl2Ho8NS5OvrFz7uOxSfmO/HYJPB51aJMcyYY5f+bNvmRqzhF2oqzuVOIaDBJbGC0zp0DOoM+hjdAfIKkDP70RghUqtzkTOZNjqpJHIKmHXaPjD6UxYTgpJypI+dKJWX65WSIUVjXdPfBLoY6KCHTN8qL29vtD5mKEvlUq70ftBqc+RZgKMrQxK5RE+DVMOazubNzTUxZ6JMo2QUCHk2tC5tiaNxe3nhs3Z0ckFTjJPZnNGhbFtn2yq3WwICSRJa9YmMMxvE7KtZMW9iuzmTOUmel7TOJsULkpSyN2ESSDqmDtMmamk21CF4mEbwZjGKvy8No9VBm1z2v+uMw6ZbPc7m3kOCnvMmPyqI6FM/HPQMKfFpkeurxV9Xcz2RWvLpOAY41UEDU6phJGROUH2qPEL0w3MWFYagMqhAFiEvC9lujNFImiAHQs+MenDOuCPKTy8Xvn954WiN7eHJg+2o1OAFQdPDJ1ti8/V1HX5TLx6CQMhCSAsx+ftbRSlpYWtG0wMdnaZQET4eD15eIp1IFNDj4GNOCF/mcGNvjderv35L9K+1WqRzTF3vIGe/F7p5wR6GGxdDMJYYKWSyKT0E+tFJi+ujY1xQbZSQUQbXBIRAVKNIxmRg0RCdBTXGmlzfXVWJehKWvHDJIc3IYSGZN94hCjk50jSHzCqJa1pZY0ZHReIgZGgqhHVB6oY054XHvHLN31ljoJQbP3/5mW1U3rcHCX8eBKFPuZOY872H+YZTZwT9EiNRImMoS840HdjQueEdZMmYTdpODE+z3pj3IfgzqNOU3gxGiui203V4jHY1T8qrd4TAve5stTpJqbue2ZuYyOXljRQT3cwlNfimSSTM1/OMXR7P7Uyf09yAzFANCOZEnegqbm8WtM0NixfO3rCewLTJIddZgzCDRTDCCVUzx1ee02OnygBzcmycBTCcEfE+IBDH6Jn6nTsnKxI6EN04qKA2N15TtuGP3wmq8/S9iA+HxKZUZL6/wJXFNs8eU3wLKM7fCKHj2Lk52f4dffzuCmQIz5ANnhII1zKew98fa3//MylP7rEIEuMzZSvEMP+ePR8gkUDO3kkzkUopx1lY+ESuNUcSxZjIMbMuq7vwx+C3375xvztpIi8LIe58+fqV0T3jvrXA68uLc2Axajsoa+EMOHncN66XqweBLAsvpfDx8UkpCykmYgy83b7wy1//yvX64gY8wuzwhKM2n4D1jtHpj+EIsd6nJGOgOmYEtvD29sa3376zbw3D19sxL3x8fjDEX7eAh3sQPDLZzNm2zq59EENCg3nnrK7vbD6EIqdEw9zEY7PvNiPFU9PtDGXTzr4flOCZ9reXizcMR/VGZSirhKkPdu6nmiI4DUFRdq3QPZlr9M5LzghunMvRGZCt+3G2VddQ0jsdIy8zxU3FV9ASyXFOMQUsZtg8gEWG6xNLKRy9cXu5+rQxJ9aSiMviMoiY6buvfmkHZDjUl/FrCc6gPCDGTImRHgIlJ7bjoGlDoq+8JAVG64yju5bMhI5wNE+Oagq1KVBABiUXpz4EQUdwzToDhhFioGt3aFyKpLKSk+sBHfVWGW14jseaUW3oLPrOcFXV/kz28+ZzTlCJ6OjEHJCTTcQMApnSJ+AZ5FP3jVwSOjx6Nmff/ph4YTtORrQqfWrj1cn5jNkwYP78p+JNx1BBBFQ7y7JOms35npsTGjXHHqZMHcMjjMfw4CA72z4jpOBTmIlQ88AVI0QYbZDClLAw5sbA/iHXh+KSn2iCTHj//Mq+IXpqG51dHFyGzpmaF3U2rzIdVvNiFZ8m+DR5hnTYPEUTvn51woX/3kT92jzprT/uXWe0qmTy8spozX8fJNZLpPUD7Qq90dqOReHLyyvtGPwyvrEdzuXd985QIccwi/tACJnWBnsbbL0zzJv13tyEndLgYpFBoqvR952jD0R8S9U0IDljEp7P4Pf9MTdnxh7UZTBivG+V20y8lOlHycvCMZQlDLpN2kswrCcYcL3eqEMw6d6urK+0XlkyyJrpxyCngEgmhwxhJeEa/xh8so0Jo8/mTQdmPk1ecuLYN/+8onTzgqef56Xz+eb02I3WIURKMBLqZkBVj+F+/QO6XtBtY9EVqTMS+7ogj+5bz5C4XF542Tb+8PKVYU61iKn4dLUNGt3jkvGgiThlNkTXZUs08tzgBoJv7iwSk5J6R4dvAAiBPpuyhNIVn+yaElRQ86jpo3XnMA/Y2u6+oWFUHYh6wMwwx1K61la5GCzLhbJciCJIMkZwQtVpmZXTzIbOKalPZsXafAYm2nUWyYaHjEH3xnC2lYLMwnNOfXEZksiYCzKbz1d4Nj+iU5ri7cCUPfw4H8/59WlcNnVDnX9vkzYhpwTHnj9PFPfgdImYebqeyPBnc3KZFZtSD3viP6OMaQT0uJCT5GX4+82hdA41kHkXOkWo879Nev/OP0bvbLsbmcIU1bfukcs552dE8xkY0rt3WpyYlOkulWmACTMxpnd3hIbga5UUYYw2w0Q8rrTW4ynBsGmAeXt7Y12X+f+DVqtPd4fx+fFJLJmjVQKB2gbX2w1ToeTMx34nRMWCxzsDrOviprtupJBm4Iayrguf90/WkrEY0RC45IJYdYNGjN6FqxcS47GRsvBye+HXXz8oZeVx3zmaslwvfE0LQQZjnDIJaKpc1gvvn5sXjblgNteE64XPe2P0wbIGhp5phjI1T8YYHnISQvSL3bzgIk4Nt7hhhXmwYTh1QF0L3FQ9/vRj475vLEvij1+/MoZ3+D0okQsaoayJXue0a/69rhO5VX1VphrJkwzRqCSDEBZ6M1KK9Bq53FY0eJcdl3XqyyAYjBkqMbRiKTo6att8aqJ+0BWJ5LLg+rSEXZyxq6ZsfbAalH2H5FrQpt5kLSn59C4F2uGGmiiG9kaKU1urg1qZhmmXGHRtk9ThjuWuxtHw6Y6Yc5wFgij7fniqlwk5C9W6u/Xxyc+6LE+KxUlj8GhV18J4VLNMMyx+4SgupyjFNYDE+cwFenMTrA43czIGMSdi8MZuTIJMydmnmpMzrKYe/GD+7EoQhg0GA5FEWRfsAJ0x6KMfTlYB32yM4RSTIKQs1NrAXDvsvPQ2TUDFC+o4MXqt+wZDzwIXYnKDUce5swHxNaqdHHRzc+M06RI8MdJMCVGQv3+APC/cyRKfK95oz7mV/5lpIrMoPtmyaS4Up0kwaRXgoSGe13Vemo7l8Emxa42H+dIVUQb+8zAv+jDNSkOShwO5gJM6nNdrecFkY3SPI06yYtGgLIhdIKx0LWyH8rE/UGB0Y4zOsXV6dozmuc4OwSUjdSgWAjFHLLo+c7SOpMKFQquVzzn9C/E68ZAw1M9fuvPRVRXR6uemGqM+QAIaAu+tsZTAdVmoKdK23WUli7BYIAdDRiUmyMv6fD67KUlWUhSSVWzNWPPwjhwyxALD319hdFKMfu8Ml+RAIMSAaCKqod0DMLJE6jTz1mFPCkxM0cOCxAvUHIIHoRisIZIY89yIpPIF6Z2EwHIDUzRmJL2R9p2t/0ZMiUsu3IpwX668jcbeuyPm5sAhpUSrA7WBqcsMA46vExMselEn4jrlFN1PUhSiKhINixNZFwPFIkOMNtxwqToI1vzeNajVuffBDDVxjbdNg3bK/Pb+nTH8HPPadSARBoOwLoS8uhwhzJLWvJi2OUE+W0h/SH3L57rfydv2rnI2l34emngMuyuy7alL947Ui2Y39fpk1v+1znoj+iR6ItiwTiRxznWZwx3m837uZCPDzXUiUxUiT8qG/+dEefqU14taZsrfmHM9D39BJv3c8Pf8PMN8qDYQtfk5PDLda34vpJ2SE59cZZWpZ/4dffzuCuQ+OiUkBqDBEOtTw+kTzRhmsh5+2cHUD6lf9iGIr1snvSJMI5zO8BGJQu2z6MzRD52p9XI8nMdUiwi32411LT75MseBeUKXr1WCeHxtrQ9eX14JIT5jrHVqmnrrxCRzenxndJ+sLOsVG41eXTc32k4bjZIT++HUBpeNDCwpj7qRUuSSXSetXUlLcU1tTNOYZORorClwtINhvhYew+H0hEB9bM6aDS7cNlHGCNT+8KRA8cNhKRdaP/yXMuZaTsYPykj1wjfH5DQQPIK0tZ11XXwqaY4XGsP1fSbGtu/EaIzqF/3HdqceEUS5rW6Mui6JsQ3fJHTBRnrGYN8/d15enHYQUPbjIAXH95QM236fjEtPIGy9UpaVlFeCRkYd5Mnh3Xv0RiyceffGPiqXZUVIJEn0rRGT0KwiITm5RJUlXwgR1Ha2fGdZArU2luzoItXAkEDoiYgSU2Ix9ZVmSjR13qYjBrsfneE0z/hB3LWjBLbe6f2MLXd9fokeeGEG3QZUUJVngbqUBWzw8nI5z+ipjzaUQUI4jkZKMlMH/WhMUdi7utZ5uLkoRTflVfNABjkZzeLFdR2urw/iz0ionYjHD/tUyj9/TNE5ssGLiZTnCnkGAO2PBwGj5ODuddWZPujmO5FEGx6dHYObcNflwr4HdDTG8ClyEGh9zEvLJyvdBjlEhEEddU5chvOacf17nLHCIeTJYVdiLLgW2RvTHP7+C2TOCZ9rWl8ND3ROd8NJHBBfvc/F6FQc25RUzIFU8ELaJ2POR/U/Jc+Jt0+OZ+MPfgEDk5DshfTp9DdzrSWG2HAviHUGxmN7oMdBwJGPqWRKuZLKC1IKj7px21/IudOHsm13L2q7USca02ZgQ0C418b9qPzTyys5JVLw79NUGc1xVmM0ikCzholRh09S21zb11a9CQPGgL05KlBCZwyXjZAysZpTS/rBuixQA00GqVwdwdgHKjsjZ3K+EEckRNdzr8uLm6CXQCg3GK4Z1miElEDznNErhOAMYjxtb5hQQiZu24SrGK1XBoWcZlEUvBjrNlhioORAFFhKwlojB+ESV0oIpFBYCIzHJ/qxkt9+pgMaC0Eb4/FOKoXjfiemxDV1Xi8LdSxcjpVtVCx5OagIJRT2x0aKQgnRFT4zqTJKQGLyIA0UImT1GIpAoOP6X836BKpgHQuJGIymnRiF46gocGwbGhNiwn2vaBe6mfOcMfYhtONga9WLQnMGT0iBcrlM+o8xzKeuKlNmyEmVYtYDYDKcQkJ8bkVNdD5zZ8F5vu+9kFabHPL5eUSUMx0Wm0OGv3mufBI8tzTi+nE3MZ9PumKWXWhifUorgktw5ox5iN+RYeLhns+qOREkTG24ndPnSdmxOfcO6kFMcj7J5v87ZoOtp8Z87gf9c/l2lhCez73/wAnjHzAB+Hf08bsrkNPUPemcQjpP19e9IQRiKmz3jaW4/hL8AtazMB2+Pj5pFl6szGmUNsjiGqrRWVKZhd+PpL7eXX94uVy5XFbHStXDJUMmT6MewLrc6H33tYh5NPNRKyElHvd3hEApK7lEj9u8XHn//kGrjeV6cfyXehLe/nhw+/mLkzskTIdOoKtr07Z28E9vfyCM9mS7xpBJKWL24HotpAjHIYy2E4KvUsJa+P7XX10OEgJ0JcSOjanXDp6MdD7Tl7XQVTmGX2hnU/HMgRejD4/89c44um5U5xo2e5EdIo5zQ9B6uOZyKE2b68onFggie6vYp6Jj8fXkWFhT4LouXJYL277RW6OUld68WKztQC5+LUVJ1FrZ4wHRwexjdLQPluTIs7VEh+8HQeuAJZFinoD27Prca+H19hMvtzdvElKkPnZa3fn1+y++XkzKrRSEhdA68SUSguvw1IzPfaP2xv1+MEb0wioLtbe5YfPAgq0d5FTQ4UWISPC0uRnhKkT2Nti7RyRLdIamdkXMiDm70TA4wnBMWYhL4WZzdjRicpZyrTqbQG9kLCafeom4Fhdlr74SrrV5eMPU03Uzj66OYaaBzWJYIp3Btm0AvFxfqHvDhpCCh9e4cUrIMXPyPyUlb6DmtDblwlJWp4lsGyEYEnFzjTYwI5dATIGt2Yx8PjWc/rz7Az6cnR5cm2tzIvk096nRxSdmEdckBwkctZKKI51EfKIcxV/vY98JKc1mRJH0Dzhy50p7iM6Jk7h8ydwzIPO+Gnh0r096vMtRc/JfNNdaqsX5/3PYf8QLTAun+Qq8qJ40jInbCrMg8IvTI9PnLtpNaOL/h5N9jBx9Lfvx8cloRiqF9Xrh7TU6+vD6yuX6yk9vla12CMKxX3k8dtpRaa3SepvTc9wb0ZtPL6kEIiV6tPixHxj+WpcY0FB43w++PX4jlAuMQcNNo8dRWXOhaicvK8c4iDqRajG4SXr4FJIQiDn7ezL4AALtdBFKXnx21we5VXJakdCJ8cURl3jzZ9GnfYWABCc/dO0QEyUIRN8uxQyxKR0Y5oE16KBqR33aw96MQOW6LgTwQKbRKSEjEUosSEgskljzgohznyUU4tsfkLefaEcllEyyTqsH4fqKPb6x5ER9Xbio8UXhaJXPa6PeB4fOWm00tsc+N6zdiTaCs6ODa/XPhi1F57kHyYTsPoGEoeJWsGELozaygM7J+tZd5thFuG+bk6lwM9/RdoZ63kEk8bnv1NYZCnVSPzy4A0DI64UQZ1LkSWeZU+JzMuvlNM+prdGZglvn/pqnyOl8Hsx8Yu40C3vKNM428km2sL+N3QFvLF0vLgM0BOIYc/sjU8KRpgHSZoHuCa5ymnCDG+SCne3vlH3h7x/wYI/TnKe41jrYNIMzaSM2ZSNTKybmzYCj22B+lSnlkOfrZIjnALiYxFseOV/v38/H765APuOeDSGmH7HSIfib7zRMnauCoT7xSCm4dlK7p8yYuTls/m+aa/FRO2N4WlZHKHEhhIXR2zO9r02O8rY9WC8rKWc+H5+ukQseNa1jENdEc7EV4Glk598HL87zUogh0Y7qjlv8sr+svtIXWzE92PY2n7/Beo18/20jl4X3j0ZKK0kSa86OCgv5OR03Uy6Xgirc77trpYH9qFMf5tPrkhbUhHE8XG6igemtoB6u7Uwx+sQIL5l9Wu/rr+3+yVImEs5/Uy6rIFLbASjocLyZKTk5f7ekBGWdtAK/6J/x1XS2oxPwteS38SCVhXwMsgmW/XcXoxGjotaprVJr8jSovSI5+A+RAlU7l5J8XRgSEjutN3JyakWKC5eLF9nO7/U1d4kriQUdSk6Fkm+0fjzd7FECX95sFmqdZV3pw7xYV08o7No4WiWHyL3uoHDsSouOZjtXp0nw7yU5R7Vr955dHUOlw2hdeByNJq7DzPmkKPg0vpSCqXOSY0pOK5lT2RCFnCOlRHo3evdgkBgnmD4mejtYlpVe9/lcpSlRCFOTfaA47QPziZLpUwMA4pdmCI6JMoPr9TI3EKccaK6KoyBRseFT9fu+c9RAjplhSliiqwAFatsRUepp/GzOyk7JUUdmkPDXrfWGBF9d5uAc12EeLMG8TIThJBR1OVVKvhk4uaytKzqxkr17AmQOHmU8dG4w6FOzPdGQp1D37/o4Y6L9ukzodCOfMyQ/22CuRe28UI05PPZLVCa3di6JZV7OaVJk5PzDOPkkiPfdKpA4A5Zs4qKmtlsCGtwv4RMxIcRIWQfr9eCxHzy2jUetHK2TJbKmRAqJZbmwXFfCqpTLBbU/MOrg8fHJdv/k6Afa3CMx1FMBWzdqHXQOiLNQLIn90/0UkhbG0YjmxAI1pVkACQwVHyKIR4jLlNR4iI4zkvvRoBht/jzS1VP0ZqrdCJEYFLWKhJURDNPO6dUWlBwKMRZvusTjux2P54SEnBSybw0liRfnx/QE6GDf7uwd9kM5+uDQQLBAGxUw2mPw5RJZcuSyXFGDl3Il4kOGFFzvnMuCxkAPQr9vlFdF1tUbvmHEJdM/d7QOL7VUqcNDU75cb3y0g++PiGilD9j3Qa2DIB1bMhZshmGFuWpPLOIpbkkE1JNNTVyqE8SjwNUMHYGwdHozohSUTkllItACKd/ohxItUG3QxQFjXQNDG/d6MNrU5Jr4XSJGCImUM0u5eTE3dcB+QAzOMB3feHihOftA9LTF2fwnO0M5ZBrUxvwz8SmjgDEnyGGWyrN5ZDawXuK7BEJmQ43rpXWWsuBniH/SMb8vmdIIQy3N1D3lfKV1lvcyGcbOa7dZFBtYnFXGmBsol00FaS4rVfHp/fxcPkl2A28Qty3qPPccHcnkWITnT+oBJP+I8+3fz8fvr0Cezm5DiSk7Zmmu5rBBwJ2z58rYZkel6kVCSv7AnHIJcPNHCPMSMJ5IOAyOo1JSxay6M38opfgUSmQi4GL0gmvi58YYWAGzzhiKmfOLc3T0jE0dmloliFHr7tKMo3HUg5fXGymFZzR2jJE2Ose28/b14tpocWNbSclJDyl5Yl0d3K4LcU5GQgwcRyenK6bZJzWjU9Yr9887YrOouha+ff9EJJBy4tgrKo50S8nXaD7RmTB78SmgqlGPbco6bEoC/ILvrfvlmTOt7fjEKU7kHUjKhOiNQJioLJvfT0quUbt/biBtajzh4/PO+hJZghsTANY1scrC5+c+sXluSiwijOAHjQjsx8ayLD7Ft8DLdSVSPFoWP0SDwKUshBghuK40BZBhDG20erCkSBzmGt85kfTiOXJdViS5Uz2lxL4bSZzokEMCcQRRy/5+3FolTIPnUF9thRDmlMCje2140A3mmw2T4HpicUNl683pLaU4x7jPjQquZwwhTV29OOc0+uTv9fWFGM0NnWYspTgDWW0e88HDaOZE4qiNGII3dTG54VX8vbleVmKI9P0gh0RMyScRw0NByozXlsCTX27i07OI61GR/Az3iTE9MX2td7a+gzC3LdkFBaZISHMViJt1pU5OcaKUxLbd/etnj0A28WJ7dKUNhZD96jHl2JtvLgziDNq4XC7U0RjaGb1R1hnzLOCMUtfM9q7TYLb/A045O+30z+3T6V4HL0AG4VmkhnmxPcNiBUQ8ZTRqdxTlNA/Z1JhGsx/TY68nn7+TZ4YBwXXtwvy6NvWdENTPYnB5VCoXrtdOr53WhG+fH9S98Xg8WJZEXhculwuP7Ua2wfpyJaaVLJnHzx6YM+oB3Z+F1g6ueNyxp5N5zHixhODPyhiNMZTaH07gEWFI5GiNlFdEnEkbkxDz4jIpm7O+EGdIVKCbsLVKCgXRwXW9oLOgDMENcqZe+qQYGKGwBCOkQg5CSZEjZOJokAoMJUf7oYGNETFlhOzzOO2EqNDcA3Ko8tkbj3bwbdvpNtF2kn2L0huRO9cSiMsyv6cAw+kSa1oJQ8mygiTKEr3ZO6oTEpqiMcHnb3DsSFkY/U6RRLst9Iey6oWX6xvp/Z3RD7be+djv7NvG5bKiCIhP1QsuH4wA6r8jD9XyVEvCIFp8yhtMAhq7S/FCnGmasJTF0XY58evHt8lvV456+DM+HNH6vt8ZM4glYNjwdM8cZKYUBvJy8d/rJEsxPRU2ZUHYjP0wV9SrGOFEJOrwmsErDH/+zItHEz8PmHrkKTj6UYTPJ8XMXDJnXjr7l5xzWU1YUN/22DTJzULZZQ5OdXLTXABx6pBomrKQqfuY39spDfMQL4Gnplm9GD4lFzh+bna2/vrISZHy34E+ZSXRayXwybvMwti8ERGbLXb4+znv/54+fncFsqmhwVcz2j0dLaTg8bujwzjcdOJZB75K7snfsFM8tCxxcmedkhAkze5TMdxhHYIwRGFUulVH/Dx8tcdlIcZZiKtR7wf1qKxxdY0Rikllr0rvxwwFGU5pKIV2PDwQpKyIwNF2rCrbtrGs2affk9G73Q8e7zsBJdhO6G40uqTEqBWZEHLRqTMUj3btQznqnf/8x//E+/1Op3P7spKPxOf7Rjzh5mbU46BdOnV0VBI6neU2Gpd1pXdHweW4eOfugEWsjxlHOhMMTciSCEnIITC6X/S9eed5Mn3XdZ2arc7ontoXY8RqgzDYx0bvwmVdSSWgI7EdSlkSvQr3e6dtnWPvXC+Jl7eFIkIu/jVjiL66JNB2j918fb26Lm4YKRW2+50sStbB9bZiVBKNGC5PlJfqIMXsetmgtHGAKdv2OfWP85ATny4MDTQ1SoJlKbR6EEX8ohuNFAZWAn1EYnWEUERmKmSl1Y6kxBo8dW+Ia8R861BJMaLSGQgPJ/8g43ia5MbWyNEbONXhSWdlZahPKlQgDZcirGtx2clevdhMkTo2YkgsKVNiQmUwzI0zaspLyagI3eA6DVu1e6y4z4oDOa1obYToCLcYgoeczOakqUe0I8Yz8jhEliVPwoqSSkGDPJvUs5kddoYoKCEuEI+JYwpISqScCL16iqQ1ZMzmeCKLbDYCI/mEOxI8gjYvSG1TFuI8cEdX/OCox5R86jIUycn1o6r+85UFVdfj55z/7jNuAF3cmHfGwCrTUY7PiMIplaDTxTX+gYjoTASba9URAJQuzlGOiCcDikyZFYi6pn2IG3fOQiBIIE7NpIWpUhRfQydxadswm2mjmcv1BaaRc0wpTu2Vj8fOLQhlSby8faHWjZwXlnVhLZmbXDnaG6PN83YMRqusepDLwmVdWaKwBCElYVch3hb6d8cwhhixMAg5sR+e+BjoqHogUcA3KhYzYKRY5sDCL/t1/s6P3v056IPFAmVOMVfDC7AQXY+fk08sJXncYAiEHEghzZ1TAK2ImiuPJaIa3czXI0iktp37vqH5yv7YuG8PtjYwSYDLj9Lik1JD2erO/Sh8vV0d96iwSIChLJcFiY6STMsF7RkNzpmnK8E6kBDJpLyyP35DB8R0JbZBTg3VRErCui58b3f/HQxlaKd338Tu7WDowmN30lKaaMZCxiXINk1hCQtphklFwjBiyowRIR5kBNHwYzMBbrIdHm7hJBohB/jYNoYp9+oI1tbqDAHrdAKJAEEIS+YEp+ksPxGXTcmUSyB+aOpTYjElFeKG56DGyb04p7Am0Td44k29TMzFKdF0HbLrdF2LLdMaexIxApFGmN+DN7JT9Ss8pSAiQp+SlSjg9OJAkDF5xqdpEB8GEmbDzOyIdQ4JpwbaTnDb/PMS5uszhx7PggqQiFmcHodJBsPNvCbna3nKOv63Se/f9YeZO7DDnA63btCNNvxhdB2ezQmvECZ0/dyJnZIMN+7BWq7sx0bOCcORMo6J88nQSZdwk5ETAc4AkjE7Lo+2No4Z7buuHo4RRLhcLv7vDi+Ue/dpaAyRnCO9VWII1NF5eX3x73kaOUJIjL45QkaV62Vxg87wnz9MBJ0S6IdPzkoufH5+UmtD1di3nevl5tPMsFOK8fh0I57OVDAzobbmB00MJJvxw9NgEKJr7D4ngmhMg52I+FqzN3+o4sTNIXz98oXPz0/u981T3HKkzIMtzJUn5q730ZUcEirmyW7BlzqtNaJ4ClspmWOrfFffA19LodsDS1fG3cjJV01DcEJJNzZrLpnQOQ9LmTgn/tfgcaaYkNcF+nBNmNr8/QTvntV8iqVKKZneKibmTdTU/QoBmzQEzKfJntQV3egz+cJbqyCRYIGj3em9oyYsy4U6jJ48fc45xK7jtTGboJhp5ivHR+20DiGaY+fmdGEMJYUZ5IJr7v21ngd6OIsZYdsfBEmuJy6rT42jTKOL0IbLGPy1nNOVmYCn6peKzNeKOWUZY9IouhfUHgdtlJyIEXqrU/vrIHwJOqUYCe3Gul7IQ9lbQ1HKdXXT4lE9WEQC9w9/Dy6XZW4jvGHz97OnAm7bA3DG+Gj+ep7/jTP6GoGYEzYMHYOl5Imze4KhZgEfZkiJgFwwVWodLsExb6r3fceAFJ0m/PefcZxDrJmsNaZCMM31KD49lzArYUdwaeg/fAB48FEPP4x9ycyDPqb+WvwX/GMuZYYFcXnFvE59+zI9CKcjXoQmkMxxVGpTl1oWLq+v/okDvH96o95Go/XC7bLw+hq47zOtMHly47JcCcG9AK160zO0k/tGKk4kESI9ANbow5Ds0faPfWNutLHh79NeD8LihqechD4O5j6ZGFxyFyW4aTtGFgRLPpkuqfhztDoyMV9eSRhRgGDEkhxF2UFKIofhzS+dbr6CD5ZQwhNHmUKkMXFxQ9DmRjjL8H7/hgzjQPjt/kDSgtrgy+2VFCDEgo2D2l27bRo50ZaYv4elJEelRWMMSJeVZBDXiKVIINJ7RTPovhOtQpKnJ6RuFRtKFuOSCmaBEjMpePHZtaLqAVY6zLej0qkmZAmoOeufs4ESodnwYCgbjBnCk1BiELoKpOzDLg0M/HkK5omvJSVabTTzOyDFwrCdYEIdvpHLeabHKUhM5OSNqU2F78k5PqUWgt/3Oh8wnc/YmLKiONS3d1MKcXK/nYbjSLgwt2l+m3TO5MwfsMTTnOfnXg/JNfXqZzWzWHeTa3rSMTgn1MHxje4eFC/mw5R9PGfXrlkOMOuRMX/a81ib+pEpB9Hp6/CJ84l/9DVRN/8cOnF7EfNN0jQeOucZTnK6a5j/t0nv3/3H33KQvTBgRmKC5ciSvJhiGMskEtiZgnMyklXJpTCaUcr5Zzz2+dQN9a60pqxL9AfJ3SMIwdP02s4ZVxlCmJrP6JQG02exu207b2+vHMfO4/Egl8Tb6xfu90+WpdB1kIvzlB/3B5ICx0R07Z+f5DDcEZ4XSins28G63Kj1IOeF1l3Gsa5Xgnh07rE1HvvG/b7z5cvbXFlnHtsHL6+Z79/ufiiVSK3+QJoaw5zu4Xgzn/x6kId3qx4m4lISOU1LTE1m8gmPIfz6258Zww1zEEmhPCduy7rOdDrvaIO4K/5yWUkj06qvVY+jUvdOTAnrfvS1CO9Ho2KkplgJNE1c1kgfA4mF+76xtYbUOVVJwvvHB7frlYf6ag8dfngz2Fsnm4BEVP3GH3IAPjkZMU4KQscYIM5lPo1ZY8ojsiVvXqJRe+cw5xZ33VGUvfU5WRFS9GI758RR/dAZw6dvnNrOYA6EFyOEC7V7zOqjOdpOghero7te0mbgjM2pnidDenG8rCshKDniTYoFhvk019SQ5HpiVaUHYUmR0Q4kFCQaIdjz9y8p8Pm4sywLJxpxXS8crVJtQHIt8VV1fv/+rI5u5Lj4NkTMGcqcZr5GxxzlZaBmpPnMmXp6mP/Wp/RjCCUWNHqsMvO9WGsjxeyBBTpd96reyJ14pOD0mJKXacJUN7vMab3OS8dTDpVLXrAx6MOIqRCt01qf7F7hjKBXVVr/BwSFTJZ4n+Yd14Gf0zbXfKrrwBBL/j44sVLnSjgkkgWfHs5BU4eJvPKrNgYv8sc03MX5debS2Cdhcvo5pvFvIqGckCFMx7NfvSFSykp6S8S8sqyfbr7qHVGXZOXkVJtWmxdVwSOqS/b33JEXWvO44WARQnefhGTMIns1RnPtuM5GNoQMNA94iYEQkxfR4omZe63TzxGRKQkqpWDxNNFVQhckCzKj1337vfqtkgo5ZSQa2gOWPOwmxO7c5dFZTKlhheFUIp1EGxVDhqfzDVU34+Lv6b1Ftjb4vn96MzRgLQsvtxtfLxdkdMIwSv7CZ/2cBY4X4GlqAUOKjO3O5eUnyAW5vRKGEtfIsSlxrZATbJ2YFzQsWLiR9ADrqHrxlMuV3JWl7LxeXvlTKYQo3I86t7BQj8aeD9KRuIbohsDoU1aaEooQ+5QdxYwNpskXngSGmL0YkxnjjlCbPzMxuF9lAEM7n3slhOiSOGCvB8MGRSAQvUgMOFUkXXwbYvpjMzULRZPgaMazuTxlCv6PLhsMLi1QFYJ5cI1ZmqfNRKfNJkvN6CFO+QTPza2HdfhwwykbP/TFY2qExQZRbdJlnJwx42Wde47O7dXwTzzEJVAYGgSeUfbqumE7i/Xo0gjG1Dn70M59Ah4yorMhxorrxnGzt5933tD46zMxdeavs4mCTnO9PF+538XH765ADhO3NkcCU294xsT6+vCojinLwWN9TzzRWVjHudIIKJ3+NP6llBijIPgELE9k2lGdh9sniHu0Rj085W3bttlVKim6/rPWSin5SccopThhwDovr1dSmolswU1Y63JhWRd+++uv2DAe3+98/fLG57YzaqWUyGjNQ62Afd/dYR/DnOa6m32M5t2guA5rNOXj45O3L680bVxfLjyOT24vr/z5z39laEAGhFSofUoGUpyTY/NY194JScn5wuj+QLcZ+rFM9/8Yvhp3rE1CtbtWdk44VP1yMOtuMmuNFIy+Hag6XcO0sSw33q6LY7nUJ3JtEhxU/SBrA7QpyOCyJHpXeuyoOaHEzCOFc3SmY2uVy+WNNg4e+8bPX36mj0aK4hO5blhISEhUNbLVaVibKy3rdHH+ta8dhxtuVDlqRYJHdte6Q159equzWcqRtjdiyv4+jMFpFmNOAqzTWnOmb5jbieGBIyF4YEhtMDTTzfmu3SL78aAppDQ3ITZxYwYpJjdmzEXj6JWQHOkWcKlA35tr+tRjbCMKY04rzCcafXRPmuvV8Wg5ct92lqVQm0uKUk4sJbFtOzFloirb/Q7DF4RjDIJ5QEGrTn95PB6knAmi5Ly6fnduYo7eXMsY/YL0C83Z0DqG65lTJkh0PXxM5OwBHsCzSFYdnBzk4EoPWnUyi87wjBCEbb+7mTWGJz8950yMTImNT+M/eyPnRCn++639cJ14MDfLDD87VHVqx/++DzUPJsCcSGLqjUKYU1+bhbkxaYzzNDRm9LTonPTMFDocsyXTiKnolEi4NMpHT473O1nLIoEhjhnTafA0GT7pEne+O/6Np7kvqnnBm4Tb9YVlWbgdB8e+O25SfOsiYUpUbAbT9OYEFRFvLI+dvh+EXqlviXhNnn02n5umShGnPnTGbKoMteHTxRjns2p0oGR35euUn3hV1Emj++Q44aEWPfBI3gS10d1jcdhkvitBCj0qZRbkol5ohOS0hBC9WNfhy2gRIEaGHegoeFyzcbTGse+0fnjEuUXeH3cM5fV24U9fv3IJEbGKNSe8LKs3Qjm7Tj8xk9fMI7H9R6rk/Y6tf6ATiGuCw+lBGhR7HEgcqPn7utbNNwtlwaxQ8pXrevAvy0pSv//+/O2d/bhztIOjZ2zM7ICQCDpTKGdDrhIQ7UgUgnoBN8ioVopFWuwICyn4pqy2Skw2U1891XDvjX0MtuPgaP47ONpOIBJpXJYV1HFmVQdJhOt68dAvA2xiTs0TAI0pDJA4SUuGTpO+yxa9rFTz8KWTGOHmO9/wTWufNztzpipTLoGN6XPyZ8af3TngwAt2JLqG1wDR+WzjMogwG1YzAhPJZt5koKfM7IS+ndINYfwNa/lEup1FbJ9kDpH83B6dmz6Zco2Tuhy0T010mEQMex4oU6WMaZoGQ+B/F8j/zj9mGtZ0DnkB0/vEvUGJmUd1aoLF6HG55jrZbhOX1Zqv08XAPLFMggvmUyq09vDO9aiU4tzhUgqXy0JMXhy9f7zz5cvbLMCuLseYvNZ2dHKKrrVFaL3TWnVdaqvEVLhcVmrzwIV1vTkDuSk0I2ig780pDHN3EmNgjMZR4X6/88c//tMs9Iwx3fi9O+bHi+ZADJnv3z44euXL1zf+5V/+hZRXelcuL1/48799R4L6sih6H9prw1qjlEDMhVZ3LtcrUFmWxDBlGPNyMmRW7SFEWuuk2CgleVMA1GNQ1pXRmh8EwdduJbokg5lAZ63z05c31mQca+T+2PAI5kRrg2BC743RDnqP7EegjQTa2TZD7YVWD9bFJ6WtVl/Fr1da9anOUSu/ffzG9XJBZkFpJD4fB7ZEl6uM7g3HlE/4GegHzug6mxrX5o7ePOq0dfbjYJinay0kD42YJIcxZT8xQG0ekfp4bLRa6aNyHJ6I56QILwhJBZXEsEFTaK1zDOF+NDBP3BMRjrr5mmwMgsj8njsle3qVqfq0abhZy2kZwY1MKZNT8EJ7NopxopL6GD65V08YG90gRzeSzEZBzQ1aap3v798mRaC72WuYY5qkcbsU6khedAadhIkI0YvzHMO84HxCpkytcGto704q6AMd0yDGDw3g2RSMPtwgNiq1HSQJbPuD3h05uKTrM7jBZuhHF5mvm5tSDJvNQKH2u38l8QYXM3rbGWYMOjkvboAKwVMxh3ry3j9ggtznzxanPjHMyfGwKRr2q/SpB5zcBMB8giY+9wpyGnHcUOVIZJtBFXMhPHXNMFFyAqfMJIpPydRggubnBf7jngxTcWkhoTj5BxHIhZgWrnllWRdanbHv0YvV3r0I2o6dj7r79keV2vzca8dGClBv/zwbPAg2HLUXAtvR2PbGfjwQywTtBJ3af4OmO0pFiAyd2mFR3Ncr1OoTumGK6JRQpew6f3U9qOET2hBhRIhLJs/pu46IyEbIC55tGJE+vAHWRGKgwRsvdGD68JLL4P3+QR3KPjrfPz44qg8TrrdX/vjzT3wphWyBNaywOG6vWYKgrFEoIbGERK13QkzkJBiVsr6hQH6N/n33jhSwJaH3Qb4Vju/vgCBxFlshkcsNOxpFlCUmtq5c1yspLfyf//Qn/u//8f+CeJDUYzRyhZe1MEwIGkhqrrM2pyKhfp8AdOsUQNVI5tKtIaBjSgimQXqKDZz/rkKdspk2Kkc7iJJYoqPl2vn+k0gfSl6vLkmcpZ/gxrKpXHjyxL2Ti9gkUUwL33zPek3hXpn5POkMaZ6GOIz5/hkE9XPE5Rj+x0U9tMaCD3P874RZ8Lo0yQka/owEHDfo2z6b39fJOT45NriUK5wscyPMVFuPobZ5Bngr4NJOZlCX+mFJBMteFgch6oGqIPRZPM+H2k7k2zTrzmIcZiqgze3U7+jjd1cga+2M7IdUEJc2eNqcP5C1OhonTN2TROdTjj5mkpevUnPMc6oLozXWxTVMMTjHuNbDCwDJfzNNNHIqZITleuE42nzTCG9vN3IOE0GlqLrpSAjONb4kvnx5c9KEVj4+PmaK3QuP7dPxaQKxBKJm9toJqRBLZ325Oq4qe3zm6+srt9uNv/7yF1L0qbkf+o11TTMGeELJcdfqUla+ffvgj3/6D/z3//pf+fLTv/A//u2ODiNfinfzZXWjgjkj0syjVbftQT5lKLoTg38NAZZS0BgZY8zAFZ1JgI0QEktMHHVz+kcSSk68LoU1ZXrww73kRDeltgeZRMIvgmpePFk3jqH0cXgscSjUrnRLtJZJKBYySaC1jZyceyzBL+5UdxZxrm1rxkff6YtPS3vr3C4rMUVChVtcZ3HXOVqdkeBC3Xb26vIYyYk2Gsd9o+qgWefYN66XlZwToUeyOAKpm0d873Vn3zf6UPZHR4Y5Cm4ITY2jHrS52nfNZ2cIWMy02tHZAGp33XhJacqFPHVObMw0MhB8ikUwojgGzfFuaU5KffUss9qUaViN0aUz5zM1xuB6faWExP1+Z12uT32bmfr7IgfWdfWgnbSQksdrIwLpnFi4Vj5KhGM2ShPyH0XcLBWgqUs8/GczskDDJ5ZV+3Nau7ed3galLEheEDO2o7rsJDLjwh2QJMHpGypt8kyVGH3zceIYFSA5eaPV5itlUTcEmaf9pTALFR3oGBxHBUk0lBQTl5SfK/2/+4zDn+czGgDixLy53hfV+bN5Ec10mPsVO6dbgXn9+0DBebSOq5iQvVlkODP2nFTJ+c/i4QSuRZwaS/FCRoJ/TY/bDXP6FCZdQ7BTxSzBZVwhkJMSJxIOjDAGA+FondaNx7bRDsdQgvs/lsuFUC4IHhBhIaNWfao3ZhORLnOD4HzzYApqlLQgeEE95hI6BDe7LmUhTD2oI0EDkiNDIlcieSiXnFnIiAZCKIxaMXZGWqF3UlzIeoBd0H6gaSHq4RsPXJJlFkADg8yQxujKtjWawF/fv9NCpNngvt85jsYf//AHbimRzLXA/nqJc/NnLPUisOZMHMaSF0Iu6EymHDbpMJ+NcRWsOfc2hUGwQB/Vm4FxYFKQNMAqg4QOlxWEoMTRWHKixML/71/+A//Pv/43xhj0Xl3+tiw0c29DNGUECEsk+kvvxe5EghVT2mxqrG2ksHB0gzDFPJKI5sbjOgYaIkc7aL2RiHwelYGThJKEOT12Y1yOQsoLZbkis0A33GTqzLKz8Ote3CLoZB+fhj6R+NQAg5syXZqAS93AB2xz5mrm9KSBkv7WQAv+nJjLZ9zoOiU28zPbTKgUEYLCmGewTNNdmJtumd9DFGax7IU0uMzCVRDmTf0scP3bH/4sE0BmuJT5Jkjmpmk+yn5PTIyjf5yUDp2T+MCYE2h7xoMqf2Pv+118/O4KZFOltcZSsqOhYKLFBs/Y42kUm3sC+nDcmE8ww8SpTFZrSv7QmU0ag3NaYwjPN5PIj6+bcyClQorJtXVBeDwevLwuhJgIwzXRoyvVGjkXXl/euNwKEoTr9cpjGyzLyv2xPbXUx36wLIUlRf7Hf/83lsvrU6M6MF4uflH05sazx/bJUjwKNKUVVePj45OcF15f3pDx4DgOEKGURF4j6+1CZ+fnf/7Kv/73v5KL8PG5Q4KUFtRckjBGo2THtT32nXVZSKUwmnNyLRnSIYVIb21ixpQ0DS4xRi8UZep6pbObQnA4+jgqOS8zwU5ZlkRYAto30nJjyYU1Ojj9fnSyCD3AUlb2o7oZTuCxdZ+mpsi3zw165euXKyrqxrzekdAY9sGyB15ubwTJjL6T0woW2OsgZ/j1/Z1jLcS3RN0PUg58bnf//YkXBcdR6aNzkSv7vrNtD3ckrwkNxsdxxzaj2eC6rGgUmg6auT6118a2V3pV6r7TuvLYKxWjzchtExj9wDQ5A1QWOkrXwePons6Y3AxTeyeF/JTXxCTo5Amn7PxWn/x0ckz0Maj77pOHMqdbOJHAbzlPsQohu0u8q1/06tMFxzop9WiuO1V4/3xwvVxYBMdjdYVh9NZ43x78/HLx98TEEZoqURIhRVJyZFoUmSFSEYmZJZen87ykyN6cVnO/PwgCKbmxL8XEshREoNZO3Tt1c7OqBeO6LIzeKcWnm6emVqeDPc4JnwTxOPiYWG83mnbaMQkQdaBDCTlTD8c2ykQ8Kj69rq1i3Sf405P/951xs1idYgdOX77M+Fl34s/VrPgqFx1eQMvUZppfuT2cF7BLTXiejDNqem51Ajr1kz5N8/gB+zFhtvnahXOCHJlyebfwuOAUOA1OU3fuc1iIcb4+/gliCKzXKyKJmB2P2FpF5/uxlMLL5Up6uzDi5+wRDBuRoQcxB9I+yOr4xZJcC91mY1DS4sWMNnSG9KhEQvZJWp0ad7TRCRQpGJFjVFJJqLYZ9awoiS5e3MTozUEUR0kah8vBpDN6Jych2qBbBwow6DGyD8WO7iFB20EbyqN29trow6WC17KwSqQYhDGIi3jCpyQindCHJ7yGiKlP+JNFkkKJEemV+PICJRNTx3ZD1Ek4IUxqEQ20gpRJZamIdY+oHt4IokopkNILFuA//dN/4C/f/o2uZ9JnJIgn/mVZ6LjJTRR0NIjJaUcq3piZgDiHvBkEHdReUVXu+wbiDcxefWNko5PxZmZ7PFxC2TtxWWm9M4Zho7s+tkTSuvj7+m8DQnCpgiPdJk1YXUvcDZ+u2kyExJvKMafGYLM5nME78znhnKyaF5NjShActwYaItEUMzfb6USt+QR2ymAMRP5mMjwHIjP3iFMmJShj+i/Cc7proP7cm3i8d7czvGQ2uuczTeL0o3jhPW23YhB8KzUU97mAPys+s/f/tfT0dsylgBsI577p9/Lx+yuQJx3C8Uv/K5XC3fSuSSZMrerUG7nRwzW7gf7U76YYKdl5g5LcJb6UBFHYHxtmYbKWh+ORTEhrIpXILa/EGHl59Rjp3hUhEaOnS6UU+Omnnxk6aNpZ84WP9+8s5QpEvrytAKzLiuApTUetxJKRoFyuK8uSuF5XRjtYLhfa6FwuN466s1wXjkfj8+MTJHFZXxACl8vF/31LPimXwef377TW+Kc//IlyeeVPf4q8f7tT8i+0ocQUaGNwbN3Nd4bLLTQQ4sL797s3CsEd5iFC64ebbjgJIW1G/tqkFQzKkoA8NaDGbr5GWtaDl8sCoyENSnLG6O1aiAqSZmIin5Qlop+fbM0oeaG1hvVOQdG2s3XQnsjR4FP4+ecvjNgZqq41jBcOG7THzts1klNxAH4KhLxwACWt7GS+daWbkvugB+gMqDvZAvsY9LqjKWIhsNXK0SuxR3fdz6CC9/snbaY++QQ6EmJGU2LTjfu+8Xk/OFTo3QNskjiUXdUcq5QSbcA+BnVAHUYIGZN9YtwcYaQo1jvLuhBP7FQOIMq6LOz77k0Kga6CzQSlrkYKYYbl9LlhdDPfsVckOAVCJFKyb0FuZfXf87Jy3x8eTmKRVgcvBY7v31ljps2pY1kvEDLgzatreHck+QpzrwdlSSTxKeMZVhJiIwbxVMkGy+VGbZUcvfBGPPHv5TWyXCIydZ/78R1wfV4uma6dPM23Os8NmzrlGHwq2w1HgQkc2x0xJSyZFBLZBE3iYTIjzWbZNf5OzIG9VtegItTmk6q//5A7gwrUP9+c9KsNogkWHEblBY/8TUHqRmXXlTsSj8l39cG2b31Ew6kewUcKcxKAPYtjof9Yt3KGhICKG5cQe17qmGLB31diwzWpREyYZkJ/zfrcdzuqDiQW1pdCXjPj1l27K0rBKGUhFTfG9X4nR0FHpwmIJC+U7aAJnrZmTIsSrNk3EhrFpR/D5XUpZN9Cx+yvYRgcQ57SI/pBWBa0OQpwLIkeErErliK1KWty2k9vFcmJbA1JK9IP1CK1CUNcYuDyCqPWB7VVuka2Pnh/bOxV2Y6dozda7UDgmoQ0OiEUQhikUMjTpEavPhtMaerDOySXI/ThG79LumFtJaaBVJc/BWvTP5G8SB2NRkWPb6ABG4KMjjVFhpE0+RboUbn8dOW6rvyXf/kTv37/KyIFiS49fIRILpHeN7IVzBpHP8hxGsyiN6WmENR9IW2SQ/owuto0NC9TZ9/Yh6NGj3qgRB61IRZcUhVn0yaQJTCCAYEYCymt8xlg2hin2Q03lJr50yGmc9oaGTopPRKeARkyJ8fx2d7NbYY920nQyJgGOS8ew8TAndNjcwzqDDM7DaxuaJ+ijqktDuboRn/Mxd+9MgvZuSmS88GTZ54liJepLhM5G9OzcPVh35gSjCDQ5r/V+SwH5FkvjXNj5OX2lHG5YdvZx3PT4hXKP6D9//f18bsrkE+D3rmqkKmzM50uWSCn7J0jPM15J9at98GaMjEFbGoakUEIBZ3aKREvDmqKM4Y2EILLN8oSCPFGysmNJynNdKF8kncwdT3i69dXlstCnsEi799/I8bIvu98/fonR9AF4dv3X11D2YdrqkoCgdvrjf3zk1Ey2jv7fSPGRO2NqgNtwr7vHhSgg+NojpgDnzI/7r5y7kbdG9v9O2HEmXx14eefvlKPg/tjZ28HhhCDw8dTzKQoHLtHccco1FZde9o8EjYE59wSXWvbhyOZVF3+cvKfsfl7M3fKNx18bBslQtLmyLC8kFJgyYlgHqpSsvH9/jEDOLIfMCHywLv0Po2AHj/tU4aUM4/Nv4/eGxYioR5IgBLh/nhwScWRYEshpjTDNAKhdz7vn+QUfVU6BkEbd9uIJlQ7qF05fvtGzol9dPaj0ndv1nKOT2rK0JN77Wv9ARy1UbtzhQ9Vju7II5VAb+qT8elG7kPY++DzGNSuEKZkJ7jO2AcB05iIk1hGd92wm52cbBHCTLlTc8lD9LCbGFxy4lHqvjIM8/0bSyYHMHMTYsqZl9uNL69XchD+qh2Tlc/tQIhodynMbXUsm0dUT7mTZKIEaq2s6w0z6M2vH29wA0c9WMTZtPux05oX7jG4fn9sTmaJJiylTPSTT8RtP1iWSEyZZckEgSKTIKDqQSQxToNJYNs9yGMpC6NWv2x8Fzm5rp36aFgf0wjlmvNzFZlzpo/xjJxPYTKIJyIxh39E1PS8/KZOEc7Jk6doeQrXIKhPTUXS1D362jqGGQrge2UPMZoL5lM/LHOlGm1em2d+NXNzFnEd83zdTBz5dYYrmNvnicxN9nmpyylvCfN78Ks3GnTzoCDU0/kseSSzpUhcjKAueSviCDiCMLShw6DaMxwkWoQ0w3Qk+0YiGlEbySBJZEggBWNvgyWvqLb5InqstAmoCiUIte5UCaw5YHWjpsFLvqHt4ECJBZImegm03ikh0UInjuLFS6rQDwjJudqpoMPPS52x10c3HsfGY+/cD08b3I/K1jrH6IS8kkNi9AqrYCG7/artaG8Ea0jOuH1T5rYlIqX4xihEtDZSAbSibVDbQV5dEqBHJUnzNL0eyCVirdLMw0osebpbqQbqBj7dFiQaX17euF2vaK+OmYuJHJMb20L0RlIDuazoqP489T73+D657tq9ET+ntnPbouPBGINH29FRQZUx4HO/083fe6rGJfs5hQ1SgDbNydeYCcFTNx2774Y5T5eDYX5XMYvk0/jq0gH58ayZubFVJhZzGuM8NGMSs0wRcQnCmM+Nmk2MWke00SSApKfGWJ/P3GBYmAXqDJAR9wWEmb5p83vyqe+pSwaEZwPg33eYjbhOFckpkfLocjF1HvpEvAVcHjaY5A3zRtKn2/4aPPF3pLm96pw0ZJ+g89wk/Z4+fncF8hjDU8UkTkfq7PyCJ+roUFSH6zLDuXLAD1nfazDGcHnENCwh56olgPp0OaZAfLmiarzcXnyll8KcqiXMvHu9LJfZlU6tszW+fv2Jl7cbbQwerfF2Mf7y5z8TJXN9eWVZE4TMkOBThL1hGrmsK9+P3zyhLPiqf4mZcRxOhoiQQuHzsZPX4g5pnLQg4hrd49ipdWFdbsTwDmJoH+iAX//6jW9/+Y0//umP3N6+cL8/SNeFFWP75RO1adSZXWWMCYseq7pjT/TbZV3Zj4MzcXBZFrbtYDQjleiBF8EoebCsxddFYx4Cw7WkOpRafzAve4m8Li9esA1IKTJG5eefv7K15kYWGl19QmRSCC1i9KlBh2HC4+j098/nIYgUQmgQlCEVi42xNNaw0upAunOQwwhkyWz7wUevXEokWPfVpQRab2xbZTRA4P3+mAVdJ4dA67sXLWfTAISo2Ogcx8HH/YP3vbFVuG/KVpWtHlj0aaTNacT3baOHha5KtUg3b/UMxaIQifQZh55zca13dL25juamSfHxYJ8pk4I7+FtrqEJOxRuapq6DL4s3NcXNek7T8Inl9Zr8QG+DbJAFXq4L7bOxpEAKUEKE4ZNs006JgTYlEqM18qVwyVcSkdvlxtEahpJKZi3FUV3i+uMoicfW2Y87f/j5zVGMI7AuN+bpT2teWGOJWgclC9Y7SQLDjOPYSSVjOk1dk1LTZ1PtMdKNVLIXeGOKJ+OcNI9OCT59iTmjW6P3PiUZ+vQ7AGQi2iDlH6/z3/shNnW/c7Lj+sYfTQXn+vRpqptJV5N5rLNQlTnB8svdzzm/D23OjfUM53O9rAj5vHTxxDGZxs8oznxFcDZ4CLMAcONmtNMwOD314kVAOqfaT72a+YRV/KIfs/EQ8GCSID+Ujjo11SGAHZQYnPMbsn8+8wZ7YN4sB/GJYnCKgQVhTdnT76TQx05KE/OWFpp113mGzL1XQijkEFiXC5sNfiKg5ibVJTd0JJ+CSgdNjO6Nb+mdPqb+OQxaT9MrIbQx2PrGoxptGO9143M7eByNo/Xnz2+ju2RL4GiDl9uVLBDFabnJBDRPWsqBkJ1Xa0YMc5IcBrr/yvVW2B93JAr1N0VKwdrw7V/v0HYqA2lKsoCRneQzNqfDIBy9UvdPWoj0Y5AQNpz409vgM1UsBbJGekqEVj2YJzmJwYYj0JCDbkLHByStVmSIm1qjsMTCo+0+fR3zrYq/f2s9Jo/eR1/3YyfHRMRllCl6mqQkl794A+SmuvM/zNbQqUH++fuJKjztqerGODOZkiB/zwX1ptLnpl4oBhInG6OJT5dBEbUfhr0RzgeZMdMEx5xMJ5/oYBKfVAyz8CyEVWcYCAYSfyyQzMAiFn8gIDmZMwHC9CXMGE0G/iwZLv8IUxN9spAlRtCMWeeJuTQ3JboUw7+noCDWXFKlTELG7+fjd1cgM8XlQ/sMNWDq5vxNbdNFLmG6uOdk2ZtFIaWMN7jO+21NKUv2g0qUnAKlzECJEAkSKSV5bGRJjpDKibAURKcGOiXyUkDgDz/9zB/+8DPvH7+6Y9uMX375KzFEXl+/MIY8F0C9d5dHALeXF1rr9GG0qr6ZBmwaS/KSGDbXPbMxKClOAkBh08G6XAgxUltlvVz48tNXPj7fUe283F75n//2F8yEf/u3v/DzMAiJ63JlHJ1lvSAmdJLrMYNTM4Yql7Lw/eOT2ppP0HrzKX13xuoYE5UnMoc0rkFO6epO+HCQYkJ7JcVCmwgmHQol8/Jyo5RASol1XZFh5OAx3tvjVzLCuvik/ug6NavCZ+sM9d+RECi5UFujq5urAoF6vPP29kLOEJaFrXlksQWbvGdxJFSuNPNiYmijt0BBGKkQok9A7/c7DBx3Z05yqLVyH96gvOYbvStVBpdYaLX54qoNtkdl2w723dgbHArVPI7W8WuZ3o0gCyaZpsajeUNg4BzZlIBBzG42MYPX2wv7cZ/T5UknMCN5LeKpguN0MzuJo7fN2bNlYQydWkqPJdW9cgxYonOY931jyQspJ2o7WMpKTpGXy8Wj3jUSdDwL8MvtxhoC7+8fEDwR7PH5we32QkyZkgp9DPZaMYzL/B72VlnXK1IiBMdi6YCUk69j8bQzUzcjOsGjcn25sT3uhJDIa/HAFpvBGtHxZCklD8KZhV1KaW6iQPucGomnYsbJ0TXz0AxM/PkuhRCCh4KoT+/rUT3wJxaiBIhO6vj7j7i5vmVgEp/sVp2ToyDnehSChZk6yLzQgeiXoWsZQcQL6zB10/JM1XITnxsmdXoGvDT29a/PgEMI88KWWSTMvzeL8DA/v9hzSPucEg6ZDFxzyccpdQk4WivIOcLzqR2Cc5nNiObBP91cDuQ2JmVkN2suS4Ha2Rke69zdWBliwHojJZcEteHx5wPfegV1TGTKHsW+xkwfG60ZRwzkXlnzSidwmXfJIBDagDRxjOKRMMKgj4k4ixkd/u8UqK1SW+Po0Il8bN/4/v7OGIFy+UooHhL1fr/z8bjz6+cnooPX9cVf4XFhKUIbRohKCR0LmSBphqIYtW5IUhbJ2HollBvbfaPcjJAT+nYjhUh9P+j1IJaIWkY6qO4M9aZWAB3d8Wl9YL3yy2hU4OO+kUPmbjuKcR8N3ZR8uXBIJwF9LdhwHfQQN1km9InnFGk4V1g4xk6KjovU1lx+lVzqUHXQTTiGm5EvKc5m3ye2ed7ZUVzOFtbiJmNTfw8zY3VmoJhNiaWbzyb+TANnql2YxbG4fpIkTrV4GuxsTAqGnuthT6METpqWnUX9bGZRo0cmps0L4tMQ18VJM9FAdRKDrBGnTPScBA+cfiHTM4FbP/33fgb3zMY3mg9IDPNzyOYz7sLhqf6w2XjjTfNoz42hezIiQvQhj+AI2CnLUjnJP4b+zjQWv7sCOQQ8gQtfi4TwQzR+BnOoKpLkWTQ4AN8LN5C5IvULIS8rEDCrM5hBp0takSG8vb5SSkZCoKzrU/MccbavmtF75w//9Ec3RqVM18F237lcF8aovL28oc1XR/61vGjf9wNCIKXLzDhXlnIjSGVNiSUl/vLLL1xuCzkttMmBjTpQbYhGUDeGtCAcZnx+3N3AkANlKcSHTyi3fcdlR5H7vfO+/yuX1zcen+9cy0rKK1GFy/VK/+1XBL+ETJXj2KbxxwM7gkFtG8R50ZrTAkJ2znQwh95v20Fr+JTeOgvGbSmMAbXtbNtBjEYeAd0Dr9dlrq2FNfnkst9uWMrEj8C9Nsb7OyE56aDtgfd2YMH5wjlcGRPNo93cNxQUolBSpm2Dn95eqFVRq8Rg5AR0YzwGR3QdrI7B6IHDhFLGPFj9oh7HQa0HiHHsFeaGIuVIt0gis3dj7J2S3Dm+743P7eDjsfP+Mdetu0cnLylQtU8XujBCRCXR6YwQOFpH1IjRiD6G8CFBiuh0/6cYGcMvJfH4qvlsJN8C2DiHyo6e+hvZkc2iJIihbfj6WxXW1cNOxfX5MRlH33mLC0sKxHhlMQEin+/fPUL85ZWgjs56vd743hrXyxXTwX5UjMKSCrfbbbLLB/U4eH19BdzIuC6Fx/bhh32KXK8vpBX2vdPqQSrpyTy14dO13jtpTVgM9MOlGUG8KCvL4oWRRaT3ibmLLtmYUhgzT+Ic6pD9nDNjGGO4jjCty5xq6kTnDZcYDI+qZ3GJT1zyP2TCchrwh6kb6yTiC/BTIzkNOVNjCDKj48P8WX9cyKfD3qNovemxuenwC90vYZiTZfNm08QLaJlXiMxBQ5BTi2yMkOa16ls8m6kJJzzAY6+DUwhmw2a4z8hfJZ1GaJl4uvMcP8NK/PNVhCVEoJAXfz+JQZCFWhtk192aVU92k0Ayp5ekkmccQiIkMBus5cLRzNf3poTpU7Dg54r0QVgHoxsN5eXygqgQxRCrtEOhrHNCChYXwjh864JLQXROAZsqVYU2DuqA6/Un3h+fRAlcLi8QI7lcud6+8n7/zuPjk+Pr3Bl1ZS1CjoFlvaDDqPvBenlDbU6Ro6fBbSGzViFcdix/cRrR5514S7ShHNsnyUCTb86sPogMNIpvkvqdSqbGg2aVx16x+0FV49E2FOPr5UoMTtdYYgGZJmQiOoRQd+c0m2+Tug3fMASfDrd+MMSwkOniSLdmvrlNOuUGDh8HE88SGDM5NxbWmMkx0bTRurpfgPSU307VAWfPpebs8GEBtYZOHZKY+2xUgofxzHbR5DS3zo3LuWGZFbCd/2g+cBPrvnkJ3RtCFaB7aqI54SbofIZNfUpNcN2ynvIpbzz7LK7D1B2PKf84OcqnBEIk/Y3UwcGKiKcfWphTcsKcbAvYKUmdz5VCCP6suZxCUJstgQpOvHHJVZjSC5lykqln/LvPt39PH7/DAtknF/kMsZid1xhjIoT8QxBKLgx1vaBr5FzHE2KEMahHpaTEUhb6mKvWFH293/yQiilye3GCRAhp6nETl3VFwsK27bxcV+p2pzUnXPz217+Ss/D+8Y23L6++ilP48vLCsR/8+ttvhJIhJlLJJHGN5fv3d0aHGBcutxtY5/b6Ql4ij/sn63phdHzSGAaq46l9RCKlzJQtHPnW+3im57TWicmoRwUL6IDHYyck11SeOKZ2bJQ5fY849SMOJRHYh+O7RPxrqrib2tQNQk4xGLRj999NFJK5UagkuK4LSwkIEbk3lDC/10FORh/q3/MYlBhJMfDzH37isVe+6AuDO3Z7Yds2hsJPrxdCDnxuOxaEo+5TY6YESRy9ggwej4MHB7fLwnHsfLm9sBRHzG1auV7CU4NZSgY8OaqkxMf97rpJhF4bwYyQEttj9zXd5KWqGvY4uG+NWDIpddbVD/ptr3z73Lm3zqadvQ8erbLm7J9XjaFzqizRdYlT7+0ECV+Ie+gNbj4k0fpBUDe8hODvec8jEY9GnpsTkdOp7M3hGTtN8KlpV2c/50mvCAT2x53Xn35iWRZq3RkdRogMErEkoinXsoIkRjsYvbHVB+uyYOqRtLeXCx7FXOnDuF0TbZraXl9fud8/Gdq53z98mp+8ASjLlYYRcoGcKMWNMMuyULd90lsahEDvTh3oozmnWfvkgo9pIov+eplj3eqktKh2rHox3FojiX9+E5kIQ9fiSoDePEExJ58Z5pz8UhefLrsJGL/Iw48z6P/zGSez+J0SMTX//foOzKdXnkb7Qw5xIt1CcHe7N0M29ZiOYPML2rAQ5trWcXAyL1UED1J5FsIT5YZ/rQCY5LmknVEhTyXIudL2gicgxMlYVwkz6EQgTm3lnF4NoOAbwH5OsGcT4D+7MELyYBsTQszUviOiVI1YFEQr1o0siTFlGyEmkk5TorkpsSxCrW7KTCF6HHz0YKMS8+Q9J8qysO2NUArSK4+Pd14ub1OX7Sl2ngZZaO0g6O5JZfojCbLbYB9Ck8gYB+/3T/oIzpAnclsW/y2JkJdE7/Cv73e2z98YrTJq5XF95XJJvKTImwVeupCy0dPBaDuFxRtYxOUWKaItIOOTWq7AwN7/gpQXEkKIij7uSD0I5neSn3XNZYlDeByeAvp+/43t8HCezuDlZeWyRu6t8XK9OV2pH7S0cgxF6wdrhNohB9dEW+vEYGDKMTGmh7nEa2wPzDx5du/DDdAYw4Q23AOwlIyKPqU3Ocxk0BCQ0EghEnN5JloODc7/HR2lc7aqNuUUk3Tu6DROTa0zr/VsJUUINmYoDhguTRrn02fgMIAzdGY8NbpwwuNs3omnOXDKnYzzYZuSjjEVUG4APFXGpq73N/HXQyyQZD7h6nSdwClbCoRRvYiexBKXbfhPf5qvT9IGIj8aVaY0C08PPXXT7qX110LO18sMJfwv8rLfw8fvrkD+wfidK7wxnkWyJ6l5MaCqngwXZHZekwc6lPDU852CeEjThY0F11uGSFflOBwb9fL6Qs6JbdtIMeNayJ3j2Gjt4PXthWyFb79996hp8PQjIATnCb5//+Dj4xM111H7A57o7eD94wNTZYzGz3/4E5hD80P2adeaV2JIzO+W1g8vXmPw6W1M1H6gakSLLtOIztjN65W9fuPycqG2T0fYxYQF4Xpz88VxVI8irZVLydTjYE1CPzpBA0vKbNHDIVQHgq/o++FyjN6GmzhsGhdsUKtxWa7o2EnAdYncXhZGNbKs7N1ZxUtZ0e7r6hAC61K4rBfQzvW20IZy6crXl1eOo1GyB0eMVrktGbXB9+8bVXUau7xrTynRumu8qnbk6IyUuf/yndeXF0qCJQn7/k4Kbo70JEUoJWLd2I8xX2Nh3zqgjlOTyN48hELHYF1dEmDWkT5jPj8/6Qbb3nlsOx2fmrj7PWJV0S5U9cSpj63TbLA3N5TW2hy5Zv4+j9GNRed7/bnPnmdWrY2yuOZSVX3DUd39fgbchOCMToLLTHwibcTgwSMpZV6Wlf24U4+dkhMhJtpRiRR2DdyWxBLM+cop014v7DUSgxFTcK3wDFppHTewqnBvhzcYR2ddF263G63XqaeOXK8rXSGUlVtZWK8XDx+RweVloe0dNtfglRmN3VuDkHk8NtLtQgieJIg5UcWsEiTQdBBDJkiYeLlAb5UgxlKgN28kdPg6v5tPaz0hMzLmZP0p3ZrSC0/PGtMD0Ofz+fd9iMXn5NZw7Jmzip1nLOI6z8jJafU42jA5z2dDhIWpD57K4OmVOLXKIt3fPHIqHf2/bhTyoxN1La2Fc4o1nqxn+ZuvZeffxXwVHCJm0XWXcxqu4vxXFwr9bXDCc87ta+FwLqu9kB5EqinROr11354MN+L1KBzN9eUqM+gHYSkrKRmP/SCLQPT0QI0Bbd0DiHokx+zv4wBLXDwqXYQ1ZwZwLStig9EOCtHJMWFghzFEkehFDATG1I96O+Wx14/HnW/NN5ZdXbbzz1//yCV6WPKm1f/+WjA1fvn+Oc17O3/8+ifWWvhl7Py8/YE/vv7EeMnEGEja2I9BIlMuPkbebSOMQbkk9BikNTFkoJ9/JpUbdnGDd1D1wrfPM4LEYcbHdvA4Oq033j/f+f6oBFFiTvzz9WeuKXFdlRIjMUKMK1kS2nZkbhPH6KDGPlVd2t1Ud0pc1gj3ts9S1aVQxWCJ0QcAc5vjEj4jhUQK/l6IwRMuhyrX5JLGeEpvzMkrDJdVnoEwpxk1aHRZnJxNikdIn9PWbuHZ5J6mvvk0TkzdWdueOQH+3J2DVWcn2w+ELD+2c8wNy1kj+1c/t9qc7tpnQR/tJFswZUxtyqncIBgscPKOvQR3DboP8P7m2eGcQntxe3qt/tZ0d6LhxtwaufxD5s/poSs2i+Yz8e/39PG7K5CZoG6bepon//g0Rk2JRUzRqSk2ZxphouGCG/POjjKk4AaL+fd1ODFgmOODxujcHw8/SOZ/r5eLUwz2ncvlxeH1erDvu2txBwQVZCl8+/aB6Qc6jPXyguGpaOU69UpDvSBPGZPAly+vLEvm8XhwvV7YNmPXTjdnhx77jvbO21thjDongmUC5StmzSkF8cLHt09SilxfFi7rggBvXzLbR0VT8NVjCLNgC7y+vFGPHR3jqUu1aRTow4kGow5kMkkZfYYGOP1j33ZSSojoM9bbBP8c2tGhXJYFWYz7RwPxRLcxGnv1ZCztg7AukCIlLxy9ISkxxoOEcLsUPs01aTEHFgQlgwnf7humkMX1420opaxeeKvRTGZQBsTaaAp9eNridU3IGHB4EEEffWLQoA1nPO+1oRiLzGS1AcuSqLUzLMJMV0KE1gftUCQmxhB6FyR78a8q0Buy5Cf/8zBlSKL1QR940IdEcsmM7pPJGAIOAfCCYJnJf32usp+sUwlzPe/rNZlMIG8m09SKGyUmeu8/npf5HElweYZMB/rry413/e4TRjOO1gkl8na5chw7t7VwXRZq2ygxsvXDJ5cSuV6uCJUQq5MtWoO5iVGdE5Q5dTzaYL3d+PLqQS95XRCBfTswNfbtASLstU2Tjs9d3j8+wSB3YNjEAzIbx+BFdxLQzlA3ZgrZG051Y52ITeqJa+2i+ORYzcixIGHGa+TAUPWCmfFMVVySEy22rf7dR5xPhjpqkb+FsLnpzifbvi0+r0mZRh/fDJx+C5nINgsC4obeU73YxaFwHjQyL285i9wwNcJAPPm5nkAWppxqXrnP743z66nrFE+iUDgvZJmSnoBf5hZc9zkLa50Fxfn9KM5tVgSNmRgTi3nTVc23Jr4WLuh4eGhOHISUSWpT3uFyq5ILB5CkIHJgcXKwTXhsD35+vRIlU6KQ88pugdeSCSh9KJe1IFawcHhkt7hnJaa5/cEI1mgWANfMttH47PCx7wxT5+035VouvF1Wfr5efSjRBetK6h4A8udffuFxv/NyXfmP//zBn/70J5YUeBy/cDRl2BdivPAlF6QbmvysyiE4i7dVJDVCy1R1vjG60+5C6JHRdp+I9oSNDZFAbYNqcKjy28d3vn3+xi/ffuWv7994fXvlP//hP5JTYF1WN3FipMlcRzqSk/sZWqfvd2JOXNeVYUavFQuwjTaTSAPJBj1HN1mr8BgfHubSB9dSAJeU6WguKTAhFt/uEIUUMtHMcaglzfebv+ctulYjDn9PdXRuRnxo4xr8OEkO/l4NzKTJ2agJ7nExbbNRjNPAd9IsXIev9uPsOrchXkSeDaBrFMb5PJ4yDQJxFvHd5LmJUSbZB2c1e3WbzqEzist8HDunz72R+wgMtCKSUILH0gve0Imfaf4pT6uev19Mum8Z5yvIU/N8trxTz417Hn5voLffXYFsc30+xhTXz2lGjHHSDAyJ8w1rPn3xN4kbNMZwooPpICWf/jELBZlSB1NfTagan/f7fKcZR60+xRmDshS+vL3RmxfN9/vDi1TxNXXJC/tjo7WOqTFUWK6Ql4JFlyUc++6fenSCDiQG8pJmwe8/V8qJ1N1UpLPYUW2kuNBbm4VoJMRAWTIafK2vXbHhD0U76uRICikmYlLKZaGOQUyB+8fO8Tigq8dlz8lQPQ5iyCzFD1tpLsVoeFFAH6SUpua4P4H8hkf2mvkK3/E8nujTWufltvDbqLx++cLxl9/8Ao1+UMdZlO31mKlqma9fLozaaH1w9IV6DEZOxOJmwGttjPHJpaun+dmYD7lQe6cEDylQlPtRSSFzPyrLCFjxg2GoUxmul4IwZQvTZBJDAlNS8smiBmF0Q3Jmr5Wuyrb5tLUNZYgnKnaDlAOtdv983Y1HvXZqG67jNKFZYq+VEYKv1MQP9zyjy1OewmMCOUcQm05213B21VnQ2sTpBdeUJ4HRyDnO5jBwfXnh/dMLSlV9Gt50uI4up8x6cVRgQLheVy5Lofz0E7U3chCf5NSNehSWJdO1EUOklCuqgzRxhaqO9QrBMWgizBCZQm8DpLMsnsImEvh8PEjrSiyRWAL37RNtHqASEJaU+Nw2RJxE0If4VNCMl5cb+/Z4Sl5CiLOY9cNeR2e0Tsrr06BTkkenq5qHL1jnNN38mKf6s2pTWmUGw9zHXpujvSyL4/XHP+b6sFNIiboB1WZ8rIGGqUC2H1fYWZCeSDg5S1+bQy5TosXnBSnn1SceE2wiT+SViE0T2xmG4g1XxE1/px7SRUeGTmxbwp/15wbWjDS/ozi10p1Z2css+mXqPH3cNydxc837/DNeUORQ/JyplSDCGI1Hd8JrClMrHwo9JEQ6tVUIsJYFYqL2ins8FrR5emoOgkZovZNywRBu680pBaOxluyNWCiOUZt6zr1VCB6CMSg+YY6Tg2RGDwGzRBCjpJWj7uzNeLu98fO6cl0WrmmBVsmXVx73jQ3fdJRl4fv3d/71L7/yP/76K3/87/+D//If/w/+5ec/8t9aZR+eyNYuK5cirFYoMRHSDLBJ0M3PZFqb5siM0Qh1ox2+SWl2d7LLcMnWvXXe9wfv9994//zG//uv/5WYC1/jz+SQuMTEWjJLTJQUOcYxY6ErljL1cdBHJV4yRmQbRhD3ALUpeQnWZxiXyy+0jecctM5Gv5ubJg3BsnPkA0IJ0VFxYb6vSdRhXNIy00PP6ag9JWS+rfCvP+wsKd2sxrNg9UCO/8Usek565WwB/T6Mhg8XwmwY50RXOfW7gI35fHnh3eApwYqzmwyi3tzO/nDMzcop/Wj245mMNj939OdbDZr4lPmZ4Me88yXM+mieeWebOh9KP9d+FMgyw1B8muziLf955tlnvgVC5BlME/4BG7J/Tx+/uwL5/CilONvPnW/PoAFV300kAoRzqhamxMInzgrOgzWfaMXoUgjEP89x7Kzr6heiJvZtR4CyuKZ5qHLsBx/yMdnKByEYZUl0G7S6c70ZOTt2pSwr/XBTVtubr8rHIAY49gfHsfPTl6/U1tDR+O37BzkX1jVzv1eO+fW7KKqVS0nUoVxS8gjdPiAEd8IiHkxSB0M7KQc+3l2zF1JhiZnWpyaqdQwhNmGNGe0HW93pE/i+JKFNr7ZIQEJniYXedo/knhMjA9bVDXa11ilv6dOcZ0gQyvVGLoU2hKPC7faVEC9cX4dP6jXQRvfJmDbEImnJlOzNwdvbmxsNQ6S1wVEPn1535bas3JaDvXYH67dBax7x3HrHbPgkhTOSV9h6p3eD4Pihj8dBCoEvVbks2aPHc0BCREnUbnRz1nMhoCFxtMPX2BbpFhjHjNoNEcIF6529+iqS4WZJxdAYOepO7Z0+oHajDvOJy/D3pBkE9WjonBIpxSkp8IvAVMACMYlfNmZcLwsiLh9oraOT6pJLfOLJHg/H091uV2J0KsO6rk/JRh+d0SNLTK6T7I2vL1859s0jmvsgxuSBEV6zUw/fpCzrSkiBcrnx7bdv0/DXKCXSmpGzv0dUB6kEUlowg5gjaSkeACCuZe+jcuwHYGRAW6O38ZQVhCCgXuQvixDToCzCsW2AzmdshoOopwBKzPMZT0/yCtNlT+9Ph7eOgURnoPeJbevdi+dl8clfSokiwc18anOiHWnnuOfv+DiDemxKJghemLmpzTdfTBIEUy9owc1zYi6fcRLFOXn2gjqKwRwUnBrrHnRqnmfcz3S+K2dh7oUGwXzdOiduPs0KRPXGZ6hv9ALuTRAb+BpbgIGakEOakzT/xiy43lKUZ4Rux6au2dfSquJNgXj8u2rFROjNOdRVDWShjx3D/RUDnxiekq39bOTxFyyGgCYP2ylxYeigBGWJC9tx8PN1pcdETIUUEmNUUpjLZvNzlhQhCqNDoIN60NKIgbEP7sfB96M5DamsvF0y/9fP/0wMgVo9kvrl9Y3HoUisaPB0ybIslItL9NoY/PL9g8/H/837P3/yH/75n2aojdC+fuFljfy02oQpbMS8Eolo3wGnPLXuG5uc3MjLnH5bG0haqX3naIPv943/+f7Bt/dv/PL9V7oqLy9vhHyhTlqPLSspX1nLwku58PGZeb/fib1RqdzWzGPfaWkhBcAaxYDo3g8meUrtRwFZzfcaSwgk8KFN8DPwUjxEJJeFJUTCkDlZ9QbOBHJZ/C6bxZ4vy3RqiieyzHzA4BNdF0AM4KS0eLjHPFm8Z8PMdfOcf+csWg0ijkB0wZ3MAtSL0hMtB0zpjW8xgp4ot5m6x2mmledzeqLoTvIF4tPbIOKEIWFyyH1C7VvwgFifLHd5Np/zqffZuHUvxnGvjRfwfZ4xClMKNYWnfp6c5838pzH1yfwDPBb/nj5+hwWyr69d5+qX3Dn5/UG0sOfUR/GpREozPWY2VFECNrxoHc3dzto7ayk+iR6DkOLTsd6aR1vq7HJra0/TlGs3Xce27wcxRj4/dm7XyHq9emcnMqOpXQOXy8K+fbKskdv1zSM1g2Pkcop8zom04MYxbd3lAymRomvhUi58f3+feKpIq5XRm38e63x8fND7xTFxORItEGPmcvVJn5l6waVKqxu32+rUBIFtxiy/vL3RrdPvg14r1y9f2LXSmFO3+Xq31ulTTxpCdKMBwn40Ug6k4JODoed02LAEX778gePY+PbtO49t59/+8hf+y3/+P8g50VtjpOKBFilQcub9/YMUAmk63Yca27Zxuy60rnx87JQgSEkzitmpA0FOekMgpIgebmD8eDzcNT2LzvujUlJgvaxcbiu3ywXYfaA3lNo7eRwT8XbQaiWn5PxjPK1Okr82tQ4GAwlK2yslFyQJWz247zvNjG5+yR5DaU1n0umpj9f5fSvNPS6zeDZ666QEXdvU1Rs6mBfQZP8OJaaMqZFzcaRRiIThPFTBZRu99Rm77tihy+WC9IGOys9/+hfWpYA2BGMQXR9oiaZGiYGX2431evEtxroyFIZ2Hh8bvXnxGJOvYU3VJ6/nJEO9UKFPE5wqpoPRPAWvd6XtO1qbP8chO+4ML2xLKSxlRQLs+8O3R61PvbGbTGutng52NFIU2nG4yVS9OCwpocOTMiWkOUKZM5W5ZVmWBQP2bcOA++fD5SkEJ6oohMvK0H8A5k3iXPTixc+c5p6aRpc9/VD9etqVTOmDX5vMlWqYRb9PyWTqIP0CjgiD+EweE06ds8xzlemin9M2SSBhYubC3yyWw+SqDlx6ETkZrucyWKYJ0Cds/t2L2pyoeUEicxruvpAzZsE3eYEz6nnBtLGUQu3N9d/RiS4qkKIRFUJZ0MHcMLa5RJ9F//y8+77z0+WChUjMmet6I2ehobyuV1BjKZ4296gHMUWiuC3LLFAURJVNA5Zc5jKa0iVxud2w0Pm+HYS18J9+/gNXKeQcObLHyBcJjP6dHAyCoTp4uV34fFx88t4V7UoMkX/77RtdlP9ThP+Gyw9+enllVNi7cV2Usrg3ZFlWtBnYwaiHI9dKZnSbKa+DMSoqlaMPPuvOn++f/Ouv/8b75zu/PjbC5RXJCzFFBpEW84zbHgiDxJXXLwWNkf3xyS0mHtsD5rZBBHobPFJm+/xgic6QOrpRxMN3+pTjjGn0TjmwBjf9MQcswTyK3nBzfR5KCJmUMpsNb9oNUH8H6zRpe8Ec5n+FGE6kmzwlAzK1xUyOsD/z/v6M4lrkgRMdzsIxitAQH1CI/P/Z+7MeS5IkSxP8iDcRuVcXM3ePCI/IvbITmAZmgJqHAeb//4EGGgPMYKarOjOrMjZ3NzPVu4gIbzQPxHLNu18jHxKOuoDDbVPVu4gwExOd8x0zOz4KbzO9jfIW44gf9tkOP5uUHPekqHWKHwa9IZfobngGeCighmrajcPjSBhUQQk0Z4W4HQQ8KhYpw9GjVzXPiY4DLYeZz67pSjPKB8fh3A4DOu7HrqatHs7OX8zjF1cg19LsNN8qIQw0ytAd/xzS35ohUQBcdFQ1Zq9Lw7atBxLcTq3SYHLCyQvEiaojmCEGnPePUbeIpdwtIdnPF2FZFsDS5Lw3V20MgefnZ2JK5FbIeyUIxOgNoB89QiQEOJ1OvH74YJ3X0qlZiWlhmiItmTHwWiopJmI0ve/xvX144vOnN379qxfa3tjWzFZ39r2bzq8Z9/F2XcnlzX6OBNZtw8fA1iuZTsZMMKUVat5NH6qd2+2dohWk0tUK7doqKvYaunZyLmjXcUgJVnSLo7WOlHHajxZRnfeCqDmvWymkaYJuQRPde96vOz/++MZ/+tvfUmtBtAwWtUO748PzmeW0kGJk2xufL+80lOCEl6eJ4Bq9CWu1AmLdMvu+Q6k4HyF4Wm0/mzg0nAQ8nlIyXZX73qm9sFXYmnBfb8bPVejFiqoQRgFfC2D6WuesAwrGZHYx0RTyXmy8X03b3ehUrHOOJBpYt3vwPb0oKcZhOLKNvTbTu/Zmnbqja6ddYLi7931nmhJH6MheOslZ8ZCSJUKlEJAOed8RjY/xX+2NpP7RAXHSmFLg8uUz33x8Qc4ne10pUEqmZPtcvfd8+PiBy9ubsZBzISxnXJhYXiZu1w26sjxNGIc80IvnfJrJW6H1inhnGL5emALkW2bPO3Sl3Qstt6NpZNMhsbhaY35aZ7xnIxM0Ot5NmMmt4lx/oNBcDHQUDsa49iGZ6qPDbgZAkRHLrc0CYNz0kCXEkJBWifOZbStYt9rTpVOLBU/8pY9jgz1wZ06bmYyc7eZuYCx0ICS6YAdGcUYreBQpX5+M2pT2URSoKOpMwmGft4wwgUGg0LG1OhspOxjXXac7myrh5FGcOxT14evnJMcrsZALGSPfPvSYtvPaWnzE3crQdqocjY5BKMKh4mllRegWHd0sTCm4zt5tuhOx+PBW6zD6eWKYTPLUK/hIr30UQY0QAy4k5smKDdd25qdXat6ZBEIKXO8b8xLwyV5HcFZElFZ4Lw710YovVVqYkG0ltzuf806YFs7PZ371/MyHZWbynrI3TtPCbVvpY7pTxFHuF9LsOc2zpdapkvdClTYmT/Dpcse5H/gt8AeEda+0D40qnVILZ+1EsYTJrkKQTq52gOnbBVUx0y2OXWHf3rnvmS/7nX/74Ud+vHxhq5Vr6cTlydYVPD7Og1s/pjBqaadTWvjuxfFjr2x5o0kEzE+CZnxIkBunFOmtcK9D5+vsXhOglEHkFjNXt2oGtVOaCd7G+3OIlFopKHH4Kkre0JiQELASFBPudgEZHeJuC4bKkZ7nER3BH+P6dIOogugopWWs4Qz6xLgO5dAU69HctcJVxIrzQZQ4ZAtwSAvHvUHDaaETRuEpSLe1TFXH15vU4zCsHs28jg7qxTj4ijezs7ZHEXtIRgQ3QkTEGoh2Iqa74+Bp915/9KxBuhuvxwy2KBzmP7rgfqY8PoJtfimPX1yBHEIghsjeCjrSeZx4vNeH3OIoluUYiXQbs3414hlE3RBaMoxm3Tq8KRqeTCK5j5GuKvNysg7C0Dq3kd6WkkXkhhAs4W+kTyEWNbrnnRAj0TvCKMqmYLHU03RmmdPolFkXr+pXXNJpObFu9rxCsq/x0dEpNIV1r2ylsjwtOB9Y9506EupqO8JIhsbSB7RmIy+4Tkr2+nItTOcFDY2tNnLpaAOHp1bFe9AeKHnDu8S6GxUhRSNduOAJPtCwMSbqwduo3mFpR6hSSqHEBCPBrbROcoHb9Z1zmlmWZHSC+cy+N1CP+ca8QeVbwTslxMB0trCX+z3zfvmMT5HSu40fg0c8zF7Yiqf1YCPjccL3XelYF7Z1QcQYnr33R/KcH1g3UN7e30aHYSyf3TBZpZRRVHjr/qhi6S42aq250PfMsjwxTzP3Wi2GOSW0VfJWAKMR3POOogQfjQMtQ9PdTffsHNRm+t3W2nAUmxnNxnAFFyAEBbVOLxpwzpH3nRQje7GBoI3ZHF48ovJ4X3R0RRQ7hJoxxYr96/uF5fnMssws54X7/YayI+pI4/XEGLhvN87TMwcI34XAd99+y+2+IsDlavzXI2HMR0/P1inu3SD4jojDse11MDsDwXfwilbjjpehvZfRWa3VijTvIk4zPg702ih+nR8FXVec93aNIPTxebdWOIy+Aoh3lNqGxlBptRCDEWSsCWp/d0oLe7VoxUP/vW2Xf4dVzoxFJpcYXScHHOYbd+gPD4ueGYjc0Ps7FcSZVAKsQ9tH39SLgIxQABldNmdFaz28D6PD5Jx7dLC7WnKpHN3jLg/XPk4fXWLnZWzmgB4gRx1d6DECFiti9Bgj41AaFhOsHCrILoa7angkeDtc1czeLW0OJ+QRiOCCo440RBcT4qCVMQkc/TxHQ7wxeUUcYZrwYiPzECdyL7xqZznNRKDSOZ+fca2SnQ6CAtALe1NCmuhqoT1ZEuV2Nd5umEkB1iL85umJ7+YPltAXIwd/IHhn3bgQqNs21pJInGajuaCI32AzT4wbY+/PlxvBWeBGrplNM5ea+TgtfOiWXBqKwx8NVAHUm2dEHdu+gsC9wft2Y902/vD5M5/vF9ZSebvfLVXPReJ0wqUJcUZIcN6mcF0dpQqTOpxEXucXrltmnmbWTaEWvI8EF9lbJudOq40lBQLeoq2BXBouJGiF2pVpWdjeLwRxTDHR2w4ujoOxUSyCc2xlp3SlT2KmtG4yp6bVPus+Jmh8LR7HMYFxPDM98ZBrHCmSpiSyiUxTM+qOH33YkOy7uKNQHAmo2n4m7fn671q3TnofhXRETAutcoRaGiSuN8R5mph/xTlvuDrV4Z1R+6ZDR334CIzbUfGjkj7Cf47U+ON9e6xbDDwdYlhCdOiM++Ccj2L6SBbWjmgYe8z4+l+WBPmXVyDXlpFi4xbUJA/bWuiYGak1S/R6enoaWtgBGleMc8w4ASrAAdYWSrE4zW3LhK4syTM5obYMOEpeUY1GIxiXmyqUR7pcNZ2bM/3nuq5sW2CeJkLw5Gx0iKeXFxwRtFvs7p65Xi5WpCN0my4RwkSuhff3dxsRR0+aEyFZR3EvlZKhauW0TLbsugjS2PaVGGfAuowlV3at3JqlAE3OGwKrWDdzOifS8oH3tzvvl42ezczi8AbLr5V1K+SmiDcJR4yBbV0fODW6kFJi22zELGJx3bVmpimAD+y14qI3w5oIMXqmyfH8NPH0/D1fPn2h1s6X/c5PX9757psXehdyNi6xYbUU7Y3n00zddr55eeKn22p6tDnimiHnQvBMmyVZnc8z+76OBDxwvdg1IRaksTdbPmOMVhQIxBToWkjJgl+CD0jtPyugDTHUMG2kczZmTpJAKqXuhriiE7QTnKA+DSe0mKxm28m14sT4kvNyIu9DfqL6KAJbszHrz1PaLPDCrrXgPbRqGsZ4cH/NnBJjHAajPkJzHNHHUZjYktpqw8VjHAl5b8yneRREjttt5+n1W0pTJgckT8+Ca0rOhTl6YnJM3bGvV3p3NAK1V1bN4C31SsXS1MIU7d7pjTglaqkWK+sdpTS2+xe2uxnuROGeMyEGI660jh9JeM7ZZ3a73Qhu0GOco9afFVrDyFsfccDCPJ/I+2bSqmCyFOcC+76brMVbpznnQqkVL9ZVLa3iU8Cpsq0bPTTiPFGHxhc5tO5/2eMoIP3YF2UUqWH0Ye0h+DEhs9HvQYz5iphyh8fo0f8eEoxRqNp9auEguKOItm6xExmdPdO0C2YwZZgi3ZBh2J7qRze509Ria504u/p1jKhlJGCqyc26G9t2B4tJsA64Hoe4wRiHZprZbujNJkKtQ4fcFa1mHlIvEBcK4PsocLxDvMPT8d2oC6WrYTa9pwy3fqsFP0988/pEco7JCXsH6s61ZJ6SN7LR6KwXEXyI5G7yj14bq9uNH6+Bkne2pnzz4Rv+6ttXpgbqbG031CKEGOk+W2svefw8cTovPN8X7utMHd1+EU/NhVyySedE+HS/IdHx+vTMXgv3+8764QNf8sbrMvM0QqfUW5c9+ZkuyrrdENfIuXMtO39+f+e2rtzyRm6N65YpClOIxGjkEO89LiTclNDgDbunzQ4vZSe4iFvO/IadP37+ZI2pmMBFrvc7W74SQ2JOE805buvd9gxvjQxL8TMiSsQRXCD3neA9IZ5RZxMTcUIcxWPQNLTV3iSLvRu1pB3yha8iIrv2D91tf0gG9OjKWrlsmnmBw5A3LA7j/jnkD8fEBBugdPua6jDJYj/+nefIqlQsDVL6SE392hweBSuPCY3qmPw0q57tfvMPZrhoM0+A2gyk95FIOV6bk9Ed1kPSpKORYlM2OaQe6MDicawIw5zXaRoeh4sjBMiiwi1t8+dT+l/C4xdXID8eQxunagJ67y20wrtIc4NByLgZFDNbtUbw0bpVXVEdmDM1k0rThrqAIyDOEaMwOTsBWqGtSDAdqX3/r3i5UsroXPMolud5wocI3jp9pTaLDMZQUTWbQaE2ZU7G0Y3eEz2AsG13VJSXlyfaMDuZk97x04/vrOtOmjy9NPa90Us3ZBDOxoxqiDKNkX2vzPMZUaXknSqelGZk3bldV5bThIiyLCeyy7QheVgBlxJN3Ehfc6QYaDnTFWM5B5Oh1FzN1Tw2ZXP+D0xUB6Klp11L4WmKpCi8vpxYpoV5tv+2yxUpjh8/Xzmdn1iiEKXhnIU6TMvJOurB8/x6RoMgKbHXzm1fWdcN7co0J8qitFqJ0XFOZ+575bbVoV8ORB+oTYlx4LRUQc1IMofIupqrdw7eRrOHtnd0Fg0X2EG68YmrFanRj6gGdTiaBcW0Cj7gfKQ7Zd12tt4ptZuExzlKsSCW3usxz7YR2wjyEMUiWdUGZLVlYgxobUiHKSa0D0ScYyCeBoHB2eeBwH23oBXvx3hPOyFEhI73SoieD99+oNyv9ll3+NOf/szT65mqnfN54fUpULeMoCzzQk9CLnfOpxO3W+HyduXp5QNtBJ/UWgnJk6aZvG8jzMRTtdLEipZ929j2G8EHHh5sYUwxeBhrVDtBAq011nVFezcMogEVKNU64K0Zs/ro9mtXXPRs28Z+u3Nwj5FOpdq05UhfHJJZP7BHuRQ6Ju0wF7jRclqzz0rEisqS/3LMm8WP6zC9VSM7yOgYO9t0vY5CXLAE0EM37IbWVkach5g1tYsV18eo1UvjgWDDuqgDCseQKtKc9fPBOtIWEjBkF7iH1MePYnsMmR+H/VHZ299INzrEI0FsFAhihXIba4R31iFTcUNC4ihduOeK2+8jcn3BieOad3ywTpgfkcKig+2MXQtePMFFXuPMVjbWWmlaLRCoeWrL/PXzM3NKRqtxHR0xyaV4i0uWQN53aslU5yBGerO0uHV01mspFDVZjoaJp9PMt09nTmGGINzvF3YVlnlBuhVt95KRIY/Sbnr6eV44P53H5/X1ncKbueswZH663aiqfHx6obd37mUjpYmXaeZlmXCi+JAMmydm9Lyum3lzXOByX3lf3ygIW8ms20ptjpimMQ2N+DAxxRkRMwi7jqUEhooLkVYKLtozXOaFb19+zZ8//RtdsENq20hpYSuN6/Un5jRzWk50rezVTOZbrVTxhOTYL1c4pIyqRBchRLZ9w/mAqJDVEk1LrwQVyvWCSwEG372LuVVVHEGMctLE0Huq1vGt0vk/2tz60AkPXjgydPGHCPNrcXwYT+VnciW7vwAZ2uY+jqQCRwiInQX7mPbI+HNBxY69DSuglaGfdkbAMCmoLYCebp/BmCBVMWaxES1s0gJGvrCEwK9KfvveFuN+6J2Pg/JRYPfx+6b270xw4YdmW8ez3P7i9e0/0uMXVyDHmIaz09Bb3oslgeE55DEpJsrIeLcusgVquMNFjaPVo3CWBw5N1YI1UrcudJpmGN0hp5gpr3Xy2sfEtnE6nZimyTbhIaE4nU6ja1VGhPBGqZ3zvLBtKyWvxGhEydYbafIjQY4hSYBSrKM2LxPzMlHH772LvL1dud2uzNPCx+cXtvuV9Xqn5kbJdXTiCq0pzk+87xsVJbmAtsK63vHhRL0X9r08EEg572O0bxrd0gc3t6sZ2xrGp40LZav4kJjCZNivaqZFhYHNcobWQqgV60J5sbGnM83T68vCh5dXru93Sr5wfn7GB+H+6Z17qfz3P/yJv/3+VyyLWKHXTMJQa8XP0TYyLzyfZtze6F3JW+E8W3BKkI2nJTHNkdY6rd1pyV5H7xiWz1ucs8cRg4Vs1LohteK1G45Mlegd+COtz+OdZ983piS4KiRno+66b8RlJvgwcIJDITe0l60Lt5Ip2kbtIOyDr9y7Mk2RKRkH2EadQwKAWISyd2gFF+PD0Ke9WBdfPL0ZEQQHUZXgPV4sKcmPkbkLgseTy24d8SlZTHgpozBv5LKTJsc8LVwuO4owpRP7fec0LfRecF64X1cjniQ4nc60VnC+E5Pj/fLGdDozzxOlwJ6bGUL3jIsR8Y7z+URr7/RoBa+oaUhTOljJ3TSezrHXQzdqI1E32M/KIaEyrF9X0xM6Hwgxjkl2QMvOvu0WMtPMpiJpFHKDEty7DmNnpZWCd6Pw9A5p3pjW6tiq4pONvoPzw5zqHnjGv+RxFLWIe3CZj46uPjq/ppWWIcyWo8N8GH6cdf8PXJRofyToHaXsQ+voGMWoKTqCCv3gymszTNgw/hyqTCu8rNPm1Q5gnaPdPYxK0h8dbwsrkFF09Ie+8zH01vYwptpl3SyF04tpnsNC27ah+TdaEOKJPtHaSqPTy2pb+rTgcGQKB7bOHwmszhHnM+teiQ67r0fzg1bxIXK/b3iEvXeQwN4KuRajVmik504pm3WV6456C1qoQ/qUJLCcnvnu+Zm2r7TuOZ+f2PdKbhmPySv8Efs+3vdlmVhOC8t+pnRP7qNz6J0d0PogLogl9l22nco7H+czsTXqvrNe3vkUIilaR14Q27yOskg8uZURrd7Za+Hz5UJTZZ7PBB9IKeFCwMWIT56UzJgrPtoULwTUJcC+hwo4jZwnz/PLt/zphz/geqNi67DPBU0JguN6+0zwySR6QNHjnm8gHfWOMPwDEGxyIPqQBe1lQ7VYcFIprD/8GZkSBI/EgI8JHwO4SHXD3Cp9SJUcDImXqlFN/DhUqfhhSm0c7PGjo6yja+xxVNctTEjtntEhNXoYTwGRNpp37hE2VIGK+VjMJGf9bbodWulGQNFBoRHsY2uiBLVml0ExqkkfgO6MJX4wjp2aNKorjwOx0h8YyCPwxPjg7nFNmGTDDrOiDQsDsuetesTa9yG9+B8d5P/QjyNc4FDWBO9pI+zAEvW+foA2ZrSu5ZE411uzMAo3EqW80PpR2HVKC9ylsThHLTpCNxzeQUoTRE/qlojmU+T19YV9z6Q0A4bRyvnYLEF0x7XCtm30mnl5fmZOJ66XK6/xxVBWajxfJ57ay6MrHWKEgaTKpRLxvL9d+fOfPlNr4+PTRL5tvP30RvRxRPr2oae10U7OG7UW/JTw3tGK474pcar4BE0LUSf2tdIaFpQyfvbxntZaWZbFtNfNDF+lOnxILMvEfr/hvcWGOneYaBrOu1FgWEGzbncSoAXC+SP/6T/9I12V2y3z9PTEfb3jnTI/TeR15/16Zy2ND5IodadrxnubN9VWSMnRe4Lc8bkSouf8cqLuhWU+mVnlvXJKJmmhz2i/kbXTRprg8XrtQGAaQ6+AVLwfRjhpFqldjQUrIujQnrZmSXGxGb4ohkAfxVLvYhxesbEXYjrWVhVxgV53C66AkZRnFJPerLC1GAfH0ZA7Njg/phqq9lm7IIgf3R39eq+0Vh+MYfFmqGNobdEjFMTGa6LG3JYhHaqlEpNjnhOtKHlXWlb2deNdO2myLtPr80fW9cppOZs8ITrwmblUlmWiqkGVQnT0nElO2WnW2+iNWq0w6EfBiicENzqWypQSrTZ6r0xOkV5om5K9SUbaKH56rfQe8RJodEqruOAsKj4+UWvldr9Sq3V51JmpNkzR7s0+NrXxn4sWoZ1SRJtp6m1vsO52TGYIFO9pXthzRb2Y6fQvfATsPZPRBWJscA5QOZBvghOT59h2eox/za1uOvSO10B3Jq/wA3V1aLfBNvl+FNpiY9k+iu3uZBQ/neYCEf2KMeQYXUMbHWyVNMIHjh4uj6LBzoijs8/hsh9TArXwiD4mBn0QOayN3dEQ6D5QlBHLruA9Xq0AVuehNlLydkAqjWmZCINcI71BO9TtVlwKtkZ+e56Q6FhmhyuNfXdWDLtAiDNNO7UJKhO1FaTvZHE4IrlVLtm0rWly47Wazvh3TwtaHX6ekVyouRLTiT2vFCpZC9P0xOf7leI9zkeUwLJ84JQ9W/nMqbfxHmLrxpAMtkHlUYE1Z1ppnJfFQpgc1E3Z9oBzxusO4+DWnZU3Rezgfs2Z+201JF6MyKBDiFgRPMVgaaQKe6v2vDu4HplLxZ0ntFXojdIVp52P55ncfsXnTz+ynALbfaMWw6i12nA+0XEDV+eJIbH1QvcO5xItX1mmmZZ39pKZEojY/QWd4Bz3ahO7lgs5fzbyTAwwBTQlXErEeUZSwvlAFI/zHnXeOqhq3VOnI7gGGYzi8XfDu3T0fMH2AaTZOjmkGXkYnHuz++9IrDS9rgJtkCrsYNvUDr5HCEhVm6yYvMGkQSaPslCfozE3REdDyzwuCLDrWoeWWpSmBUZQiOmpj2tn4OMsyoRRLqMSDzbk2FvsuXgxnXkbBuBDlgqMLvUv5/GLK5DdENb5UXR1PQrjQ1Jh/+7QArZm5rHeO9H7h3Dfx/BVouGsOMYL932nNutOJ++JPrDeVnxwxNSRHqiq1NYopTBPM6V0NFqn54imjjGSkjB5x/16tRQzVeTpid4qvVf2fSfvO1EmGwdOh6bKXogbrw+sE/7+fuN2udFaZU4T2+1Oq5X79U4MEZqZ0fK+E3wcm4ndRMF5SwarndZBWsWN8aCqUoqFXYjIw3ioqg8DUx8GIO/tRD2NRDgd2qemtgiGMFywaoeZ1rvFf2rBSSJrww0s3TzNLMsJ7UbqWHrD+071wvV2xVWoVdlzfUTC9l45PZ0pdbNOofNMkxkN2B393pmfJk7DCV5rwZt3ko+vr4QU+fLljYqnEVAtqHN0LPAjOT90k0N36WwkPIeI9kKpmAFqdBAYemp1AdFG99aZ7gil27VXulI6tH037qu40fEMeK+2ITPO893GeYxFuo3AjWmabISMmnEpNzCFGKAPvJ5zwYpGtVAcRpfK9VGEx2DdGsxoVnZL28rForYRM+m13vn4za8Rzbw8J760ldv1jRQj18sFLvacUprwHm73ldv1C0/PZ0priIOn88zbdadsdkCkC2u+k7edaTIGc2SmFCPMTFOCCnEyA1kesqU2kITB2XSCBnh96LlrHQv7KOx7N0KNc8I0Jbb7yn5fjUHb65DHmGGmlEMz7401jX69lqeJ1hrLPJl0QoTWzQ+gEnHeU3pFVG2iIY6Wy7/HKoe6MLo98rgWVewT5+gUjzXQcWDg2gjnMN2ikSEsLInRM9Kj2+RMxuDEtIVOh5RC5cEklpEK151wQNvk0FBqxw03kGKbfxia3i5f4wSsS20dKhnmpkPCcbTp3Pi5YA79MBYQHQit2iFj/HDvPRvNksh6Zx14ruTNRObU4iAiFk7hQ6D3nVIzHiNT7LUyRY8PE5d95ZvzE6UqyQuSd2IUYlpYu6JtUFKcA4nUYYK0CUQnzYZRbE3JWjnPE3/729+RmCj5RlOH14Xp5Kk14x0WduFmkzZ5x5rt+jZpisXWn84TXXeamhnRuWRhGrVYAAimBfbi2FXZru9Me+BlOpFCwPtKG3pvk44JtVuht+XCuq9s1QJ+fEgjot0OnTEEggBaaWpT22VZEB9Rb9dZUSVUCHRayXgfhiQg8PH0xOV+47atJtlohdYbIUa2XAkoUwjQxvd3idI39n0jetP4SwhM80StjaKdkNzwwxSKdiQK0hRaM4a77HQTN1OnSJkn3Dzjl5kWIzFOSIgmcRNBqXYtNmcSFG2D6MKIoj6uZaAb89vKZT8mIEaOqY/0PUAUUZO7NWdEi9atSWdFObjBC9dhtOvaGfW1FcjDUO4l2PR5fJ9haaUyGh7a7R7Aj5/7c/qL3Rv9QcExrwzjkM0wGApmMKy2AKJ6dJQBPV6rySu6vTy+Hn1/GY9fXIEMDONSe7i8bWzXHkWcDGez6lfUkRV7X0NFHgX1uGDFOVprRGcooO4xGoSvNq503dKWxDGJQmnc88YPf/6BeTnDZnG927Y9Ev2M5VttkS2VLo71esOrMMdkRYOayct3Zd8aLiZKtaIH18nVvt+277SSQRznJZIksd+ypbQVg/j3agVFisE0f2Wj5UrJ5gDe9x0wJm1vQiseIT2E91b46cPZD6bfDD4QnHBaFtaceX55odVOLldDSk2RVq2bI350sUahl2tjCskOD63xNM1ozqzrSmmdvmWeX18obSWvu3GBe+P8fMZX4cfPP/Hhw8xeN3wWYoyc40wrNgq7ZytwFWVOHl8n9qHnVa2EGMh7JnhPCo4peD4+P/F+uVvKkQtIYBBLjHawt2E+QQh9mJ1qRlRJo5UbpgkdoTNZrYtbu8k0Woct7+x1Bz/T8ey9GWmjWukRY3yc5oJ3NhJljLm9IfK6DqScOLS1o3GIAN7buNXkakKaEqg8Fl4npkkrpVmHVrDghGYSgjomLd6DdyBN0WZFRc2Nt7crf/PXpueLMZCiaYTpCXGObd2opdEXZV4i+IifTrQu5K0i3jZDn2bwgm5mrnp7/4nf/vZ3vF3eWZYnC1sRaFSch+ADeGcdtWYHgjDidPdSiT7YCFONaiFj84rL2T5zAXWO7777Fa1s3K9XPJ3ou73QzTi+zjkjaiijy9ppzUaK3tlo1KkjTpPp+THpk7ijYBXTSLZCz400T49C/i996M9oEV4GqeLIjh06w4cA2HZmpKtdNwxU07FpOzPs1EeXyA3TnI6i+EBHmeDB6aGPtDU19GAGMyfQDZ5nrS0xDJjqSL/EigxG4wFwJsy069qSDBBn4UKmVT50wzoKffcwT1fs+keF7By5O5J4qhqlTz1cS6NqxxNQUWpZTavqotEAUCINHUFQghW6uXWicySA5UyLDo+QZgfLEzlv5D1TOwOZFU2/2laTZc1n4qS8XaG2jjqYpoWTVv7u179jdid6EIIEelOaGPtdVRCXyHRCDNxub7QmxBCJceE0e2654poF0pRSqepxUkFXs90ECy+qrRAR6EeX0bHVwn1/I4WIFzWjnx8IOydU7ZRqqWs4CMHhQzS5oojRXpwZ4VIwc573yb6uNE5+gtq4ScXLiQVH7lYgxlEElmoa/I8vL+x5Y44TPkaul3eu1wtpOuEc3Lad0xTx3nHfNmsqTTP5ekdCJPhkWu1emdNCQLn11eSUw3A8hcAkycgQNaOloi3T/YamOzJPlGWiLAtxnknzREiz4efGfWFGvKNTfOiRD4PdcYYb5AcdSESEdhBXxvjNqZnZjOpiiDQZh3RUCN3+rMmYsIwiFDnkDVa09m4HUrRbUEk3A2OXYxKjSK8/e35Hj1uGEW9II44uMoO4Ifb6juaPqv3d8RpdN2Ne46sk0CgWjMnDYe77HwXyf+jHQdSsOoidzowzj7PT6LiCjcIPRvJhYjmK5kPGoO4wmwg6aAGH7jiXDdc8ISm9QPaF+uDQOqJPSIrMi4WLHBrkEKyLp8pg7Sq1VuZ5RpvhxG73O+k803ultZ3vvv2G8/nE5/d3tm0HbES+5Tvbtlu3QRzRmz5y3S5cvtxRVbZ9Q0i0WsbFbBg25xtdC3NSvvtwZs+WaJaLnYxL3/AWQo8gLC5Rix0g0mTpR30YnURsfJxb435fCSHZ4WKY8IZv1ugYasVb78aIdaNTrzq6cwivH14IwSM+kmvj+emZgHBfN7yvpKRsl437urHlyjklXp/O1NEVlWAor9Ppifu6czpZh3VX44u6MLHvOyF4zueP1qERzNSFTRjEe9pufGTdG9RmHReMAKGtGkniuPaGg7+39nDy46wLl/OOBE9pndo6RTsER6mVPBIft1JRghWz431pxfR09t4ZmcEOcjY16KpMIT6QZH0Uaa11QvDUMnSc/aEoHYcbkwyIc9TakWA2rFaNGNGjPyhg2LjedORTjCDC6fTMH/74J/7+r37FMntamwheaN1Tan1obcu+GRe5mznqV7/6NWEKtAafv9zI9Uaaz+RauN9ulFr5t9//gdPT2d6nalKcEBJ068qU1mjNSDW1ZtPjO0drxSRWzbjNCkQfB/5up9YMAk9PZ3LOrOvVtH1ikgvxAe3dotPrDs4TXXpsdDo6oKodlYBPkZgSLQsiZszCu5EaZ9IHH4IFboyYae/+cg6SOtO0erHpxWFZRGTISeVxUPoadjDWNjeIw2rsYGMbW2fK4HbuoSJUdxhPwQpl47l6HQwqbWMDT7hh/HsYEh/SKcZoGXCBgwMlg2N1bMCi+vi1ys9GwMefC4/RtA5MwMFGzqr0mKhN2QokD702juCEeMQQIxwCFyfdrg2sY2uFZkN7Iw3N7zydOIXAszRy7awZgi+0bcfHM8FbB9+5aDI+PJs42ucvrLVxU+Fp8viwUPLK337/O749faSS2XLl9cNHti1T8sqUkk2URrcwr5uVUNFTe6coeALzdKI2j86OXk0O4gU6Ac2Kc9UKrwa1ZJPHOCvEdASLrLWi2snNCrDgPG74F/yx9w2ijYz44OBsQjfNEy4luo84F+1aEUd1nptWJJmcpUd4zxbK5Ki4Bvf7HfWeXCpJHB9fP/C//7d/5TTNnOaF0/lMvt9GumfgmosdtLTRmpCiZw2O7oVpSImiD0QnFFXu1cJFDtPg6+sHZk2st5W2m3G81ILuhZYrdcvobaXOdyuUzyfi6USYFtI0EXww8/KYesgQJxzXpIh7BIC0Q2MwDp9mkzuWTxkyh6Nedg9pgiHjLMTjAXDt9jvzGrhRhTsqOjjqg+XyuGfc4/4xL8FBqx9vnx2BDDcnoGIUHhlP6GApO3Swkk1qVdUahmYctPu4jwO+DMa8U8Yhz57m/+Ag/wd/9N5JU6S18ugK++BH5+NrxziEYfoRO6GLk591ld0joUzGBsIxkg1H3rltHGXfTJIgQgzWgd3WaulkczKT124F7TzPPD8/G6c1RHLO1GxfE8NM3hutbnTn8Skyz4l5OaEoW8ncfrIx09gmKDWzD+4wzlO3DFKhZ8pur713tZMo2AjOrP7sXbmXxtYbL0tkmhzOJ4JUnk8TBEfuhg9CHPf7xroWBJOj5JLZtp0UEohQD43g2FBNj2xaOBEryFs2zat9UJU5REs8LA0XlIBYmEWKbNq4lI0Pzy/020bNQum2WKz31bjPS6LmwpdbwbXI02JYM1UhTs+s+4p4bJzYGtM8c72vJruYA6cyDeamUItacIlzLMtCU2XN2RbfavIXJ53aHR7DKbkwNFhqzUdt3Ugnaq/liBj2YuNVO4KPdDyEUh1zmiilsrdKPxqRXYhL4na72oIkDu+CXZP9axe/1kL0cbBHu3Hb1bpP4Al+ojorTGsx/XPTgvhhhHLxK30FpaiSgjBNE/deH9MT1EbEPtph0qfAmncbbbfCN/OE92dulxtTsnCRQhuauERvnnyDXHbu19/TtBHSRIgT2uD2bmzg1irn0wu1NpIzbfMjuW5QFPw0I91SCoMPhNnZ6HdMM3LOeO/xRENBzY7aMnnPzKeZc1hY18zt+s6+X4nBDzzSkaQY2avRZrxghsBoEwrG6HPPG0sY0ecjxlWwSWtSnQABAABJREFUbroMTb6qBeP0qizT2Q4frR5927/ooRjizQJBjq6wGQK72Ch+eOpGEWn/d0cwkrOL1h0yC4akYbzH1tUFEMzPeXTCrEhuQ5ohBEObwcBgGaaPw+wn/fF/JxYZXY+0LkatfDSPRYbQwogl/tHtUroz57+OLhfODyOSGyZXKC5S6TSv7DrwaiO0oQcjYEgXlISoI44SontjzNduUjrEEydHqyYD8sFTtfO8BPqIppfliUIjikdL43rfuG4bTQ3x1lV4mhPnlsnqWd/f+f6bj3x3/oC6Sm8wx8B2faN0xUvkut4tbdMNI9ToQra807sVohI9SSNha0SXOE1nWm/cWjXspvfs2z4ATu4Rmd7H5KNykBxsv/AKPsTHJCHIYPuK6e9xfsRmO9Q5vE/j59iBVYKjqVKbknvFdeWaTYWfsj2P05xoWfG+ISHZZxI8WwWvno8v35Hb3aant5XX8yvr9Z3r7Y04nfDOsVY7XCaJeJ+sycSgkDhrSrzfV5ukdmWrjfP5xHfffotXk9Hk606TSOgrXiFX+yzbVmn3nTqt1NtGedoI5zPltDCfFlKcvjbLAA55kBwDPmdpqGrLVD8aETqu0SEZsmX7KDjte/Uhk1PplHH/Srd7q7ufc5etZ93FHadEBE8z9ps1/WSU12L6acHMsTrqFB16ZxhJqpjcqPG4+UcjbBhvVYZkyw7ZKh3VNvTSDgNXCO046I76yvTWv5zHL65AVnSMMvXr4n/ESo/Ojg9HoIIOE5MbXznQcHRLffP25zFa1CzwOHX1XpEQSdOEc6Obu1vE8BQXQorsuUDf8c5E9V/2zwPL1VkWIc2TjUpUmeblock1Y2Bl3zeut8IyL+y7EQVy3SxIoWTOp2fKboisOCU0K+JHwaGWxOe9kBldGmecq3LgvNaV1grz8sK6Z0ou7OtOCJmKtSameWJeFj58+Mh/+29/YN+LYa3yZjeMGH5I5WtH0xKsxJKT1IJatm2j7IUuzoyTrj427xQjPjA4yRt0qGum3O78/vLP/Oq739pY7XxG08Tl/Uovtnm5kLjcdiQXpjkwT9EW9d6QriO+WyySVYTTPHPfdhyOGBMxFUu8G8a50+nEfd8hOIIGcLCXavzpny2CNEUGxzmGQAVc8JTdYPStG+6nFLtOxBlQPZdKc5GiQneea6lc122ML+3z61p5+/LZwmZgyIWscx+CcSjL6CzHEGjddK1dO94bn7S1bMaxAYj3zkavDmPGWhffphhWpFhnJNfOtJxxpdu4eExWWqt0UZpvLHFh3zdSOvHP//pvzOmveXk68e1334IaWWHb6+hqdNNx45im2e65omy3FRcqIo68b5xOJ+Zptg72eudSC/PTmRgTebNJhfZOzWaMK9sKzuKy3dBnPsgTw4letTP7E70VphQRFd7e3sm5kIsVqyEE69iMyY9zYkE4MlL9aqe0/JCmAJSSOcmZ6AN0NUIIY/Q51os8cG7OO/a8GQhjdJ//0oeIdZEVO6D93KQZkHEgNvOdjq5TPzZKOYJCrOOs6kcToHOYRWV0qbzq141ZHB43OlTydU8lfm0kiMd3ObJL8HrgrUxqgbNNG/V8RZT1Uaq6cQ3r0fZ6BNOgRzdOEe8t6EBk0DXsz1uccC4gUumYKaziydJoZWdxSkoTeYTrdBWSG8FLTkg+oNrIe0anGXGJ7iKvL8/M5U4pN5xPfDwtfN4ULZk/XVfzB4jgk8er4xwC973x6VbwohQqS3T8+nzmuq3IrsQ4U7TTuuBmT2zCvmdacDQfyNqtK67CuhfonWU6cbntNvGkkZZEQ0jDOCzlTs8rMZk+fq+ZnAveW/ewtYIPjtLBYrtNPuV8omsnjp6nc2bEFe8RnxA8IsbF92EYvIZutg9Dsg82NendsWux91SUyXlcNi+I3K7IvNCzoPX24Bd/OE/8y+9/YBXHeTmx5TulVV4+fsPt8g5qe3X0C10zXQ212IckKPnAtWREhGWayLpScuXpaeHbbyK+wuwit9C5eyVKx6uF5rjaKa2hpaG5UtdMXjfCfSM+naj5zPz0zDwvRgcSoeAfaXImW3DHL41lLEJTD1Qrcnsf/16PitqiqA+/yCGBULsLKl8DzB5+KGs3m2FWhzpYDKuox+9HsWuhID8vwm1tl2HWVR2GW7Wpg4hRfY4itwFt6KYZkxw/msJmntXxvCyoWjGdtElR7Nr6JT1+cQWy9/5BlkDM9976cMWrOUijeLqa+cY7R3c6umWKSjcTE6aZCt4NSZ0ZUpzzZqBSkw34wwzjnGmFY6T0RsPCPKbZjEVOlCzGWZ3nmSMPXsSeX9HGtt5p2mmXau5XXeyirVdU1SQYhzyhKdfLnSDWXfAECkrZK3lXpiRoL9Ta2PIOPrDtmdy7MSpbpjaLC27a0B5o3SJ0W+lUbdz2jRQ20nQjzk+s+86UZnpvpk/zQtfCfd84LU+oWiz2y9ML9f7GmivOC96PRXccDnTA8FsrZkpLMsx00wDrF7wXzlPi/Xah5hv7upP3jY8fvuX54zc8vb7y6fNnnsLM/uWNP73dePkYEddou1FJyqCX1DGSKnumV5MXHMZD7TAvC9571n1ju202mh3jaJrF0la1ha9Jp7qGa50YZqbRddtyIYRoaB21JMAono7JHUQ8pRWaOtZcqGKUj1IKp/mEegc5U3I24580KwDUgYfaO9Es/BZ6EqN1b3rFixpVpNlBzXtPNFi2xSeP4jZNkftaRsfb5B6WXGeyHNzQgI4O0qFpD94Th+Rj3wovH+MjJe22Nf75337g//o//xMuZYIKS5/Y1p1ty2hXassoikjCh8Bpnrnd7+R9H/HjjpozvRV6q4QAzlsfMzpP6RitQDN53+htRF536/S13lmWxDRN1kEekp8pLY+Uqvf3C6DUEedtnRCbkJbSBzKu2uHnOBT3Thelt43WDGXV6ujEto7Dk3wybbITI9d4k6kYdcQMMnjGJGC43f/ChxXGMpQU5qz3apSE7mzDPBzn4iwI1j2QbozZa+AIYLDG0ld5WRc/8G3WEPAiX8NkxwSuD02w7cY2Mj4kGse/9WqHUtXBLOb4FqYxrhwF+eh+KeNnWWH/GBEPTWx/yDMOVJ0pQp16YrTO5KVtVlgf/Opmo+vkJ5pGqjSidrozTJuLJ7zueBdofcNHG5unGNCemaTTneN8OtGIXHczT2+tGGO8FXwM9DBxXTOfb1fWfUfSPIyhK3/zm7+nE7msF85P36Bjglilo6Xztn0BoKJctneWKeGmmbauFHEQOuvtDRUrpMM8kUvBTQHfIhMJCYbrcs6h+4bvhi6txQ7Zzjm0CcFHvLqB6jSjp4x9TcTjxFlokTjjZ4dk0fYp4nwCMUNbwwKlai9sWUhuNmkV4JKntkrtQi0F6eN+kDJMkmbk23Nmiomn0xM/vn0hiOPD6wdu60q53ng9f8Pb7YvJaHJhyxW6EoM3SdAIR1LsdW1lo1czJv7q1098/LUjlsrLk2d9nrh88Xz5SWxk4cCv3daxpkhp9FJpuVDWnX3biLsdMtrzM8vTExLTo84V1cH7foQuA4fEoBhWcJTA1U57mJF20F3G5OQwxRrn+yiZGRMaLOCEcRDsphouWIfXDy2/DAQiiDU6xr3cxGqYjsmwbFKjQAMNqLRxmLZC+zgYH0fW/ggPscOagS6FgwbdH6/a5BZHgf1LevziCuRSCiF4S61xjC6xGVT6gOP3brKLWm38JN6PAtlOVq2Zi733IT0fWlnVjnYbSbda0BjItQMWhyvHAsVAwvVC78UieOeJ4Mx1HZw8RkXTNBFjH9e+MAWTZfTeHhftsXHZ8zWkVIyJvFf2/cZyOj06jajRA7x3rHlFJLCczuSa8dETukcR9myn7nk6EdNCUVhLofTOcjrhWmMaI9nL7Y5fHWUH0YydB6yb6b1n3/rjPQXYd2PfxvH6VGC9W0ey12ocxmZR3KYdtRHRtplsw6F8+fKFP/7hj3z3m1/z/uUTIQbmU+S23vj+t78j0zm1whwX3nvn0+2d+20nqkeCdVlArWtSMjFYglynWZriuj/kNvfbSvCe3G1R2beN3vTByja00dcxfHAJ+qENNsNhVysMRCKt7Qgyom2t4+IPo1OIWHBAJW+bDce9QOuUfbfPHLF0KqfUEewi1J/pRb8WCqodeWjaLTL86EDYy+uEGHHi2PbdAjhGiMbRBmxdiZ6hTwW6SRacOOvSqj3/bc94hE9f3jmdz9yvhSlNXK6N/+2//nf+09/+Fq3bYH0vHClf3hkXuhRzqiOGlPOtWUFUM61alypOE6XY67q9f6budyvahm7aB7Ggl5SMBV0ztfHorKeULFxlSlzWlSUkMw/aOzY+T+vwmmTF3rfDmOucjafbwPuZDMt+XikVEX0UwE7EihwHuRs7VrqY9OG4H2FQcoY50v07YJAee7xwGNMrjIJZ+Oqy8KCWlOV6w/mJPnTEDttIzWDkzJAnQ7U7Lp52mOJkqA9krJFWctlT0Y4j0EdYQfMw8r7o4r9u9Mf7bzv9CBoYumasIIZB4hjtKIu7HYEFg8jQ8eP5H3g7R0Bs2hEj5EpXK6CCOJLzqFZKLTjxuNBQIqKmh+6arUjKJhGpDcRbx+31PBOi45wC7ztsueCJVAq1e5x4xDu+rJW1rGicIEW8WkBNbZV/+t3fU3Mlb++4OZLWSq031HW6m9jVyDhrXtlq4+PTKzU3aJnc7eBR941pmrnnZuzh5jjFE7f7ymnqbObSokbsnlVHbz/TzFcrqFyzZNmqgAuE0ervPiEowcEhYbEi1JHC0ak3uUVwJtdwLo60uoCKY8+VSmNOnr47VAKBnVUtN86LwzeTI8UpQTXDdlPHxw8f+fL+hbftzpY7333zytv1jbfbOykkes9mOvSOGB3JG1fbWNSNrTaqBMqo96Y58fThjJ9heQo8PTs+vDQ+vETOz5EffnC8/6Ds0tFV6bviukOb0sckeN/NiHn8V1vl9PrBjPjd5D3NAMXjfoCGG3pe+zM5uvXaqM6mNXY76UO2JOqHjM3uEhn3wYjN4as3yu644eE2aeJYA3Y5kvZM2tcRK8pFBsbTyniHFdM6YuSPn4WOidSQaB2hIQ5o4qgyJqd6FPwyIrPNfSDjwG6NqP8hsfgP/QghkFJkyzu9KT6GkeSkOO8HJ9k2UhnTyNYtoOBwc6Y4kYLJKmodKVtjPLLtuy0sTtn3bQRlWCiCjSlswwHIeScmh2pkzxtFK9PpNLoqdhLNuY7NWEaHW62o8G6wkt2jkDskItpNixdCxGMFXZoSuewsLpCipQu1bvibnDOtV56fX7ncN3IrZgocp/daOlsprHuhlEJlo9RKDJGX12dC9Kz3w6XaBkLMHvu+M88vTNM8Cl3rENEbqpW891HwV+NcOvfogh7FyTGmOzr0vWb2Hf6X/+X/Tev/L2KI/MM//AMvHz/y+fNnfvP9xq9++1vW+8r87TMv337Hdr9yed9YwkS0b2VGOXVmHmsNfGSOZ1xophdsFn7Se2c+n7i2jIRGbWXougYxYh9c7FoJIzntiMxtqtCHlqurRR3jwR3OZhsZb2WnOk8utvGJt3So2nQY++pD975uO3HEkqsaaxvF5BetksJMHsW7FXPtUeQdJsjDeGoYOIjeuocHH7z1PlK6BmhLIZfMNA2etY5AjPEafPAkEUou5NyYTsKckhXoEvj97z9DbfzNX/8KH2wjmqbK/XLjfr/btezttbbeh4lTh8zhTKmFPWecCOvtytPzifMpsa4rKXpCEEMw6Tgo9EarhRQDIRrea0qR2/3Gfdt4Op2NIDLILUexum1WwC/LQh6HREWJIT48Cw/vgvccwRV1mCCdeGJM+OBwEsi5DkNrHXo8wTcLB6mDhY0aGm+apmGQ/MseIowS1DZFxkFIxeF1mHu6PFBundEsoOEk2kFeO07suxydaHVWQIkzMUl4oMWsE/5zMcRR+JoO0mRFhznKCBhWoJsQxDbzPugb5t+0wtcK6T6YrD/roOFtqxe1gvjo2nHwqI/nIASnPM+edp7ZS6Vpt0JOIlWN/tK83WtRBQ02v46aCVLseVPpzZFioo2C40OMPE/erpNeIBeu5cqW7b1+v18NXTadeJ4nbveNL7eVfVvpTfnbX33L63NiXTPnlzP3deOn/UdOy0xtna3s7GWjlEqKkXvdyaXw8emV88kmNlIbrTR2XXFypuWNvVRO5xcQE8p7jYSpMTulVm8sbAFdHeKCBaVos2meOtphCPMeJ4kgw2zpZOw5AT/kXjJkGDElwmQF4LK84Jw33F3wQ1Zg981trTSBWVautT4OVDFF5uyMGtQbrTYmr9y2G2cf+P5Xv+a///mPzHPgel2Z52d++umPLH1GCHy6/MScElNIPC8zrWZUIpMHSY6f3i60spNrQaPjdt95vyXCc+LllFgWeHpqPH0MPH8I/Pia+PSHG5efrvhLZt12ChnJFWm2tpRqkptt3yy+XOH8+mqSKrWusBXER/iG7QF2XjnM/MXuu6MNPIrPxsFyB9DHtaw6cK+j0O1if+cPl+r4GQE3NOWPG2YY//rQNZtfx6s1ZrpiunuxL+jdusqIFe1d9UHPKNi64UcB3kXHQbX/jAFt924bhX7FgG/1L17d/mM9fnEFcj82N7El1o85ahVLb9Nh3qjF7CWdOtKHBmnhUZQ0eu9fbwZMvgHeMny8xzmPFyUSTeOIdapztcJcu+K9fsWjKezrhscRAgRlxC8bNeL8/ESthRAYzvv2ID3UWi3eUwK9ZkrPhGBJYPfbnZ4LNe+UpOzN3F4+eJZlpvbG6bQ86Af322rOZWms+c6eM+DIexkaIrVCaKuUXHHRTFpdC+ta/w8F2LIsxGhfE4KN5X0XggibZroIezYaryElDQtWaxkx09Ug7e1I0qpDYwtZLNa5auO//vN/R/7lj2hv3G4raXriftt5/djwSUinyPXTFX95x8cXztMJGYmHU5qodeN2XYl+wXshRSNWUDO9KeuW7fTrBHVi0H8Z8bpjQ55mi9sutbF3K/CdeHy05+/oVLV0xOCGNss5XJwQP5FzZe9WnGs3HJXrfZiSOl5GpOicOJ+feb9cOEInaq2juHDUuoMqwYVRuIzAgKFjO7oOMcZhlqxWsPUDT2QLdqUiXQlDTYaYyZFkh4EqXw8akKzQwFHWjOobp19/S943UjxzOp/46e3Grp3ffPsN+/3G6/lMbTsi7TB703JDYmTPI4EwgXcF1YaqEV5uXQef3DOfT/Sy45znw+uHoevOiIz4eGDPmXW74J0hCZMP7Nc7guJjouodNNOqPMJtcs72fIphofoI4PkaKDTkBt2Y0M73R4cxpPlrMd3H5oEjhTg6+mqbmDhUjWISo7N379+BYhEwDvIxnpXRSfU6UsFQmpPRj7JxeRfrLjlVwCPu6CAd0c46zD3WvXdiUpI25BBm9OuDxjYaDhhDw5K4/PDKy+gMD9KKWJdN5TD+qREXZBgLaTwIQ0Czqn4YjKzIsKmJpT2OH82R+edVOE+eb14SOT+RQsLVzN4L3fkhJdGhdLHDZsMK/+4CuRaiE9ZamUOAXnHhTPKRU4q0daXuVy6b0rwnuokpZz7nDZcWEpVdhdI6e7HDW8dxmj0fn068v10Jy8zlslrKo+98ua8QPLls7M0Mgu/33QqoKfLpfmdrGx9fvkMbNBm+B70RAiySSCEQg8cQc0KYA0EKd12JyVNaY4qgPTMnYdvvKPZ5Bm/3dPBCcI7gE7VbeRO8NZSCs8Q58cEmgRIMaxgXK4VUEEk4FUpp45A0TGStcKuZ2hyt3UkxMO2BvkwE7TiBKQRqKSCOe+k8nyLTFLitV87zGamVl9Mrn9/fSGniPJ8odTUj9DxThvQtYEmIW97p2iglU53wr3/8Qs2N33w88euXxLfnyGnyPL1GTid4fZn48LLwh3/2/PCvb2hrbL2Mw6MitdDKznq/obd3tu1mBWTwnJ5ecN6mM12H90DseSDBNNdqSEdrDDuktSFBMmnRURA/1lexArSLFc9dj7vFpA7H4RRVI+goNgEaTeCOYfsURxh/7NSkpXZP2WHf9rNhxlSTEppPYXSQrYhC3GA8yyjiRUfX2CRdMhjn9vWHoRC+spJ+GY9fXIF86Fz90Ff9/C86pslTLAveOYOLdxphaDa1q6U0AQdP2cnPCmcYiyvGPhbGQs8IBmiU1gkIKUVitEKa4ajWZtpj7+zkHaKnlMpaCzn3kYZkm5xzjnleTF7RGuIdHpODlNasm6wWdoGYeai1+iiOejfEWyllyEjMvNSpfHh9QetuNz4Wi5xLJ4Zk36d261CHyH292ql4QPePIW5tbZhAGgwGZPLBTq2tWlcUMYMbgoRA39QkD9EICp1GHYluZi4bIRa9UlBkitYl9IHLZQMql8uN//5v/8b5+YxiI7VpTlw6fL6sjxjUKSb2tuMAP02wW8qWp8I40EQvdDy3vJO3jS3vtN6ZpxO9NVKcOPWC9sCcIs510wGKjtcfUOdIzggczk+4bh1m582wttdOVof6iBsosVrb0FtnfAik4A0jKKbJvFyvVvgIliKn/Gya0FEaWsuIVT6KY4Y0yH5dShm/t86EtoPQgtXDMlB0Vs8RQ8CHSCkNL6C9sZeM9wlrDtr7J6K0Uvnxzz/y/Hxm23dcmClV+P3vf6KWRnKw3q4EEV6eX3h7u1jKcBdqNYPJQ26gjKhk06f/+rtvWfe73cdTwruZXm268bSc2PeNfd+53292kMQkOqVs3G47rQniAyFEXs9nru8ZlW7GPDVpkI5OK6PQjSnRq13XpdTHBMf7wCGZOn5fq0HyffT2vnbjQx+jVid2/Trn6d2ZZCuMdLnD8fIXPDoDtYbpwBmd4Cam4a2Y3t+PDbFjGngVN7qjh9NeBlbMTHpOjo6tHQj70dVCH5rnLjYy7y4cYb+20asbhTgm3xhlr1elmaDcCnLV4zh2XIT2/tqF/hgVM/BaJvEYiCrnzYgkB4xOcdI4hUAKQnGVtMysX3bbsF1/mG+jhxS8BfkEGx26cW9q2yndJB3RdWrb+ebDhI+Nko2T/HRyvG2VtQfuEaI09m6s65obed8prbJuG651fvfdR9Q73DSBD9wvb+hmxAcksKppdO+7FXa1ZlKIPAymLXF5v1la2ZhuOoW9FkI6EdUoJq0WEKXVnSCd8zyhe4c+jQOM0rXiqx1mpDU7OPrJAj+8Q7wj9YaTQIgLwTm8mxFXTc8/uMenecZ50F4Qf+wBHieR1pXWNnot7PcbuWa2PZOSI6aFJSRyrcQUic4xe8/TFNFa8Q4u18LL6Zkfti9s244PdnB13iSR2hv3nHl9esWp8JQSGeW6ZtbScFHppVrabPP86x/f+eNPV16XyPcvC7/7uPC7b5/49TcnXp8Xvv3ViaenmeWUcCnyr//fP+NLseJdHAXYSmGvlf3eWfNGXGaWl2em+Qze2P19XNNNTZHftdK1ogwT+nDa9YFWMwlbe3RheXSQ+9GH+3qoHffCca9aet0hregEa/2OwI+vwirTQduhtAoc9uI6ut1OhzRPZYSiCI9AK/U4sf36SOezw+kQh4g+7mP52UsQDtnXX76+/Ud6/OIK5NY6LniaWlCI9+bSPmQN/2cKiXO2wRzEi9YbHv8QvfvoqNUoB9ZgdGjrOLEOcfCO7jzdeROpazfmazCTg/eOZQlmoNqUKUXDWE2RlOLQE3s0OPae0cHrRJV932mtM89nu2m6476to7P1NUUthkCvNtyYJuP75pwROqEr2h25KEoFr5yfJr75eEZa4n4vvN8bpdyJMbAs0+hYX4zQoN50rar4cTT1zpH3DE2oWyGGxK9+/Q3vl3e0NaYpsN0r8zSz543ehN6EXBrg0O6GnMWMDuIcp2GwMjOJGj82Cl48s4sQAj5ZHGnedz7/8AfO81/x+Yc/Id99y1ZA3cT79cvooGLGGu1IbizTTIyN2+VOd43orDAqxTLkW884CSQvuMlGzWvPVBXi5IllHGy8J8ZoZk3tZvQTTy+FZTlRakPqCFoIgZora25sreCm2aJuhz5QxVrJcUgjOlbc7jmDSw9ou/GM66OreYz/m+qgSwAIzgVD76Xpq1yn9HEgrMNU6h49Q5FhUi3dFtreqfuOOIcPYhi1GCi5E5wnpMS2GRPFezOu3m+7SZcud5Z5Qgh8/nLHifL9rz8wzXHENuvgD1e2veLGvekkjMNeYDlFWs3kfeXDhw+s20pX5fXlhe1+Y1tXns9nK2hjJIaZnz594uXlhKDUmuktUyu0UgjB0ixLMXC+c0pwimsbHUuzQgQvgXzL4/AnBAypV2p+nLFLraQ0Udtgwmg46Ikmmg1fOzxOPK0cVJFgWtpW8SHh078DBxmlSx2MY8H3Sjdg+ShkLTK8D7mTOCteFXuaIqYpFRh8V2te9kOzOLis1g1uD12hcSyGMe/osIvFTstAQDk1SYZDQZpx5DnIE7ZBy2FYgqHBbIj2Byv2kGXEoenUB37KEh+ddrQXC8dxStROK5V7uTPNiZ+6HU69Gg87eGcpeaJ01wkqxtBWS7vrYtHWuTvuOXN6jkQRpGw25WrQ/QKhk7TyxM6bCkkal/udncimSsHWs9PLGZ/O9A71fscHM3LKMrPertzvG9ftTtbOvmVLw0M4T7N14ntHeiecPC5M1M1Qnm+3OxI8e+2UkoFO0sbehl51FD9P8wlqw08B322KKs5zX1emobt33hNJhIjR+/B4F3HBotx7B+8nw865QAxp+BusOBMxwouLjlLvlLJTWiHvK+u2kbc7TgLOJYoa49yJ8vz8zMs0o8FByyQnFBVSTMwKc/TQhds+0jODt2ZWDPTdgpo6hbVXu64QMweq0kuxBpSDbat8el/5Y6/8Vye8nhJ/+90L/5e/+o7/6a+/5fvfnDi/TPxueoLgWfedL/+fKy6bVGHXyq1ltmN9LZmcN5sajevTKgY3VlNH14JScGJTGjPzq8Uvq8LQIyOH1pgHa76PTqw7ZjBj4iwKVYZuXBy9O5wzGV/TbrHzOgJGtNPGd7BOtd1LQbCmjbPfd8XQbWM1OTYD0WOWpI+i2Y/rxbuvBrx+tK0xj4Ef5fkh3/glPX5xBbKAGYuGG137cWobjF53LM2KajPdFTIKCHPyHuNT0yMOIgYg8jVUpI0Ur611oii9rYi37lQrjRSUrWZatRjNZT6ZfrdbZwrvqNqsuBAluQDNcFPzbEXqtu2PqNtWOxI9MczUWgdmLTOlaAVbmkCMYbtt2yNC+3rbERcfLt/X1yeeX874MDpJ0hHXTVc5QkxkJF89Pz/bAcM3ei4EHw13p53TMhsWbZ7R7ljvN6bo2ctOrc30cThqV3IpNE0EH9jr/uh8Oy//J+0nBB9RKk7UOKQjoW/v1h1VBW2Vtu1cP32m9s7z6wsuJF6/+xZxFuByvW626HtP9Z1MZV4WtHUrooql503LgtTGBGz5TohxvOdKiIGUkklTTmZK8SGwrpkYLGZ4SlCbMSZrb6TozTmv3jbcvbB3ISvonpHhqsol41AW74ijyNia6XNra8iIQ0a+mvKOLqY4c6eDpUIGL6aRBeOU2rpth0XnKLkSkx+ow4qGhIsRUaM2PGgLWLgIYh2GPioW+4wa+14NCeU9DMOjOseXL194Ps+kGKwLUU3m837ZyNvK62lhWWY8wuV6ZZqX8RoaEswQVJtp1p1TQvS8fflCSBFV2LeM84GnZeHHT58ME9gaaUp8eH3BB2ONpxCRk3C5Zrp645+Wav++FOuQi7GNfRibrR6BNRYJfFTEio7utHW9p2m2+4I+EgUjvbdBuujQHDF4Otbt66rEmMY6o6MDY4zuv3yNO7pN47o49LijkPRDTChi/NqjJD/CegzhwcPbYN/zKLHsvuuj2D/waxZaYGtnezQU3IMGYv9Zd1noFonr3JCfjOeC0VnMeieP0B1Ps8jlwzsgtsF7rEuqKL0VamnQmqESa4bWeDo5Jjrb+xvv6zsxmS5oy5U0BYoalSdGR8KRQmB2RmrYewcXrRDpjRSaHWK04VsnpjO1C1kv7G3H74XPq62n3jlyU6b5I/1+M4nFulJK4+9+/VuureIR8roznT1dHNf3K+/3lW2vrHXntm600gZGELZpN2Nh8rhV0KKEpbK3jlcrxC7Xd86nbyE6ct4p9926gL0P8gSAZ4kTuWd8NG54aRU3zWxbY2sNr43gbcIwh2imvZBIwRmmzUMY/MAUA6cU0JqJ/hnjxmd8aDgKebewnnvOlH1jz6tJ8rqylwqucV5O1N74/PkH9mnm+XSG84mCkMKEr7Bqo/tA23diTOYPqA1xjnW74gUmH1nSxKdbJmgnqNJKIxeoah6jvG5073C9s5fC+3rnjz81/uXf/sx/+e9/4v/241/xn//pe/7xbz5wPk98/JXnV3/7xL/9MPF2e+e9b7zXjVvdqc6RzieWDx/wp5MhO8WQnebPYEh+qsmpsP1LtT4mI4ZN04c86Jh/yOgIf11x1NJb9bizbU0+7l0d7G3pbfirjZXNQCf28X0DduByMhCQ44jrkUfQRzhS/dR8LF+jSg7s3DHxMc9EUTvoelXy4zkZv6ON0v6r2faX8/jFFciHjlDFU6oazF29XXoDLyYiI6630Zs51x0WxgDQfRv6YaF399Dlig7Wqgy1nXhwxpV16kkuoAqJifVypYlSQ8K5hPiCT4FcG9I7fb2DcyRv3cgQAqXsnOKEC5be9fLy8jMD3871dkXEOtohOUIw93CK0agSNbKuKyEY/L6USvem97vf3glBmKaESODyfqGWTCl2sfdemabINHnWdUM7BJ9IMaJtowdbkB2GhsvZ8GSneeH19Rv2/c5+X+mlcG+V1gp5LbRBzcBBqxnnbPxsXQsr8JyHqtX+rdpnEYIQg5DShAuBUJXzNHPrmTQFpnlB1fG3f/sPuHkixoVyvXN/f6f1Ru2GRIrR404zn95/4vnlFTyU2kzPCMOQZNiuOU6sWyG6EZHaK94t1NapuuMC1hEXJdfCFBPregew6NZWEBouBO65UaqwdqU0pXbFJW9g+2IhHGmKzNEzxYC4QM+F0io+RPxwibdRKIcQ2EtGHXiXaEeugYxCZ+hDW86oHwaK2vE+gThqhRBM1rIP/F0cwR8NSNEPGZFJP9womGUkSTp1o5A2JrIRIIyh6VynZLjdFFrnlCboje39js6eWgrn4GmlmpRBTV+cc2bLmfl04nRK5G2n1R1opDmy7ZllmSi1czovTCdP7TO9dkQ7KQT27B6Hq9Jg3ytVuxUvYWHfbbNuzSQnMVnkuzVNxA58DuLiLZ1PnHVihr7YOdPvOSwm3DfYNLPVPOQwnjDSEuveSCmya6V7obo6AnI6roM0Y8X+5Q95TJkOeQOjSDLZzIibRvDN5AoeQCwBUMZnpmKaZS/WYXajY9sf8g1GZ2noDEUf+vbR/uXnxrqjdzXsvMBBrcAu1s7AXB3/H91kcQT5Gr3rMQ4GrZpUq1QzYO2Zfd3Yt4282XXyq795YXGw7TfW62d89jzNgd+/b0irCAmcUnGUqsyhQ6908QQCey1WWCHGxHWOSOG2vnEKoGk2o2JWJAm/mT7wfn0bJAPly/qFTQJ7aZyevuHDhwUfEporf/r8Iw1lv7wZclIdW9vZc+a2mkxI9DCQ2r0YXLRu/NMz6IxfAq3u5NIIfqa2G5f7F07yhHcBHy1I5xQTrWW7r71HnOBDoDpQN5v5dbvTW7FJggFqmIMjBU9IE/N8IiKsvRknGOMhO6f0WokieKkEPFUMVdb2AmWlZPtM9m2l5H0gPq23OMfAezF5xSkl1q1AfafsK+dl5umsOBIRIYjjmjdiCEzes7UG4gjOP67vWgrJmx8gMygLDmNLK9zf3tGTxUer76xdWNeNS2/8dLvyx7cLf3y78P+8/RX/9DevzEvAPxX0qfNFV76UO3fp6HlmenpmPj9zOj+RTs8jetuhQ75yFIgH5cWGK8MYJwMfq3YYbMqYGpo0SmykYveh60hjECSEo5q26Gk7pjqFQmVQigcQgAdEwDBuje5Gaq12Aocte5CNGDzkEURymCgPEy24YYY1cyxyxE8PiR1KUEfBtPzHGsSYOB196V/K4xdXIIMt1PhIKbt9YAOS/bCQPH5vo3gz38nQL9n4F+HRLT4wKwDOxcfP6b0ZYqsVSm/43sf2AN4FO0V2Q3pt3opyoz009n23jSktnJ+eyHmjZNPmBucopVjXu5kONI+EuLpntv3ON998A0PHqWqa6nVdHwtua5VlWdCQuO8bXXeenj9Sso3mQoh8+fI2xtWBGC3l6Hq9mQ44JNBOzxttW0dkbsXRid4RpkgrmeenF/K2471wOs84Ua63i8HcEdQf7FfrnLfShklqf5Av5Ct33bpPNHqzMXA4eUrL+JBwzQwlgifGyRKrzs/8eH03bq/A8nTm/raz3Vdaj3w8v7DW3RLTgOm0kHuB1gghsm+N3DZOTye4mxRk652Xp2cu9zuiyjJNaGvDRNm53jPvb++DvGHGH+cNvVS7ctuzMalHVLKKHYB6sy5fFMVHT8KCVUozNFgdEc1HUyF4CxGutRpfeRQmwXs0mgxAu+n0lnmm5EprYzzmBO+8Labj18DoDBvdQrXhh1Sku9HRGx2RNkaIcegiezd8kemqjaOcRLiXnZgSy2k24wcOeiP6wJwS0XmCmPlKYiBMlsA1FG3EFKgts+ZG8Gmkwxkmb5knSm5c75+xms8TgmfNlb0MxBQOHwPvF6O2bKVROpTazXy5b8iYUIgI2r09F8x7UIolbs7zhGDF/2FCBSxswTkKxRKzxnsUTFA9pktqaDxv3aIUAsEbozXXgWsch2D5d0ia8sPV3tyImHUmneje0Z1YAMUB7P9Zp7cLKG3oe/lKhUBtI9D+FaGGEoY56OszdjZe14LDxu12juo453FakdFd7iNxzPjII4TJjbjagXgTscK9j6I5iBCdILXTWqGVTMkWMLStG7frnevlwuVy4Xa/cT45/u//dOJlcVw2oe47t5vn25dXfv9+oZeNmCINT66NFCKld9R1IhOdQKcbapJOqYXUlZ4rNwLfPFV8tOL35eWMXlbW90/UDiEulGhs71Y659eJvcLUleu2ctl2Nhxvl3dLGW2N3DApQrbJYBvhN+7QHW8buw/cvNCLSdXc7Qri2Pds0yzttH2ll8zsF4qWIWWw6y36MJjPgifRXCdJIM0BJ4GYZtZ9I3hFfGCKMy66R2e2d0fdbrgghI5dW06MmhJGqExvJGeH6Eq3UJZ9p+0r+7ax75Zq1zrGlW4BkZVWAj0n4yjXjspCnCbua0ZmIbdGUHg+nehYEeanxL4Xw5A5Y7/vFYJY8XzfihWZI2a+dtDSuH15Z/5okzHB0KiHFOMPtXHdCm+3jc+33/I3359sTW93PpUrl57x5yfS0zPT6YkwJdQHwmiAKY2AiY+c2EFS1Y1mb3ncF6qHSbZj1Eg3DoZqTbJBaRE1KYaZ4No4dB7m3+MAqlQx7byt01bDiI4OrozJuHytc/rR4RY3jIGAE1wXGBppf6wLcnDM7bPW0VVmTNulmzxVsMO4mbxtFfeH4mJMpn5Jj19cgXyclHQQKJz31NpHOJN+LQiGc7S39pBViKhtbNXSuuyUdhTSo1A+UGtq/OQ6RhZtOMrnNCHBkYvH9fwYZd63PAgJ3gDzVUdnq3G9XPAhME0T67qaO7811HXonSl5Ygq05qi+sm13ci6kycZQ257Zt0xZd1I01NLz07MZ3dqO9/D0zQczBNZCb43X149s68b1ehnkDOtC96bgzDC2xIjoTgudGDtziHhnejHnPafTme9/8z3X25WfPv2ZlGA5Rz6/N5oKey3kkbyF2shtKA9HYpP9eal1aFAT0iuhwTLNiAh7zTh/GAUawUeC87TaaS3z6afPSAp4J0ynE7/++MK//ZfMl9udJSSSBpY4EaNjSpZgFUPgfJqog5SwZRu5hxh4EjMplL6zzLNp7XojBeFyeSMXtW6s8+x5N2oK3djCCLdauOdqiKmuhMGelaMz5iAFHYEYntZ3ahtYn266ZGNpm7FL/OD96ijERSwhTyDvu3WX1aLRc8l2YMJYqIKzghsGkcX05E4EcVa49dYJyTRypdQHT7iPSPJSlBQdTvQhHZDhHizNjFOlKu9vK0sSTsmTYqK2Aj3g1CPNEWKiNaVWsWSzZSJNgXlZ+PHTj+MeO/Hx9RuTqOwrtQodK6o/ff6J7+TFzJwSKEXZ7xcLPIgJH2dqzlTfzEhWQQc01IdEcJG8G/rRsIJGN4g+0nob0fMWXsN4X2zKYaZCnK0f4oY5s3a8Z5hisUOtjkhus6TiMHKId5FWyth0/vIdxPo7R5yzfP1T9WOnU3wfvV3xQx/4VUbB6DjLQ5rxVSrh6Eez1wgWRwreaDBYJ3n8WDHnuxv6ZRwWgEQYQUoNO9k4OyQM/eXRZ9ZRMDjtRJSoiq/dQmP2O/u2s24r9/uN2+XG++XOp7c33t7fuN9u/OPffcs3H2d++/1H9E+FyyXz/inzd3/3kbNzbK0SerFiMVmx5PxMCGPdd0pXNyJ8jfRhBIhKcs7MqrkgEni/KG+XFTc9HTUDoXbOSfCnSG2K3+5omslbZq0dvIU47Xuhtp0tN3ptuGHEbnumbLvFkS8zLgZKyVxv0JynTpG9vxOGSepLbYaU7MrT6cStB7p0pjTjJaLRNOiu2fQLPLMfql3tzAlOsjA7T5isKTRNEzqKnKDKWneCmmGxtGbsaDWPhDjHNHSptWS0dXKt5O1qQRtbhr3Q9kLNG+pN19xxhBRAOyXvI1L+zHx6pqundJvIyYhiz3nn6SkS3QRSeH2e+PH9i+n7VU3aJJ0tZ4uLbo21NkpTtAein2jvP3EVIS7J9Oetk/edJuYVer+u/K//5ffctsw//e1Hgu/86cuVVTs1RVhmwnJCp4kWBkGFAt2oQLMwsJyYxEGgOQuTssJ4iBaEB5e7q9FZuoyplFpPto8pTVQrghWhHvIp9EGrMOnSqElktM1RmyBhcjxVGauDfXV1hxRChplPOM70tnK0gcE9kvKGrrrDEZzWxQ7kAdMhdz1EFTzABTij9HyVjPwyHr+4Atmio/0YBth4g95pzgwdTbEux/j3hlILFjH7KN+MplBrRiQO0H9/GLN6N+2wud0VL942c68PRFIIDiFQSrVY4KEbyk7wLMwpGrJG1dK/Bsat1vqIlW5lp1OZppmOWPE9T2jZUYEUArns3O6XoXu2j3NeFnpXGqajfn59IRwJX9W64l++fMG5xPnpmS+XLwgjPARP78o5eCYPWh2SJsC0xJIStTXOo+P2r//tX7DdV9juO71W9m3Dh2gzPLXNx9LkrECsuZM8xMFEbdoGCzig3RZJnOHMErP1sLzDuWoRq6XSur1f//K//+98+/2v+f63vyPOC8/nmX/8n5T/9fMPODVd4DRFFLHgE62czmecV/LlSt4LIQj39Z3eDG2laiaWVhovz898efuJkDxL8siqxABZVzMlxUAMZ7bWuRZzw0c/U7piwRaGEuvNOnEmqRmnfDecxFhHNsRk3YLx88XiBkkpfe0uYwtgqYUQHa0Z93XNBXEBF4KNuLtpSUWbSYWqDqrC6DIc0gyFWvMgZJhe9jC2HgzdWjNzmohjso52Ws0E53k6nbjvd6NbuJPFqo8ky32wuOd5QoqZ8/qqTFPC+4b2Sr1cSSFxv6/UfqGUne++eWLvnWmauN8LwXlyq/z4px+YpoVlWQhOWLXjg6WZpejwfqZeLd63SBnvr+GsqmJmQW/9zFwHj1gwJKMqOe/U1mFQVCxl0CpHJ44YEs6rZY7TLH3MHwYc69vIoJDUWofRKaLVNjGt+ois/8seY9McxXbXwUOlDYe6pzsd1woj+AOOP3GADPmIOusEt4f0waE6MFRDI9zE1jQvZj5VCY8OtLhB0hgbdXeG+hrMDqCb/Ac3inQ3MFG2sbre8VoJ3XT3rWTyeue+3rjd79yud95uFz6/v/P5y4Uvb+/c7zcQ+N33f8ff/+2v+M1f/xX//G9/5n/7rz/QV6X9tfLt6yv//MOPuJJx0eF6wPeGI+BoFBrJW2CI1t3WmAaadzoFqpB7whXHvt5Y64afAqU5St4IMbJ4c/m/OkdPC196p3bhsm+44Lh/+Yy2rzhA50zCUmrh/fMbP/z4E+tqfpGTD3zz+sK3331LP5/oKdH2TOud3GzS0WpHa2WncxElhAnVRoyJKUwEZ0zwj88bEgM+JCQGYhtmchw4Tzg5mjqiC0TtgIfW0HWlb4aQ3OsOxeLXWxD8KHDv0QhB4pRWrAua1zvv28a+rmy3jc9vX8h5Jy0TYZp4ej7h1dPUsUwJBGrtfHn7zJQmknfkHPl4fqJ06xZTC+oh+tGgkMicptHkaqxdWVumOSVX80ds247rwaaMpbJd39DwgSiOMLTo3ZkUoSncFP5///pn3m8bH58nyloJAzFXVHHNIqlFHS56/BRx0e55Abz4R0KmgskkeqCiqBqn/udYRKUPQszAoomdtBwCziLSu3ikjyTL0UMGqM40y+b1syyBgcgw0+rQ9YMOFrqOZV4eqX3F21ph61QwpCiK70P8P6gciklB5EgJMsEFlTHqVTt8O/qQYPAwkMvP5k2/hMcvrkAWZ9HN4geLUz1Ou63To1OgA8HVYRQDpq80c5Z1oPsw9ak2jrfJnMPu0Uk+NsZBcGPdV6Zo3OSuHRew6NlmnenWKy3v3GuhLwt4T2Xkt+MexsB1WzmdZ2rbCM5RN+t0pMUIGM6P57utfHr/xJcv75yWkyWy8TUlT70QnI3it3VDeyfnynrfaCpot67t0+mZ9XbFqRLC0C7S0FY4BPt1BCiIM/bx+Xzmxx9+Yp6fSVOk9g5d+PGHn9j3wuITtSqlZ7Qbcs9SLZUUJ4LbmMJwyHYlzhHtdSCGrIiZUjIONVbMxRhorQ58nkldLpd34jTx/fd/xX1d+fD6jE8JnHBd76Q+I9PGaZ4J2YgLzjnDhuXKtluXv5YCGqh1fxgUtcEyLWh/5sf3T6S00Kpyv9/pakEqdMe0nLhf72xVjWiBM2C92pFLtaKtM0/J8FyKBV2Mk70265SryohGtoKj1vww5oHJdlpr9FqHmW5o4QST43QlG+TLCl6tUCrivBE1qkkqrJNm94J31tUM3gJnLGbaPQpkJwfvFvwIJQnRm+SimxY4iFJG+IyGQJgMeTYNY05XoTSldbisG3NXcJFvXk/MKZJzAe1c7jvz+NrT04z2ztPzxLoWXp/OvL29jeAQc9WvwPV24zSloWku+D7MJ8EkEHUkqLVuB2Pn/DCamsTCxtwenQC17mlVKwQtftoKydYq4kwjiUDw9v4caYtOHN7FsX/YZx9jRJt1fMTZRIr+7xAUwpA2jAOO40AvWsEsqiAHJ7k/xq6P2D1G80mOiGqGotJGtwfczY3vZTKIRuXwx5tkqjkzBKoK8SHPsY1VsXXwaDmMYRFO2vi54FuDVnGtor2a6Wy7c71fuFzvXN4vfHq/8un9nU+XN94vF/K6A8Jvvv3A/+M//xN//4//QJpf+Pz5jT/++Qsnv7CXyofB3C2Dc9zCZGa3tgOKuDjIHrZOm6zMDKNBzKh2LYDL5D4jy8T1fiVyY3FC7AV1gQ9BqDHwlgvqE3u+k0T5/Y8/sNbMtu+U1mnrzv2+8fn9wvXtgqiwxIXX5w9E58m3le2+8i///C+cponTvHA+zaZ775a+qr0hXalqRt4cO6KNW78yeU/vQvCe+/s7kw/EeWFeFrwLpHnivJzp4pl8oKkjAdLMyHZ9+4n7/cZWK3trFrncbK9xA3LrAIkJSXaPHtKRbdu4rXe+3K68vV/ZcyF6T1p3NDiub58Jaeb55YUyJeZlpifj6ve+kZ0nlomE8GE+MyUPTpiSJ4SF23YFMWRflGTs+Lwjqqx5514yuTau98xTPOHFG1nhdqctM9PpxJxmpF3QUui+m8dIYQX++NM7pT7xYXkiTAHXV8q6U93KFBPL6cTT00RcZgypt7HZCIXe7JDgginnkY5osAAxbSZjkoNULxjhpaPjsHkkbzo1GYQHdOAWtTP2C8MzGo9fif0r9aKrUOXIcbCC18lR1I4CGbX7HeP2Wwnr8Ueou1iFo93M8fysgWjrSR+M5p+RLMRei6gZt8XZ1/yyyuNfYIGMDse12rbhXUBCHwL6g3kacc5QUN4b0mvbjBZhxYH/WaHgx3g62td3KxRxYww9vkYVuof3+50lJkJwRGeuYufM2327XqjNxuCrinVbtkyKkdOQFOScmabEvt4RKtFF4mjG5vuV+75zXe9MIdBqI3T4+PRieLi8EZfFOocCIU3ENHFbd97frjgvtMGgzcUCSVp1PD+dCb3RcrYCypvGcoqGXlNvMcBP08Lr6wu3+5Uff/yR1w8f6Q3W+xUvwpfPX3A+MM9jzKQ2hspNx/vccF5xYTeHurMCI0WPdqiuU9UT3JGMZtIJEUgpcb/fadWMXmBF8zIFttuVP/3+9+ytsl+/8M1T5MM3r/z593+mKSx14cvlnb1knueFlBa8JKZ04roWYop8nGaulzu3fWWaLHBiXTfrwoRAkJnbm3WaogBhQhXm08JWMvd9p+LYtsK+b6aFE9tEdFwj9Ibz0OoIUdCvcebiA711M/M5hfY1AlmGCaM0K8qdH27kpoPDrIOfXXHObBm9Kc6bisw5O+XXWonT9ChajOZg2Dq0Mc+zTTOCmdJEhHBErmsl70aEUI3EmCilsG9GJZnCZB3AWmnBo13I20ZcIvf7ivOetSn3fUe9TT6adj68PLFMHhcD8zKMs72Roo1ltUMvmSae19dX7rttiElhniK9FbyPbFtGuxCnxH6/jsPUwOG1ynqvdg2COeRbo5Y7Ta3YU3gcMO3Ea9HprVZCTHQ1skkd6WDi3CPA50jca70OI+PgI6vRMbqaLEPADiZ/6RI3NkqHBcUg/RHrjNio3EgXOqQQhrI8vBcPn6Ac3nMAP8IHAD04rLa5I4roIdVwVhSLoupoYvKe4bwgtjqs83V0oEBURoqiBZU4VTwdzTvSK1oLOW9s28p9vfJ2ufLp7Y2fPl/49Hbh7XLlvq7seQdRXp+e+ce//57//D//A88fPvD+04Wf/vyZL58uhBcjnJyi8O3zCz9c7jalKjtVHE08AYcfOuw4zex7p2khqBWE2jtrUWLr7D0jKVAv1g32ySLlYwg2hp6eicGzlY0uwhXHbdtpzrHnQt0rt9uduu2A57uXb/nNr78nxkSYZpx2goPb5c6+rdy/vHG7Xfl0eefPP/1IV2VyxknvqBWeMaK94ePGyzQZnlGKxbi3xue3nYSYzyHNiDdJ2Vs4MS9mOKs4cr5zeXuj7pVrvbHe75Tayc20ugcmzIb03Q6OzhL+tlwevpk1m/7X4ZlT5MOHF+I8WfR3ELxAH3vkbb2z7jvz+cTz0xNuWYghEpxwq5lQhMkvzDES4kSvBWoll5VcM63PaFN2HNJhcp7VKbk3LrcbaZmZ3IzzgtRMv6/I6YklzUzek/NuPPjeh9ESigjbVuknP7B+G5IzLhWiF5YUWNKEYkm6+bpaDk63dVe8I84LMZ2IU8SnhLoJkTSm0nWkS+rQ/Jqq2AysCtKwFpkdLHUUrc6JNfZ+1peVIXFy4/4UdBAmh+kVeZhrjWY83vvxHQTD3wrW/LDvYL4UCwIa06BDujUMh8rommNrSsVxUG766IgfeRC/pMcvrkBWjAvsvLnnnRh+67ExydANOkdK6cHePegXpoU8LsAR9Yx1nc3oZPrlPhi+Oox8vVdKabhk2tTahBAW3Bjr9mFCgkztnbJW1Ak+CdIbWUw2AEZ70CZM85msHekCPeNR1mLRlymceXqe6U3JO8BYpJyjd2WK1nn7/Pmdbd+pzXS2vZmGTe0HWWdxveIHVi2F8NBNpzCBeL7/1XekGKmlsq43QHh9/WDd3xAsZrsbJ9nCNUzPOQBR9n46b51MadZtKoYbalUQsTS8I8bXRnCVHkzPKq6z7Ubn8D6x75lpnu3mrxYE8OmHH3j++Mqnz5/45vm3PL8+8flPP9JKsS4qDS0eDZGWCzhH9JFlSuy5oM4RpkC7VHJ1VpQ15Xq7cl/v1NLt9cbIlE6kBrk2bvtmY/kYoFqsc1eGZu3QOnrmFIg0u2ZCHAzrcb0xRhBip/XeOiFMD8nDY7Ea9dsjfppRH4ngg+HlQIkxjHhqW0x7s06PDbxNamFRxGoYNMA7iN4NyoTSe2GJMyH4R3Hugy3owjE+H+5psYJjStG6qtmu471U1mbcbh8N7I9z1A5brehlxadE61YYo0oY2D+wqOYYhGUOXNaCIJzO50Ey2JmiZ0kTPo0iNDeCBE6L3ddeYFlmtjUzz9NIIxNKziOkxFmYTXR0jE7T1N6jUjtQccGIAMEF+pCtaDf9bK1DozmMsmgfsgT7sMwYaIE9IhCDRcD/xWucGP3l2DQtJMRQal7MYBlH49ipaQkfUmUZnUAno1tknfWDwtoxvbwl7vWhS7aulnMjbERt/TgCPw43vMhXR78faWuomNSlKUEVpw3fwWull41eCnlbud+vXO93rrc7P3x6409fPvPT+zvX28q+7dRiyZZPL8+8fvjAP/7j93zzeoJ85ac//Qv/+q9/4oe3K89PL/QmEBOn4EEz992mNzhHrwpBHh1uL0rtgnaw5b2zlUoVx1YaTu/stdlG6QO5CT7NdoAYuty9FN7znb111tuVdd1p2RjaKSV++/KRZT7jUiSvK9FZ0Xk6zTYE0Mr+7Qt7brS1oZeV7XIj//An5vmFkM6ICLfrJ2rrrPudvWeu18wfLtb1BfMsnFLkZZp5neeBjOxMMXLNG/iV8H4lLdZB7lvhtl5ou4U1ZTp7bRTp3HJmq2WY7ZTa7cAnqkwSmNxkZm3g4/KEqrLMJ6bTTJonwnLCL8kMZL2x1Z04TUzzQu0V07Mo27ZB6rh5IqWEOuFaCyl5ogpV6+BUJ5BC67DuO9uIj+8j7GLdd263Ox/iC8xnnB8NrftKzcVSOeeZ+75SSka78fadOFKMg/8tTC5x8hMxdFJMTIMIUvJGu2b2641+X3FF7b7x3sKMlkScF6blzHQ+E0/P+LCYXwlvhan0MUzxx03FgT+kjTWiW6f4wLPhBl97SHuNRCk4GQdgZxh2K2tNw+zF1oNHr1h15D/YFKnJSJVEhg56dNScNSScG04JEaQ7nHgLPxmd6q4/S9Qc6EubNB+SjF/O4xdXIB8j+TaCM0rdrSnU8+j6mBZX1fS+tVaOFLIj3U1dp3RzezfM7e90mKP0YPZaV/ToHvU+4ksblN7BmdRhTonkBZ2S6e8ksJWNmoWqHemNda8sc6LvjRhtzNJqo5TEPe9ce6dtpmvbasPHSO4K992SrAbSzIgJRo24usx1W9H69bmianiXgSiiKZMoE4rWxt46TSo+JkJKrL3yza+/475ufPrhx+HotwKs5ooLjryubLcb+55x3sIfbvfdzBfNTp7OmSntNAWkKbUquSulQIoz4ndkjPBi8njnbORfCz4GlhQIwbPvjd76SAk09/l9Lzw/z7g5knNmrxt//NP/n70/aZIl27IzsW+fTlWtc79NRLw2kQkkgCoBKVKYFCckfzqHnFM4IAUkgGxeE3Fbb8xM9fQ12MfsRqJmlW+QCIGlpNwXfv2am5upnrPP3mt96wNv9pb9ac/zx2fqFnEOTkdFjH15emKe97gQCGFHbRuX7UptFT8HSobrNRKmiZQ0xEKkMU8e47Vrt6U0EuqMjiSBHhOtFUTUJGOMUcYo+r5Y50nbRs16ak81MrlldNfMwN/pYaMVDYlpyDCQqeZVExWHeaKr/MGhtItO0WKYRqMPfBTo5aidiWuKeNHu8C11UVDzZu2d4IRWsx6ititzDzohaU0LjN4peeMwWfwwAcZtHRMDQZzhsF+4psKWNnLUovHg/F2uc1tIa4Onlwt5N/H+zRuur88YM5BXVUbHV0MCQjOkLTNNM5RCjqte79WSYsa7SQ/BteKNVdKAU3rHPM9cr1mpMV0/O2M7xniCV6lIrNCaJaZNsUmMe6VXQmB0xCPOOsSZgUC6QZ76WHOaSpSMSi6QpgdTseqpGTHq/9yHGbre23/JKESt3Ixv6pUwqAUAUcOQTsZG+S4Ghanp61E0FYC+flq7SdV1EmRu36MWwdpvKYzarbbD9CNyYxzrz7FUbAXXsxoAe8c1LZpSUizY5fWFL+cXXl4ufH6+8OPTF748v3JdV1LK1FIxzrLf7zmdTjw8HPnhu0dKy7x+/sIf//hn/vzxiS0VcsrE2tljMLazDxNfY6H2TKuF2AQjAdc6bhjZTB+JkVhKmEl1ozulr5wvrzjrMPNC7oJtjRxXMJ7dww4rjdSFfQjE15V4WTGmc9wfeXzzHtzC5BwONHBKhMfgdb0XuKbMFHZkGojnYBbqOZLXTP3wHac3vyX7hQnL5csfCfNb4nqlt8br9ULKkaenL9S08V++/AM1Zj6dv/JHo/LB2TsewsQuzOzmHbOr5KvuLylntpJYa+Y1RZ7jRsr5/vkGMQSEWaxGeHurlAw/Ya3HLSqDcsuEs2D9zP5wJEyOsF+o1tPFapR3uhJzovTG/nBgChZBkykNnTkYnAizm9gHS6ydpal2u5REKxUrfhSHSlMpIqo/bp3L+ar66dZxGIx4moHalIZi3Y4lTAQbyLnQa6XVSBadIljjCWZhbxeC7dQwgfV48dQ18RIvbM9PlJdXpHRsN+r58BYzBdwyk+eVtFyI24ElJpbDI2baaQPptuwN/a4MsypioIqG4fRKM00JMUNqpwa5Yfnr6tlR8y2DHtEHqvRW6DJ8uioBuxXKBqEZixlkmhu1wo77WFDPhKYIa/KlodONyrRusfbdGKTcFnK5R8NriI/qoX9Jj19cgdyGKajWSik32YQ6Q2+BH8YajQIW8083rBHR22/iedEOcs5qgOqDfHGTZdzipzuV2pWF3MZzdhTmX3JFujqhtdAYHT1kaLBUO3p9fWUOEwxTgIhQtgvOGJw3NNQc51Dd4eW68pI0iciKJqTp1Ec75mrJH92hXrXItwaqhkUIDTfNY+TiKVXTeRAh1sK66uHhum2asV4ry7yQ08q2rVgnLPsd5/OZbdsopXAY0c/Od14vSYs5o8iZ4OxYEDxG2jA3KBbrNgKe5umuEQalKyz7mZoirWRqEzWm1ErcNtUJt87LywvfHQ7kmvjd73/L69ePsN+rOU3g89MruzlQ6lfm42Gggq74KRFjJeeqEeFZAyk6hXmZyTmzLDO1OUTqCABp1FaJNdO7sG4bdpoIIjw/n/XQY4QlTHfutrWqh/V4mtiRnKWhKDf5xDzPSBZqLogVLYBEoOj1IaKSiBAmai9Df/oNR3aTYrShfx8NhzuBoN9oBaCdAREdQ8oI1emGWiqjZKCJYLWNgTGCH2lgseQR0a4R7CI6xo1RN8COZWcgV41tleGGfn1+YZ4Ck3cEo/KQuG607ohp02vEaBwwXXh9vbDbeZzXON2SVXdZ4/Xemcs5Y51lsRr2UHvDL4G2NaZ50tjlVFmWHefzdo+EvsXDCqgmzxhK1OCVwSUbOnDtpm45KYt/HENMU+QV9Lue+eYVr61Syw31qM/tjKd0HVjn8pcw6TE2tVvmVcN2px2psX7Vm8Z4fL8eVVEPhhmJWcMkqxxlM0aoil0U5B6ccqObdsB2jSS2Q/PYuvJPDeql0M6zUjws4Gm4Wgk0HcGO7lVtmZRX1vMTT88vfPj6lY9fXvj89MrT5cJ1hCTVrjKZ3f7A6fGR0+nIuzcn3hwWrteVdL3yp5++8vQSNa20NVLNNJnpVfBjXc8xU8xGDzNx3djRCcYzEVUTOkyxNRdKVtZvTIWtKLouZ+2kRjG4ELCTV1oNghOhp8rb/UL97h1ftgguME8LuaHjeiqP+4XH/Tt2s66T27Zyuay8xohYw2FZWMwO8/BAaJ26C1gJuPmB9eWF/Q8/MO3eUUc3tSRh2ypSItec+c2f/xM9Gf7+x//KubxS8sbL9YWvlxc+yQtXOsYpd/023Uq5YKsepharFJ95BAnRhf3+iO2w2+104um1GGzrhuwWfM2ahHo4Mj0e2U0Lfgl0YxFvSLVRc2Xez/TaeD5/pUjXfdE2rNPCGJymnTptRD0sR6QrW/4lbXy9vlKxPK0N14QmIy2xKdf+6fl14EQtxlqsM3qAryApY6aON57gJlarQVGgssKWM+AI/sjbw/c49x2X61c2ycStsr4+s758Jr++YErFCvSbITVafAy0nGlbosZIjZmaCjlWwjEx7fbMzquxvw8SUB/hOV1GuMsNpanLiaDTny4OkYIfU8YyDrINUSmVsXciV+dW0PX7IR+RO6VlqKdGk9dyCy/pNLpBzX7yc6GEHnYbZtREmvBoxCrirg2CzZBTVlE99C/p8YsrkG/F601DzM1QJ4w/ZeDWxsnnZ4YkRB2f7dYdGY9bV/qei44WJLW2ESernu3etIPcamGs1uA1rtM7A1YIYaFLY0b5t9YGXaSs1UXDKxrHe0uOVzwFqo42g/PMZuI5bkTptNLAW/K24a0WyNZ7NSYZxXU552jdUEqi5DriiRuTVT/3zWTRGBHaGGprGCuEMUJbQiD1qsl/zjIFj/HCly9fSUmVUBWDDTNhmvn4/GdSaUqyED0Z21qxRvV5uDDMaMpxNqL0j+A9Yh3OGfb7id2yUJPyPqVVSunM847r9UqnUXIhZXV619L5V//mX/PdD99hxPBy/szr5czlurLsTsQOYYzQl+WgEbST4/n19c6otHailDrOSZWUN3xQiP5ljWxbxDunbF1v2GLCOcv+eOQPP/1EKZnbyVplyp6SV30/jRALxNpH8WkwTait4/y3g1ofmtgbr7uKsnfpWsjWUhE/phnjmixDZnIz88no+N6+VkvDGMW7taEB6abf5REMw0WvnZwaxgVEuuq9nVUdvxSM0UARax3WWIwZCZTW4KfANUZwMz99eSJYx84Hdk554dYKpWQWPw25SeM11kHWqJwvmri3RU2hvFwzOOFxOrDljXXThMa4qqmzlESpBecy+/0eg2HLGyJeO+NovLsYh7Oe4/7A19cztTW60YQ1M8xP9CFNGsg2TddUHbUYlUZc1o3Ze8woAuWmD7dudF61a6sF8TDctsrkvGoeUdmWG/r5f87DDIlFv/V/O6Mr5fU1gB4+RdGCyDByDnPybWkzI7RA3fa3L45hbdciHOnDEDQ22N5pNKwMUNvN6T7eEz8OfE4arim+zQkE0W6+HWbCtVa2deXlcuHL8xNPX174+PELT+cr16yj/YZGzh9PJx7eveHN4wOPhx2/+f4tyzTz+hopKfP505XzRe2pChgZoQXN0bpu/MZYMjBJI47DQrA6WezGMfugjQQZ/FhjWEtla4Jtym+3otHstTYu26rRy0FNVj54YoXj8cT+jSeVTo4btReODzO/Ob5hN3koavTOTZh95vBwIFwMH8/PlLjCJOysxU4L4V/9lnZdCaLrZ0wNaV+Y3IKdLO7xke18wc3fUaznuBjM/jsePv0NrVw5v1x4fv2R148/spbI0/kra9ooBdZW8RjemEnXXe/wy8QkDicWvzvQa2V+eGDqFhcMZnIUb3G9UyZ0OiYTy/GB3fGB+TBxWGaaE03Ds4bYhWstbLWr6ft4JPdOrBmxEIywCxNLmNWsaVRmV2vkWrtOcKzTiYV1lBECVpuFMYW4Xjeu1yteBOPU5H0jKqgRTpPjrKgvyBl71802NKa8944zgd30yGm3cEwnntdXvl6fNLNghV6ANhBqvWoXmoLUBrXQQsblSYNtSqHkRMpX0nak748syw7nNYa9tFFYWjXx0vQo6+swww1WuOk30YIehpvRgtWMIlhGY8z0m3yjja919QvoWEc7zvdn0n1GtxUteDtmBIyo5FH7KoOSgRnWQn2/bu+pGcEiauIdBIz+Pwrkf9mPfqNPjA9KtLNkby7Qxr1r1wf8c2jch1u938fZ+ucoMn72v3PWLhpdx/ytjIusc9dSlqZaZtf7wEhByYnJz/RuSEVRbopL06Q00z21Zq7XlRAc+/0OY5QOQVS98JYrhYZ0q4YtYxCrchBpbWwOBm8DdRRBKTdyuvW/lPk6+aCxzr0TB/O1tQoxa0FkuOsQc2lgDT54HJacM5fXK9frRq464vFuIpbOl8sXBcfXOsDkXSUDrbOVSO+QY6R1wVntvit2b8hcLLw9Hvju3XuMM/z4pz/RB7jRB68xs00PJWGZ8HFlmSYeHk5Y55jnHX/1V3/DP/7nyJaEWDpt2wiTpV4K+6YYPcV97XSMJIZYRkLTNBGMpZQ44oWHmc2IMnBbxgfHtWRK78yHA8+vF9atYMOMH4aVKXh9T7WVRy2dQsZYRSRpV1gX7FIbKWeNRe8Qgh/ge4XuVK1jcE6jr5uppJxG+qIWE+Fnhdetq3y7zo1V+oAWy0XTkLhFyero3TlHQWi1UFoH6cOE1pidhmDYcb0br7G0eiCQezHufaBhqLGwHBYeD0ekqVO69Qx9QozBmEY1cJwX1lJ0oe9WuzIIXRxuatQmnNdI64Z1KxyPJy5PX3FWKRamC/M0s9/t2LaMnyZSThxPD3z9cibGxDIHcskggg8L120jDYmUQzAiGtVuDM5o2p4z7t65tE6nTc6OXmw3tKHHdM4AGvWtTRynXdd2w6Tp+9hE42A1mOUvoNGTb0xSGeElRhqQ9XNC7ig1I21MbqBZnTYJMrKT9Nrs3SgCj07vDqTSqUMTrwW1uuuHZlJu1i09yCnpouOaBiiY3nHS8UbH9N5YvNXiUgRqbpQUuZzPPD+d+fp64dP5hefLhXXdyEPTMc8LpzdvePv2De/fP/Ddac+7447ff3cieMeaCq+vF748XXmNKhHqHWqu9IE1tFiCqGEOMay94f2sqEhT9YDTlAajoXR6QGw0nYi0RusryXsqwmzaCNBo7BeL5KRdN6ulgqmGUje8GKbJ8fbhwNvdnslOSNnAe3qu7IJn64FrSZyWiVJnfnx5Yb1e6SlxOL3DzQeWtzM+Z5blxPXphXS9gES2S8e0hpQVmJRB/t2RfNxhp+9YbOPrl1ferA+k73/Fc4xcX75yubxSauESV3zvKr0yFhsCkxdcmLDdMi8LcX1hdzph/IRNCesNZQqUywvL/hG8JeyPHI9H/OSZZkdqjeu6cfSBh50a9bZSuDbDeb2S2441J2Zp6g3qDRcmxArBWGwXZe72xlYza4zDM6ByDE+n5YJ0jTy+1sLT85mybcy7A8EElTT1Tu6aFhlMYJaJYnUPVXzjkI3pLYodkrKXL39EliOTd8zGschMMzuM35PSRm1d7+VB8DEC5GHer41eK7VmbMm0pJzrsm7UuJEOj+z2e8IUCKJTukJXPvEoYm9ouGYaveu9fIuQxrT73zPuYS2jVUuvIT5w+6WsjElTH9MigGGuUzGWSu+EgbMzlSpjimZGo0hvdO1Ii0fG1NsYfR/o7c5h1vTFX5ZN7xdXIDcRWqljdFxxxqvIfHBBWxmBCYJGRzc9F1nrdARtDAy2LKK0h2We75izWwAJDazXjp4fRINatXujyaFC6hrp+npZNXveWNZUqQ1Kg5ISy1T1ObzqGcXoWKuUPNLzKqf9kRT14nfGspsXunh1B4tGA/vhuNfOTsWgSTcxJWqFMjpCFsPkA0Z0hNhKG3IRRbxNYWKyBmsrLnScU/fxNUa+Pj3dZSnXi0a+2mC1uLGGr89nriVTi34OBkYhaKlKFxt67aodbmOwVjtx1nmmece748zb/R5bO58+f6LmwnF3Iq5nrBV6NUzThHOOebfj98cD027GzRY/ecQIf/iHP/Hu/a/5w9/9Adx5pGFldeqaCMYgtdF7pANxS7pJOIXmO2+R7rBDmuCco9hE8IbT6ZHzdeP8qoeSHz9/JqUONtBrxXnVqxrRRbOO5Lre0MVVKr2pltrZCV0VLVuM2j0eBaWI6r1KTITgtXsyEhLr3Yx5++zkTn9gSIl610K593EI7B2sJTg/utQNS2Oa5qHzVMmIvl40Fa0ropDZ4sXoNV0SLRtSjfTe2e13lJpVljJPKkdyiiMspeBFu2ttwPNr1c1uniau5w3TCsYFKJ1t1b/rM4hVVum6ZWrprFvj/fcn6ucnSm8E7xCroSHrumGtJ0yeXFQy48PMFguxZHqE18tKw1F6R7AYL5SUFMNWLZTKbKcR6qEHapUxgBVhco5Wvh1YBDUbWmPIaSQ1NhkuGkdvjSkE/UxMxxmHACn+8yUWWpaPJsCQQNy6REa+/b1IpxtHMyq1Ml27RHYUx0bcGMHCva08GsK357xPZEW78fqnwbabN6NpE6BXXMsa+DF0p8FagrVYqzQU9UE4tppJ+crL6ytfn595ej7z+npl3bQ4NiFwPJ04vXnk+/dv+f7tI98/Lrw/zLzdB96/2eE95Fq5roUv68olJTUdWR2xO+dwPjD7idecSdeVbm8IyQxSmarXznnPiLVKeslFExNLxWJYu2VLGROV5pNdwEplngKv5xfEa3zyltAIcwks1mm6pHW8OewJxmN7GuQMgwmjG++9RjZbx0NNfL1c+PHzV0op/GAszgiFCSPCMlmODw8Up3IPZxpehDrtkJyRIBRpLL4xvz8pQzldedjv2PaeJRW2d+9YrxutZ1KNSBFi3tQcnTO7YGG3V/mUaeAFt1vAOuiV0huzs5Q5sDeOcDjgTg/slgnrYRU4rxtWKs7pfb+3jr23vAs7npeZc4W1Jp5envBYnOl062klgRhm57CokZxWKa1RupBqYbINYwPGocVnrVy2xNfnZzowGY8Po6kxKEDOaqc7hAVXM9NANVrj9DoAgrXsraFfn/jw5c+8TkcOy0FlVB18T8x0rDGaJdu7so5v9wtVF6s2pi1VPT01Jux1o8eNmiJl20jxyP50YtktGOdw3SBNY6mbvckku96r4560Q+fbBjBAr9lGM98YNG0YmwWVTPj7VHw0n/ow0/Y2vLN2TJ4yQ2elAUA3FNyYWt4is2sfPgYEP0JPVI7xDVd6Wy9+SY9fXIHcm+BMGGaUfkdqgRudLoeggRVqXjN3093NzBbEj+dSBFfJWnjeNIVluIbr0NhC/1kstW7uHTBWI04FoZzPaj7zHuMch3kiXl+x1rAsB+26tkQvhaV55jng/DjzOcfusOCsBpjYnAbXVUipsPgJY0WTvEomx0qTypbz0KTqadOKxuD6UWzlovD5aZrUHOaMLoZOOb4lgsmF1tEOa7fE64ogGhltA8EHamvEeOUaM91MdxRebpVSKs7YIXG5deFV1WitEIIHgXm3YzfNLGFimWewHnEWPy2UVil0lqAcyusl4r3H3iQ0tbObPN44UtJO7un9d/hlD3g1bNRK95bUBFuVYGKmiVIL3WhXWjXB4JylbBvGGLZtG3p2jb9++npmrZU1Nb6er1y3qocrq/G+xhhKKqrzdhbrAmUrlFLpIoSgFA5uhzEYneMhzTAqDbDGUUskOMvkb6zgPvTDoxNXVR9pxKnBQtzoHptBWhjP0/q9g3yT3Sh1Lun1ZKxSN6RiTP82pkf106pR1ntj53Z0hDz0cK0r5qhuGmjjTWV+2Cmo3laM9cPgoVHrYoMaRmrHO4PpHuuCdrq7ktaCNWw5Ypxlu15Z5gM5RT59/IAbKZa51BGNW7BNKTKdzi5MnC9XaB6DkLp2Oo2b+PD1CecdVNWDW6e+globtquu8YZuK1KRXPHdoVq84QCvVf93u00Gmh4Amh6erXWUlmk9kapSXlprpKIJjn+Jh2CHBEI/V4y9SymAMV6+aaaNbsLGDK2wFmnaCdaxrRXt3iN11MlWJ26ANT8z5wwXO121iNKKaot7w6LxwxNacHiLmtO8RoFrU0LDd2KDdUt8en3h4/NXnp7PXC+bKtLmmcPbt3z3/i3fvX/Dr9+f+PWbI+92nofZcZwcx8MO64BWiLGyXgopDU47uqb4MNEuV1Ib74G1tJIp1mOcxo2n2nC9Ib7hfaC0NhokllxgbRu1By61aAFkOkGU5hLzyjLNuNYopavsrAnTZJj2J3xt7JcZLxYphTFOQ0YgVBUI80JfYaOS/cyb3cJlW/n4/Kx66Jo5LQd2uz3iLYfjwu7xxPZ6ZneNVIHtfKazUZ8vUDv1yxiPzwun5UCTjDhLSBvZCpfzheAtJSdKMVzSK6FoI6bWiJ0nRZiWTGkV7wxNGrVlZHIsk8OHR/wUmA8LbvJYb1gpvKwrW8q8DTP7MDEbx+QMbrIUcRq0sVVc9njrebk+0XumdW1aBetwQ9O6pcK6bmwlc1kz1zWyW07kJqQtK3YyJ86vZ+LrGS+WxWlgitDpOQGCwxFcIPgJUwLWeby15GroI/79zcOJh2XB5I3t/JmX8xdedg88Hh7V31BWXK9Kj7FKcbkVkCrJvGmHKxStG2pzSC5Unygl4VOmxDii0zfK4cT+eCJMYZhihx7YGqSqkS8LapYd9Usbkqhm0UAgdEuYmkrk1Lg4pnxDFNW1zaxNkUGq6iPcQ1Wlt+ntCLUe9790oZsyXL520DIaRcAxOtvSKbryqO9FuBfsv5THL65ALrXeF3dFOekkoHVRA1arw9/Ux+b4rdtc6yhIRQ0MN82xMLiyyL2Y1qtu6JyGnMNaGaxfFcinUvBWb6rSqp7Sml7cIQjG3jSn6iY3zlFb4Xq5kLMGmBhj2B8EETXWGevY2ZmcCyltBGswTUfuNWdSXHF2NwxyGmdZS8WKFqZmxDTnqhq/NiKES604sVy3jdaKmhGsIYQFENaiWfa2q+HOBdXiqSSlcVlXcAImajGGRvSKtWMSozdol8GO7Io8S6ny8PDIw8Mjv/nhPQ+Lxk0XFPv2u3/1W7Z0wZ49pcgIa+FuwHQ24FyglY73quf200QFUi7k1u96ZzUmQa4dL4bcK6lk3Owh6il7W1d6dXoiH93uWgti3TBsFdZUWGMi5Yo43VDofWzCqmNMRUdR26oBJLfubK1qSux9BIB0EGnYbqBXEEfKhclZlqCkFUGvKcQOTb0m/uUhBRJxI6FND3HBT6SedGLSG26ME2Xo71vvLNPCtmUaem0IIKYRnKWOiGZnHbtdIEwO0/Ug1VojTIGcK+d10/hmaThRFNr+MGnH22jxXEon54R0KFvBe52ArNuKdw6HZd02xcndYmyTIr2stYg15BoR2zivr5wOB1osyn4tReUNlWGO1GvcWo+1nkvcqKax1ko3hq1WnBFMblhRNqwzEONVDx047c47O7o3Ny+D10CAIZ/KJePtNDjonVpHA7Yrb0noGGeovWpXuQ9dONz6Tv+8h2hXu4lVcw2DaSo3fbKOlrX7rV3TZoZRU7S/LGg3SdFt6iLot45x11epPgy5F9yCjNClimkV1yszSm61dIKFWSzeC5Oz+OCYQsAHh7OKebxcV3qrrJcLX55f+fJy5eW6EWvDzDOnt+/54fv3/O77R373/siv3+54e1jYBWW1GBG80UNU7EKuiTVHctX7vNRKbbf4WyEhFMBYTyqFczvz6A/05ul91kI5N6Ye8Qzib9lI3bN2qxi62lhzxZiEaxCcYZonalPU4DTPhGZAJrqZoG4gHmmZLTVcL8xO5TetF2LRDr+xHieCULHTxMEH3h+ObDnzj58+8nK58vZ05F1+UMza0phtZ9ofIOypVBxq+l0vz6Ta6OVCLw0zLXQs824h96hNoWliCUp6iVWJSvNmsGUj10ZrE6V1nIO8FXprzGIpNMzhQFhmwjzjdws2BFyA1Csv+cqH84UtJx7nPafDnt0SmIzQukOawZkGzbIYkKDr9M7vqBLZYqS2yiWtNBfopVFLIxbLllbWFMfaZ6ArX7tiOG+Fp6cXTG4ccBzcwuQm0nYh5wgdnF8wU8A7SzAB72asuyA14zE8HE/86u0PnJYDMX/R/dgINgTmZY/vjV6E7oTWLA01qFIFWmXY8Sk3nk3VgI/eO1ItUhQtWEqn5kzZIvl6pVwu5PXKcnpgPuxw1mG7cpKLGQ2Frlp4uurcnTQNBWn9fn/faDld9Po3Y5J0S83UA2+jyU1zPKLD0ULZUBHToGcqFoy7o+TqjZc8KvE6fA1ym071ETDSlYtcDTjzyyopf1m/DWAHOL93NdDpGm9Un9vhFjNrB+jfjI6wHWgpDVUoiHH6b2DoDgviHdSqHcYRslB+XnAbddTeTDK38fa2bcpSrOBawIiQrWWed/TWVdNsPTTB2EkLizr0vzkSY2GeFo0tbhtGtJDI6QpA64OqMX5mjInc22AfAqiLm+CVcdgqxmnHU8SS8ja6i7qRtwqxFKTBJWs8K2M8aelMkwaIQGdrmVIrfgr0pqQHjCPGcoec38a3vekGZpwhBId3huN+x2l/xBn44f17nFRMr/h5R8Pyu9//HuOE//yf/hMBx1P7Qqt1IPkaZoaUNlrLuJfPhGnH+XJRZnTctIs2uqOtd6ydFU9XCq6pTKFWpX5oPHClGbUmtCYYv6P3zvm68fLyjJsDrQmXy4qI08WjqMxBKQEdhwPryMmOn6/B594pr1ekatHp9LPvdei4jNB70dO6V/6ktZCrQvpFRqE76CkhBHbLwnZdldQyDKOtJKQVEPB2UExM1xCR3qm1cLmcaa3grMFIwxlL2Sq4xjTiVP2IZa6tEYIn1wqtkdaoRIiOdoKtYfaOXirinHZwhl451kIbOnhpGjMtYvHeIh1izpSS1bxiIMbMPHu60amM94Ft2/R+xdATlDImNhhEPGEKxDVinDKOpTWKMbjZct0iPjjWLQ5DrW5EIoaSNxAhOC0AS1ddubWWnuuQSDRqqezmmWtvGiEeLI3GLiyUksZ7lLWL3bryznPFiXaxu2mkkrCYodv+5z1G3aqs9nGPN5HRUdYOt0HlPIJTL0ETsBaMGn9uUmjpuqHqbmuQoSs0SoxSSYBRXbEUleWINByNII0Z8Aa89QQHwTtFW06BaZpYgifMXrXzVZsSX2ict42n1yvna2QrDcLE/uGBt+8e+eH9A799e+B3h8DRGmxpxFp4GZHNGOHNtFdpUdPY4j5G6mupnHMaCYdmYC9BjAXRJNMtTgQTaCXRrFO2s9Hf1lrFYbWm9IVrLZyvK9Yv5Kqytd46aY1kX2kEnF1JAtM00VsmZo+bHbUZOgkxwlobs/UYxoSxdMgJ54zqP1NlWna8EUNqlTVFPr2+cIkb1y2xrhvx4YG3+yNlOmKNZ+899bijCczLRMJhBLY8jLa1EOk87gIrCSOZZiCLZz7MxDUTiqHOe/ZiWV+eqV2lfeGwsBz3iHisM0iwTFPAh4B4Q84rl5r4kiJfzxee14si2uaJKTgm63QyYRzdDFMYnck6tpQJHraUEVETrMWxbSsv6xVqpSZtXmxZr5XdtGBrZx3Uia1VLutGuaxM1jI5zzLPOGu51I1YItbAMs3KoDYOZ4XZ6WtLFsQE3hxOei2VTk6ZLsK8e+DxzW847U9I0TTbbTS6unO0XOg1Q8lIbZg6ZHGo6bp11e92udFugJb099oidVsp20aOKzFeWeID8+HIMs3fSEOA176LcouHn8iKaFO3mQHz1P2g3Rsuw1gnRjvG49CuRjzuMiuGdvnOMDYW15WqMUoebNc1ehi36KJGRzUpqsGvSVN5iIzrWH5ZPeRfXIGsxaoWyH10gDTcQy8S48zo6vR7caTufy0walUjmxlO2Dq4suq2vxU5DSd2uNe1OGqlk1PicDiwXVc1BjrVHdZWdaPs2m3JubAC0hxz8IODGzHitGPYK9brR9OaxqVaY8hlnFdbxVulG6ZSyE0T2Gqto/unm5gGO0DvBSMQjMFbi5kstTdKzqODrprVGNPgOot2fkdRZqxTTZ+19JY1fEJQsHiv1F7uTN42IoWNaGeq1W962TAKDi3SOtOkwQ9iYVkCKUf8HFimwJ9+/EAujefnZ3xweBuYfcAawzzPGijRVLfqfcBYT1wTxqq8ppR8Z2F3uo7WDVjrwWrEbAhafOWcCcZQe2FaVN9cWqcXpYyEeeZ1+6CKtQqXqM53sNzah2IsNakOuAM5NWqWEUN+c/sr+k8ww9wwAFoj+rndRnfjOq6lKHVkHPZA/20fBzeLaAe3t1Eg64J661P21hn46zGNuD23VQ1b005j6UXZpd5rN4E+orA71gYQSy4axYsop1pMJ61XwjRhMATr2S07vLN4r+P6y+VCTI1t3cB5DvOicevt2++Yi5JArLkdVhrrVrGTGqxS2gAhZ+Vu3zvLg8vZELao8hMrVuUkMt4LGlOYaL2zritOLCWpVtp2Q+saPKBCZOhuoaRMCWArlNzIteKdIyU1rXVRI6O1jtqLar1HVzgETbEsVRMHDY4mBWzHiR7Gg/zlTCwyYsAZm+GAmzKEwkOOw+gs27th55agpWg3xUo2QddEMVipo/+kmkSa8tptLYSR/OZFO8aTs8zWMDnDFLyi/OaZZV6Yl4lpnplmlTXktLFtryCV8+XKy2VjTUUpErs9x9OR/W4mWKhxY42qbMgl8xIj25Y4ODXTnd4tOCNqtG83IkEn5kyMhTb0oAbR916g2UCthW3V6UWwXukU1lGH4bnWSurCNa4YGzSUJm9KODFBA5XsjFQZxUVCulAwmGSwrbD4mdDh4jTON3dhsiAuYxB895CzhpRUTfZzVKo1zGHmcTlwOW6k+szXVakeT5cz368rr6eVh/2VZVpI0x6HJbiJMD0QGjixSIo4P2ksMY3eDOIVb1h7xfVO2y70ZcL4QKxRqUOHI1ISy8GRpeIZDPbekFl1+qlHYoRuC58uV358feY1bsw+8HB8wDjVtefcEW84TA6LQSSTcWw5I63guuBsYMsbKSd6y1CVzXy9rkiptFZ42SLXGPEmUGqn9kQxjUtMxGvE1U4Vgw8zbjlixRFj0rwAsTyGA2/mE9EZnajaidnP1JbxPvB294YZS9mulLSBC5ze/Y63b37Fzgdavuq6YwXnDC46ckykYlUDnBW5qZHRekCtXdfPLjLkDXqoaiOgrKaMjYmWFAuXrxvpdCWfTsz7I85PSpOAMclStbSIyhk6BqvkbPUV9WHI6zfdxO3+lTHRkhGANLBsQ8bSR+1ipdO61QnSKIZvIT9mGB3bmCJ5BuVFboH0dkAd1ST4F5iP/Yt6/OIKZGB0hb+l58kQmueaCUOL7EZWujHDmT0c0K1VpQz0Ntya+hyqVS5DEqELUW3fDDc3FFxOaXxd8F67N+pm12I7lUzvaJxn1EJbBLzRDq3zUJsW473fCvw+urOF4L3qHAdPVYtjGXxdlWuIOgZxAtYpX5ImzPNuyBwEbwPnrBs93ZBSpDXGGLBSm6aI3YrbmotGWhrh6fVVWdKlkVK9J4m1zgjPUI+sGr9ukbdyl7NYa/HO8O7de8Iysdvtefv+HTY4tnRlCnt6b5xOJ6Zp4nI5M00TJVYeH9/x8fNPXK9XnA0cjwfV1dqJh+MbzOT46cOPtJJ5eX1mcp42CuSSCnErmNTxQQ8jKUVa7TSnReQ1RhbjOK+R73/1W45vHvnDH/7Ap9dnighbhJe1EpvBDDkPMIyHnd4KuWRyq4qcGiNq1a8PU+i41qgNhyHXSqtJO75jowYQI/SBnTMSaFWvAe/swBlmch5YuFE43vjct/sA1LQnqIm0FI1Xl5tm3ujiDspiXrczzimMSzvqo8POCDsxhkuLeuiyFnGiIQTTzDzPzF6Z0TFt1FruY781RRbnhtxDQzOc9UPzq0ZTGwI5K2HEjHtSxHK9XOndknMl2U151cPYqUQJcNZScgcUCXXeriQSLuywg5DRW2PyAZrgg0f68BaAauWtQyZDkU6u2vnDyF2e01q/T4dyzsxuRrCaWigjmYuB0hvWhyrfgkRua9Ff4tFN556QN34HMf1ulHEGuvHjdzAaCgD/lEIh5v7KBqhSD8c3aQWC7QVTR1EjDS+dWQyzM8zBM02eOViWEJgnz7wsTLsDyzQxTcoLdk7Ga8t4l8nbK19eX3haV1LruMlrVK/39FL58uUr5WK5bgsVw9OlEFPkaA2/e7OjlEed/jmAqhs+WvTn2u73nUpbBB8Mvdz4s7oObVHlEc4YVYbRdN1F1zBl9WpoDMaTasX0SLeGNa4EUSOviGcKgw8eHTsTaKZzThv7ZikIrhXE6540eTWKBmvHJFCnUEFUgmRFpVpvD0fWnIg587peWFMk5cpr3Hg4n3lYJh53BxbjOexmjDsQ7KITHNfoNqsRGKjW40Mg5ytSErXoqN2L0FxVSQZ6n2bjsNOkhJbRDMk1s8WkxZLpXHvn5fnMn79+5loyk3M8LgtLcEzzpElwwWjKKv1OxeloFz15eMoX1qK/U62FVCstJVoqlNru6X7XbcMALlhqiUq3KIXrdeV6PkPtQ1a2sEwHBMjpQm6V4D3TtCf4BcgE45DgmYLH9j1vTm/4bn5AUmW7vHItK/v3f837X/073jy+x7ZCjXq4w+i+a0zEuw2XN2LyVBfpKSNj+uiqQCu03mhVD+r0puuA0caTKGmT0lEz35Yo25W0XkgPV+bDibDf40eS7c0T0rvKnxT9pt1dNzrBVQzdDrLJSLezYukj9MNKvfMl/FgHdBKpzUQ19d+4xqOJQ9awJKCPBkxFTb2dPsJBVCpqqozr+S+yvP2LefziCuR7qt0oxEoZRXBXdp9qcYTa6l2CoYL7PqSkYzwxnqvWSq035JO76/y6QEk6Dr9xaGVsnNZaxXZtUfFgoqEMRoScFBGXekeqhglYo90I72+/wy2ERMcitalmWAxavOZ61zOW3igYUkq4Yfyy4+QfJqNRnE070kYUUZVzxEyB4JxSAmrTmOwxpnfeaUBFF0rWjHis7vkxZkrp9FIGtUMLsy2W0S0d3eOmwn8NTGl3TRSta+KeN0zzjHOOw+HAMs/Mux37+cSXDx+wwfP49hEfJow0np/PvPvVe/JlxU+Wf/zHP9yDWrTLXvj4+QPTbuGH73/Fxz//kVISS1AZiXO6+eYYtUveMttqUVOPun9TynSBl9cL+8f3vP/V7/iv//B3/PHv/8i2Jl7XFWSmG68UE2sITlnSjEO3s1YRbNYPDbCe+WtVFJvUTq8alOEnDX8J4kc0NXivDs/GN0OeEX3PKorvurO7xyj9FmxzO4jc/vz2fXrttXHgqqXo4upvUep6jdUYR2EKcOvADWxc12KsKWhWm5RdE7n8TjWZ2pWu9Jaow9TYSiHVrIlLaAxyLpleK1m4M6Jbq1jCnUect46YPmQUllLVqb1gOT08cLlctMtdtUOYUhqa+IbxE1UExA35wEjfuo8H9bm9CcR4pQyMm7l18lvVYBtj4SazYgQToE9ZaiHlVTuzZnTo0TCWXtSzMM0Lraq86nbQaH+BCeStrL2FEt0O4IiAuTnQwck3zvWN9a74N3T8OjZTuvoVdLqhccK2lYFty9hW8AjeCcHC4h37eWKZHMuyY1km5mlimjzTMhGmmeA9zlnVzhtQlWImba98/vSRP3965rwpws9YLe5LjnyNK3m94qSx381KMGjw3fHId49HwjyDtToJkkKTPjrp37p1uWTabZoy9oGcy9jodX2MKbGthuPhpOl6JTG7QG6FXDPez8Qch1TIIlmnZLHp4cM4TZIU47mmxsNs6N2QU2arhh46Fs/UO5mGM4HmhFYSk9X1vtQKUnCtY11gEk8nc5hnEHhMlfOa2HLimhKf2guXnPh6OXOaJt7vXjnOM/4SFGdndwS7pxnLQYRUCthGtRMlq4ys96YhIGJI6YIu7I0qjVYNJlhiU+OvtY1MJXerBrx45hwLX89fSb2z5oSzwpvjgf28cJoXvLUc3IStndwi1fgRzOXJZSM3lXwtzvHahS2utF504hcz2/XKJV6psVNSobaswRy1qM51yN3KGsmXlVSTYtz8wnFaSCnyul6ogHMT826vPP5aEITZWMw0M+0e+OH0nlkCl/zCmjfsfOJv/s3/yt/8zf+ZyXnS5Qvl7Ihicd2yCWA8NTlNErSJ7ALVrBo2UjKVMhj3hTxoFzLyF+rYIOVmYepdZWu50NJGWa/k65V8urI8vmHZH/H7nRJwujb5zNA3q5FWr/Fm670w7VaTIRmBH5ZhxjX6b+g697jpim+BSLcJXB9YRzpD963Pa1ujGofpN0azpdDB6nRJaEO69T8wb/9dPKzVXHFBaDdwvGgHzxp7B2n3rmzQ1gqtj1hmxskPLZ6naRpGPmU3ihGcsTiv+qIyxuz1Z7ufvbm+UVRWlz7IBaoZqlSSQIlXdUNjWK9XvblE45yddaqx61B7h1yHLlRId+RUpmE0YacZeq0agQm0KoBSFbppmFHY1ApkPSA4PzrpLtB6wTpDjIVbNLGmlUFKlVTb/cZprWJdgFFc59xwPtBbI6aC88PyUvsIZtGNa1b7Oc4ZdnvtHi+LFse5VmLSIvz73/wOcap1SzGyPBx5/+tf8fzpE1++fKCkRGsb+/3C/rCjGsFNjrfvHkmvV/70X/6evZ8QoyPaUMNIKUzKkDYT5IQZpsrash6enONXP/yW3fE9pTV++vgRZwyTXXjtTQsvhs1J1HSD6Ag996JdzhGe0tqYVHWdBtSctIhqej2UmobMQwNGzOASNxQtF7dOSg2satByylinRAAtdr4FgsjPiqBS6j2eutVbp9goigzFJjEK6NYKk7ffDkl20G1HJ+vOQxDtPjsTxnUMVGF/1MTC8/mZZZlIseKscLlc2WIe0xvVrrWuiLWcsmLwSgaBUjNh2muHyKicovXOemnEoiQMN3tKrKy1kdcrOUYW76k1EnZ7WhdyjXq9t0K5vY90YlQZjXNqHtT6UTu7+j4V7Yr0ombKmHBiNT5ZLBYhl4R1Fm+FjLr7xWmULU3xix2VDoGllMS2JYyXn+H4/jKbh4ga3mQUyGZ8vkZ0LcOoFESnpN+CALTjPJBMHTT5YDQIWtPPqFVMTdiWcb0yIXirprjJW5bJsl8WlmVhv9cCZDcvil4MDhecyrjG6BZ0dN5KIr8+8eXHH/m7f/yRD19fh2xHmw2tZtZzIq6R7brRyPgQ8H7Hm3fvWA4Hlv0RFxa6sXcajkGnDTcpU+2dbbDSxepY3UmmWXDVUERNrlZU25/iqgfkNlMaIAZnNXxHTAPbsU3wtpNrw5igZBcaqSZ8seAnXp6fCdOVd2++o7mMG+u2dvMquUZmq0ZDWzRV0QmDBNDp26YyOIFcGk4cp8OBd/GCdYYfvz5ziZFcL6zJ8Xq98vXlmTfzzH5ZsNarDLAacobZqHmv2XkcFnTdaUaT//RgpxMS5QYXMBM2on4MKfSetctbE1+vV4p0zuuV0lRW4K3hMB84TjOTcyxW2FtdY2SM9teSkVRpYrimjUbn2rSJYBmovpSI1ws1rfTcyKmQWyGmxGysXlODtHNOhbJl+nmj50ZDcN6z3++wPnBZP/O6ncEI03xg2p3AWFLWNXjnAsvxHQ/TgaM/EOPGOZ5Za+G3f/Uf+Y//8f/O3/zm98R15fnzwqvxRGO5dotDuBpPNo5mHd54svUk6ygp0sqqOuVcMdViKPq+1rERAK0Vai8jltlp066i6bq50VIlrxvb9cL2+MA+v2XZnXDTBCivXJFw3OVdpmvh22mDe26V3CO3ND3oY4ak0iqlTWhrpIw93TAI6kC6rTT6V6KECkGoRn+W643SKzewm4juXHIrnH4hj19cgWyMUQ3pvaurXUbvNVTBcdsQht5TtLtsneGG2roVHLcRM+PfOOfUzDQkFELXTrFqMwAh+ECpZeiPRYshM0wxvdOMEi2adFqB4IQ1Jm4x12aMPnxHU9i6Rhf33ui1MFlFFJWu3E1t5bUB9W4EY7WragQTHOfzinWB1Jpqn5zo4r4mNVx01SH38d7VctOmftPD1tJGZ73du+m3DapkiLmqOdGohCJ4DSBhSAv6OIxYa/HBIhTevnnD4+mBEALzFNgtezUtXK60VJSYgOJy6J13j2+UXGEMHz5+JOfE7CdyLbz7/j1/9w9/INTK3z898Y//6b/QUka8dmZM13AXnS2qlKDWSs5aILSmhY0xE9/98CvEe56fnnl++geeP3xgN+1YU1bDklg9rPRCL4U2UHWtFErNbDHqmLcq5k+k3zuwN3kOgyjQWuNyuXLXvzc1oHnv758HQ08rWMUB5jwCQnQR+3btmbsJTc18HedUY1mrbvTGaiHlnKLb9ACnhYUPHhGV09ihh9YL3zDPE6VFejN4ZyhV1IhjwmA0D6amCCllrtdMTEnvoVoBTceKWVP3gnXQFH0nQ5tbqx7KUskY54h5047PclSXe9b3dpr2rFc1zqjp0tAoY8LidMze6t3MGNfMulUqWtxqk1XT8FqpGNGDbh/3r7WWZZ6VeVzb+BlepyqgxtMhvdJDt1POsXWqd/WenjLLblEj1uiqtFugx18oKERExiY4ZBYwOtkyErG0UyU3nbHomtV0icMxQhJQUosVwdSO7Q1TM4FKMDAZmL1nCYH9EtjtJva7mWWZWfZ75mVHmCacdzoZMjdGc4GS6DXTayJfz7z89Cd+/Ls/8Yc/f+XlGu/vjfSuRUHOxKgR01ijRqHdxLx7IISF1mHbMtumZkiskoOcU1SkoIVGLOVuaLICbVzzUvTva1Nm7pi/DL1+GyEuho5lckbT916vahguldYr1tlRYOrPrTRaiczLzH53UC9C0bUz7AOmVLqboFcN4QmOnhu73rhgsN1g3QiSwYzi2GCNGtoejm/uAS0/fX3ikhO5qenz2irn7cp80bRIxZNact4oueg6ANTaxzo0BiooOtSOtYjuEKuBVGL6tzhi6VRjSNJJHUprtFIQUWngaXdiHwKLtRzmSQ+g6HQ2S6dXqFcNNDpvSYlJpvG6JbaUqWJYpoXX61UP6L1r1z4XWtUpjnqCDNYa1hiJaVOfy5bGazFMYWY3nxTDef7CJUecNeymAyHsdapWlEQU5plgZh78jpozl3zlNV7whyP/+m//F/71X/81v3v/hu26sQ8TLzbw6gPeT/g1YOOVzV8p8UyxCZs3rHVE65EsJNkotkJO+CzYIhQj471Xw3MVobdRmLauDbymSaalNqQWakmUuJHXlfi4sjudWOYd3nk9/HaGsVS1z+12HY81W1P2dN+23YxD5DD4jepF+k2SdbPqCa0PyIAR+ug091uQSZch06iIVPwIGNFl0d6e+Bf1+MUVyP9tYQtaRJRS7l3g29eM0ZN0qVETVscG2UeHz470rLtZb2gYW63cphDK3NfFtLdGLWWcpNBNU4xqOluh1KKaQKC20dEuDZymaIhYcoOWK9146ghqsGOoKsYQOxjj9EYyCnDvTSHrt9cqQJHO1jN1cCyxEJYZasWIUEtGYsQZizfcC6OcVNN1C6PQlDHLz0f4+j52LueV3jXrXYzc04m8c5ScR+esEyZPGYt1Lol3b07slpmnz1/47vvvR9E64XrnTz/+iYfDkWVZyK2AsTw/P7Pb7bicV/78hz+SS+b09i2Xy4XH057zduX56QtTN7w+f8G2ShdlF+/cQoxJ9X/GMM/hriXVAo3RDbfMy4FqPHnLPP30la+fv2B74fPXZ1JT5N35FjFLwbtGqY2cFAFWshINrOiEIJdM71URaPINB2iCBs0YuS1MRvF/xtJbJdaIrZZOoAOzC3jjSVWnHNw4xaMLbFCpQusa7GJGapKMa0w7xWMTrpqMqKoiuV+P3nvo5lsISakY0dhx/RqINXgvmOrwPuCtG9e8gvF7b5yvqxbHXY2J1jmVLZQ24t0VoVZTwkqnu4FObJ3Taac/S0ST+oxw3q4s88K2btwc0sZactyYD3uaQMppEBLskBzppIeih58YM+3WwR6dTdvbfYMqpRKmCWBIXQYv2iv2raHvm5hbwW905DloGh0oJXHa7dmi8lfHfqI+CNuxqD7cuX9+1LRI44b8Q7gHHHVQSoWA9HYfuyqK0oyOs372pmv3UlPvlD/tRdSMRycYw2QNu8WxXwLH/Y7dsrDba/d4Wmb8NBFC0OJYdJulF6RkKFFxZznTaiK/vHD99IkvH5/5/LKx3fn0KHYsZVJWLjvGKgnELUjQsb2kzPl6ZjOdxzcLrXUm5wnBM89+mIu1I7nFRKka6ORcGFWDIfhG8Wq4VKmcIM2QSyWxEcKME8BaDJYQAq+XiIghhB3YpIlkXVMHHZ3ZB1zYsd8f2C0TXka33ULa1PRMzmoopOJb4NojWyos1hCCx+XOWjMiloalSKe2TuiVt8uemCKlNr5/98jH5zOpVdKguVxqYauF3lUedTOft1rHNEOvD4weBszN5tV0Tapdx/bWfUOcYjRsJdHAGho3j45GdHu/sJ8Cb3YTi/N8fzxx8OoHKEbpP2IN6/YKvVPShngND4oZunGknsi9klvGO0M0N+OYXtP9FulstBFUm5Bbw5RGj5V1i6RhhvV+YgozOb7yfHmi9MrO7whhRqTrYbAlnNX9bO8WpDZe0wtfXj+y1cjv3/8bvju8QVIkb5Fpcnz3/oHD4nk9ndg/f+Xrlw+4yxOX6zPRL0R7JifVFRsrOKvppDklkhGqFE3JqwwCzIio72qWbLXRsZjmBiCgIM1q5HYuSK6sMVO3RFpXtocHdocjuzDhzagKRJBBOpL+c0/CDWuqBrtuNAhHhnFV0y/V2iqMRMWh2R/fwS3d1oimdqo9T0lGTbRJVwVupGYNNPkfEot/0Q9NPrP3//5WIIzNdeDdtGuq3V1BI2WRgQ5DE/Bui8K3orBRsiaj2aaGD2sDMGJ5u2pxLAPOPTSJTZQX3JpySc1wgjtjcHboJLF3TqaxButU59io9K7UA+3sKSnBSKfVrNnzI5DyNjrWgiSre3l0tWKMiDHsdntqVgRYG0V/awXn1FQnoh2HW4yxvp+3EbHFWc+6RnKJaocduk7nvA52/KwaZ3Gj6xwwOPp4rc5Y3r95y35eWHY7grcEr+zU9WVl3c788Otfq6u+NLa48d2vfkBGZ+9yOfP+3XsO+z3edPq28vmnT3hjefn6BL2Ru3bonZto1RD8wuVyoYUR21n0oGKCo4+OcNgthGWB1vny4SP5siHWckmd1C3d+mGyMNQe1e079Hsp5UFTUCKI99rx0KAWlEoiBrFO9ba943yA3nGT0Fun9AhWudGtdHKFViLOev0ZLepn0Bs5b3jvx5REEW12tH38PFGSjvWstar/G4E2IioNUPRcU3NO0GJwXa8wWM1OPE30PhCxlFw0adEKuTdNuSvKmKY24jVr+MYU2DY9rHnnKVnxbME5Sm545wlhJq7nMR0AKR0RpaSopKewXi74eYIRvtJShqqFyXq5apEOSNeOtVg7hgOF2CrNWkB18TeTzGwtzsBu9tSkB69W6gge6cQ1Mc3Lfe3Y0nprwdKHJKW2Tu43Nf1IZbO66dGVeNFFVHbTOi6ofClt6WeTqG9r0//Rxy3uww7/hMEOlnVHalVpwegoiTQEN0befUy1KkJBy7GutIIGpuuI1g2d8XGeOB5mDoeZ/WFWmcO8Y5o8LnjtGDrVbkurUAq9Rnq+IlVxe71Veq2UVNguG+dz4nWLQ6qmm2nORcNZBrvdeo+Eie7UcGxrpl0icb2QnXDwAWsdIVh2i+M0T0xO19HaGuswSjujhUur+jzBOnrw0CFJo3XBu0DtG8Y7Utpw1pF6ZTeP+91ZTTwbEezO2XF9TwTnmDAs08QuKKHEOphsoPTE7HTdkJbRAXQjtUIZkhb8TJfOtW3k8Zmarpg+J9C8g9x49/Cg+9QG/bjn5RrJwRGTdqVzKYOSpAe4iv5ubVCcWu/3w7iIpnqarp+3HrI15EZH8uM6aYNu1PTgY9CExHn2zH7iuOzYeceb3Y558gTvqaMADNYSiyaWlgrdGjWytk4uEXETxgXOT5/AGG0qtUYt2lQxzjNZD6XQalGeci2U2rHGk+KFS87EDkEck1+wYni9fuV6PWOsfk2AHC+45qlxQ5xnNhNBLK/rV758/Ykv588cjg/8cPoVLhY+/ekDeSsc3zxw2C3sHvfMh5nDmyPz6YD/9AH/NPH6+oy1hrSByIoqflVK5mzB2UiSSCISgNrzMNnpZ59QiULPjW4avVn6kPoZ4zC10munFtVi5xgpceDhTg/slj1TCHcsnBtpqX0E0hig4e5lrhn6ZdP7kEvova40CpVBli7Y4SPS7jKjprjZjG+NGRX4Owyar/dt2mj6L6uF/IsrkNWg5+7Inv+2awzcx9QwzDvGqHFKOgYHaEKZahL7QMGpdq3fwkHaTY5hh8lozC5RlJLcitleqaD4K+f1phUBNLs9tqToOMCOgrz3Trrlz48L2hg3RPV2NI5UJ6pF0xij0cmt4YLXSzkLHk+6JHzw1NL49OETh8OBeVm4rlfWuOlYuFVoN5NjpZRv71drZYzLlZqgBA0z2LpKVDCd0WnW4AaNrdQCLQ8dbG+V0+OR0/HINE1475gnT68FJ3A9n3l4fGDZH1ivV/bTzGspPO73rNeVD3/8kZISp8OB77//ntenj7TtSnaKqMut6CndClYUeJ5qG3XOgKCPmzr4wfV1jrDf85u//huenr4S16gd/D6KSNHI2i03UtWOsJFhohwhJL2jhhjjMR2cCdSeMcMQets0qhtdvpG61gayLqWkXVnntaOyBHISnG/aGaXjjKUO05WxaqTQbo9gnZIUdENIWOe0oyzK5W4l64HAdbpViYFUoReladw+Z0bnGdFkK+qt04x+oNp2pIuoQaOqcc1IIJVI7oVuvC6nxvDw+FZDPoYGeQ6BViolqyTCBzfCUSHMEzElwrxgJk9uhVvkqXTY73a8PL/oCDcXrBhSLmwx0qyylWvTaUztQo6N1o2SXXrFGuGwW3QTs041d6L3rDVOI1i7RkGLoImGXTftm9ENa0ZX2FKzRi1b62gtYUR4vZxVqmIV+Viqdnlv4UIiwnW9/gVWuYF1GlIKRP0Ffcg+dBO0YzaByntaxeq8VFnGvWB7U0d7v6VjdTwwWeG0TDw8HDidFnbHA8thx7zM+DApccfqhEB6gTa4sDlBTVocw+huGUxWtNV2TjxdNl63pP4Qyzjwq7lSxGG818OjNVpcb1fqxWFn5dJbFzgdJ+ZgCcGxLIHDwbPbTQgooSJnautDctKJrVBpes2O+6enjYxTjwmeaypUWynF4vczjT60tnqo2IUJa5RM1Lphcuqo3k8Ty/7AljKQWawjZi0uYkl4UzHegViCnbAial6cHJmJ1+uV0g2zGyhFUaqMveEUgxBi5hhmeirIrPffNW64OVBbIbVGSZ1eq47GG3TTaDHe5TfdmMHJVZpEqTf/iWrWrTDwZA3TRLFmQ+NuZaTcWSWXHJaJ0xR4OOx5XBYm66lFOcHWGVpXGVXthlI2neD2Dtay8wc+ns9gLfP+wLpuHPcPyuSvBWcdPnjSFlVuFiwY4ZojPVXiWvn68sprvFJboYcZ5ydyKjxf1cTonNPY+CaYuLFtL+R4JYQ3TC7Qto2nl098ePpAl84Ph/f8MB+Zto346QNf1sS2bWzHNxweD+wOC8dpUuLSfubj4cD06c+8frFsWAKebUzYbHHY0nE+YcxFp2YGxIq+59XQpeCqdvNr79RWBzLSDomUHjRqbfRS6MlRYyRdV9JlFMkPjyynE7t5p8bDYWjufRSso8A1Y4JZxaDB1OMIJGrQk97polJDey+G+13C1Wl3s/bYIkZYyGgkDlNfu8s1flmPX1yBfMOt/dzRD0N6YNScovrTjHV2dFUMJVdEml5oN3so+r0haJe4j+ePKeOsoRQ1LokI3ntyVhJBK9oF6EYTrxAlZNSavsVTj2hJO8bfTaXE+u/v8pDbCPzb70CXb850oLZCszqeqkVd8jXrOHjNG3NQLdL19YxPE9Myc902etfXnrOamNxw7YvomP7WeS+lDJSYgGjX4nYU8E4xUt576qBz1KLFYxoQeNV5a3dkN1u+e/fI5Az00TPpan6Sqg7mX/3+t0zzxHY9Y3eeaVb+JOfI+fMTDnjz9kBnU5Ob0aCTuJ0pacNNE0YsW4wghmneUWLSzUC0m0G34CzWBqb9gR9+91tCmKhr5vz0zHpdh3Za8G4ijVF66wUGbSLnTPDurrNNMWJcoBY9XBgx9KZ8Wu3kqk5XUwT1c+8iXK9XHdMPIgNtRJu7nbq7a0GsjkI1ha9im16HrWaNZ76NJaVBqqTBxLZdo0WNNZRcSK3iPGPB+9mkpWsX4kYxaLWNTVPuC1/nRpwwUBU4j3QSFes7xao0p4lgnAaEmBRVz1sb86K65dYFGybS1pTVWipWGrRCyhm6hs2IFVwI5KTyp9fLRSUPVcMVBJX1dBPABnKt1G4hMRB1Kg2xxmLChLGdGFeCVe5srVm7eGIUBxUCddx7tYJYTRCrXSOxpWkiIE6NsKYrY7nkrJMYwFqLs5Za9UX4MI0piqWg602JNwPM//GHGUYrQT9bGZKOG4lHO4Hfwj7kxtAeyV9OlHBhZWChuuAQvMBsYTc73rw58PDwyP7xwHLYM80z3mtwjRbY+h5QK70WpEVazerYv6PxRvCAZGrZOF9WPr9uXFIZB+gOtd+nU+IVR6bYyDYIKJGSHG46IGb4IXLBUPEmsJtnTseJh+OinojWuKRErIUHOzSb7ZW0ZXJtxFoppZFKodaNmBdO3tNKJLWOdw2zWQWgTBPHZSamxjTvmMwOx01/bJDuCHPAeOEUZi3grWU2BudmnDeEbpGuhk57k0C5mUs6Y1LC+w5xo/UJrNdGh8nYDilHjYW3lu4XZArY9YIET7Cea0xccsMITDNIdaxJ01Gt6H+7MNMqFIPq0FvDmqrhE8MnA4Izqk+/ZU0YNDTFW6vSBGOZg2OZAvsp8DBPHJxK6lLJdArShGoCcV3Juei8wghuWvDOcokbBWHazVyvF4LfcTi9xfSmB65g2GIi58I0eR52lpIvKq95uRBL4/OXK+fLlTXncf8LwXpivPB0eSL3yiwL3k5MPqh3oZypXdjPD9huebo88/H5I+d44bcP7/ntvOfQGv36VTv8aaPGC/Gwct3ecnr7wMNhwh9m3izfEfY7dvPM52nm5cNPrMYqKtBYSg40W8nWqeRIVFOeShrSo0augpUK9SZkGEjZm563FUpTBGsvhVYMPXokJUpK5BjJ20aJkXo6IYcjIYQhGVLNc62ghgk9UDm6mtDHXqJMdDWQqiyiDN9QHzXTSORsN4Cihlf34V+oOOoooLU2GfXKP3t1+5f1+MUVyHWgbECLZNURj3EBDEamPlpV89TAXegC3Cs9aefMBS1EU9WLx1hL6apfzTlr93jwkNtYHMUYqsg92OGmSVXNs57DSq13M969u10b4vzPsFKjszd0QffX3DvWiGo6hyy/0e+FqGqFB7e1d8p6GaxCp4Xc6+vA36XRXVd5hMhIEtJSSXVHTbFdrQNNR8oiN41Yo2FZ/Iyznlwb3ZqRaqdykN6bEiJqVYe28/zw/XdILQRnOR6OWGA/zTx9/TLeGz3ZTtNEiiuGzp/+8AfW50TJiePpwOnhxMvrEyVXXtezmtuSMpdDmIkx48RTh3PbuYFRM8LsA7FUUm787d/+LX63w8+Bz3/+iT/8wz+SthVxXo2SIcB2pg59cekZ7y0heFIrdNS0mFK+L3SFgQscUd5G2pBXaEqZRiq3oRX8hiR03pOTkhb0+viGamu90W6s0kFH4XYARHVn0zRppLPVa60ykvdGYI7z2l1kYNVAhqZQi3zVrhrtPhod+0lT/bsxRgMSGOjErLQT6dyNk8F5QGhV2a7ODmpGFw77A6fjwuV8xRlHrZ3L5aqf1wiZyDmp3l0C5boh3ZHWgnMT1+uVMqgrdMhR2bkla4e8t6ydtFLpTbvGxhisGYXgMHNZ4waZAoLR6F9lNTe977HceOgaby2j6HWI3HjQWpAacbrBDP39uFVvOwXGGC0SmnbsrFfz8PQX2ELcQJUhBukGY5Q9bVBiBQBy448bTNetzBm9nrxp+K6TDR19g0U/h/3iePPmxNt3Dxwf3jAf9oQpaHEsXZ35LUPL9FqgZT3sjzCi7jSyG6PYM1OVr5pz5svryo/PV1LRQ6K+N2CMpiGa4PU+aY2aMz1nypDdGKPmuHVb+enPP7Ktv+b0eOSw33M67Hj/eMJbJZK8Xq9cY8QgTN4wB0uvKrdJtZNLIeVGaytrOvAwzex84PPljNtZSkpUqt5zXqOyY9ow3tOdY3KOeVB6ajOc/AwYZqti7jmMhsHYd6xYPH0sz5a4rXgvyAIteezyDrutGNvpLmC74usWN1N6wrpOqHqgtssRx0QwK8Zt9M3j4oVmDBt6KHMYSh6jeu9VWtJUc96qGvxcbcrkHXsfg8N/Mzc6p9MdNzreYg3z5Jlc4LTM7Kcjk9dBvmryK9ZOnM9X5uDBBcQI8xywbmZdV/a7HV8vK712Drsj3u6oAue4MS8n3LQjbhvPz19INZFyIxjHFlcQw9frldfLlVoinYoVj3cTzhhez195Wi+AMBmrUgrrKD2zpsx0fMcyHynblQ8vH/l0/sxiLN/PB04G2uUrpVwhnbFpo8cL2/mFuL2QL9+THk8c3+5YDhP7xwPiLcEFgkw82aAkEOtJ7kLKCcmWbnXvdnbDFUNLKutKRUimk4vmC3gVxI+pNHdZWKsdbMFUA6bSqtOpc6n0lChrpK4bfUvsTw/MuxnnAlZHfnSDYkbHFM4auUdO264HKxnINj3IFhgVgE4aGF07PUg16UNdIQPp1imi6MhOH9PVnxVYv4DHL65A7qPwUNNGv9MCtKNiYFARFPek8gtjZXRh2kBwtRFN6rBeqDfuqyh2jNZ1tNqbjiekU2sewQV9FEOCjI06F9WdKZh7GLMGDeL2mmGMN4yM0bYoZqh3alVsXaVjjeLBQL9GU11rB6xp5BSppSJeECdYowWDoEVrSXX8TB3A9g45t+F4FWpRiYVSP+rQq+rYrrRG17QBwqR4J2pj29TIsm0R9K8Roxqn1qN25q3h9PBIb0lNQQ3atrLs90iplJKZl8DxeMR4TyobQYTJej59+URrFuss0zwT5h2/Ob3j//P/+v+Ti4WeqSNxrbaC85YtJaYQ1HBYtdv98O5E8J7leODf/4f/QGPhz3/+iQ//5b/y4z/+HSUmfFjIDWoqbNuVmDSaXIyOu1pDx7fSaVVIuVPHoiHDsNhaRaiDqz2uJSNI7apzdJbaVOqh3N8KY2R7O0i1Ybi4MbRrL4h0vAs4b6lVX5Ppej1oF6KR6zjkDMnAyIlQnncrBK+aypQziKMCKaooUaQSEKwD48Y4rUbtJhvLHALeKQ97ntWtv8aM1ZWYlLIanVpnNznm2TF5NXLllOi1kfLKtm0AlLQxLTNpGLb2u4lrvpK76lm9dzydz6SUCM5QYsTI9I1S4/WaX/aOUizXXIgx05sQvKOT8FLxbnR2S2GeZtZN9YiNps8jgrNWCyJrwXZajfhBGaC2Ox2njQnATU5FNxgblGwClDqmJuifXRpWxcIqnfoLdJAtQ14jghiw8o3nbm6hAmiMrH5vwzvBGUOwBm8NlkrNnUzFtI41hp2feffwwNvvvuP07g3L/qCoNavvs+kVWoSSoGq3/55WKgw9q6WjkgJpQMm0XNjWyI/PV366Xkm9U0eKpFhPmGc16XolBOWiUdG1arjBJWdyh+ACtV/5//39j/zHzys/vG8c5pk3hx2/+u6B/TzxfC68XleerleNSHeeZdmTW8O3ji9qmu4Jthy5xJV+2DOJYGrj6eXC/rinXSu7Q1BspguYgcPMVYiAt0LDMU+zHsIHPlA62Cocjo9saSXWjLGda464Wlhc4LDsiDnhnSW6hDeF6me9eJrDiMMb/VkzezYinqyHwVLYTwZjJ2LT/cv2QOywM4aYRpPIaHjUZLwSRcThxWjhiso++tgHOootVVRYxXuL9w4vMPmAcQbEMRs4TBrpHGzH9k4zjlwVFbmWwuQ8W9rATRzDHmscO2sw3vOybUyi/PdaGsskXHMjuBkjheuq0c3HZeG5FGxttDXxul552Rovz2dMjsSqel5nLPO8p7bOy/rKtWrTyhvDbC22V2K9gBh2uzf03vj4/IE/fv0zuWV+c3zH43yEVtniV3IN+HJhzhGfDlS/p5crco2k1xPr+cjx/Rse3h+Zlon25i3g8WbhOexxr1+4bl9huyLmMhpbgjEOWx3NJWrOuGRGGmkmW6OeoKZc+N6VDNH7MMbVop1mq5I/mv5/qpWWKzVu5G1liyuHhzfsDwem4DHjnKyG3Z+FlYkdIsMROd9vsoqxWnTtNDPCRtqQlILo/d+HCENQuVJTSlW7/1/9361X/z0/fnEFsgaEfJMI3KOku+CsU2TJLYp6bGq3kzPwrfNpZJjZOp06RhU6RjZOjX6lajHprBs6vz5iaZM6yAdmzjn37fmdJn51I5RccGNMfyND9N4JLozNhoEfGzILgV77+B3VdVpKRqpuUHVs5LUWNORPQxZ00tI03+FmNixVdcdiyUWdxL0DYjRPPmVqGwUyYHD3UAfvPbvdQt4iLRdySgMy3riZAnTiqxs4YjCmc9zvyCkR5onSG10s65ZY9gtPz8/sH9/Se+W6rTw+PDJZ4c9//BNrUoevnybm3QGD5fPnL2xxRajUkplnTy6q53LOMk+TdsX8xP7NkePjI8d3D/iHA49vH9nWzJc/f+bP//B3xHjR7mXTz+pyXaniuFw2EK9N/d7x1mFFdeGxKA2i1YKMBUOXGUWP0czoXjrCoJh01Aypxgq9HmstivdpBWOc6s56o9SED3aMPNX86azV5+YW6vJNQnTTlolRzNtk9bOQwZ82feiXu1CjdrfcSNjTCYR+7qlmTG/M4piDo9uOtXpNHqYdwRtq3liWQGuGEIQtd1qFEBwhCFaaclGDZZottSqX1oXA1+fPYDQQZbd4pmW5oxIrlZoLk5+JKZJi1gAca0k1DZRh0Q3VCiKqLTZjeXcCdpqGnwDAEYwWf856tqxov5+n2YmRe3S3sp0buWpRq/rem91tHGTVtaKHkawMctB7tBa99lrWLvQtkc7cJjutEdw/f8m9HbjMeE6x2vXRIL2usbcMGU1vWKsF3ey0S+y94um2Og74PbOEhYfTgXfff8fDu/fMxwMhOIxt2FaRVjA10kui9zTWCkZjYRy2raWLge5gGJVbWckx8vx05c+fz5xTIXedfhlxhHli3s1MAw3Zsn7upaQR7CSct42nNTLvPYLl5VrYzomaO9My8fbtkd9+f+L9mxMv1yuXbeXT8ysxZcJs8APPmOk04R7e1JsaBGurLFZT9Z4+P7GVynG/4/PzV+Zph3EVN0104xBjKbWwlsbDbkaArXf2ohOa0lQuVGNkcoNlHxPBaYcROpwvPB4XrkUJNZ2OdE9jIwRNaW39G0vfmplUDCYJu2CJHVoR3mNYneEcAmvSw7HpjSpQb5zoLnQzUVrF9kYzgnT9nFQ7epsYWmrt7JeJyTqcVSShsVosi7GcnOW42+HFsKZMMzAFRStuzVBaxlnLbtkRpj2mNnrKnK8bW8ts5xd8mJjmHZdasMEzuU5PiZeXK9I7O+d5iZFgPN5WPj1Fttz49OULNuvhaetFpVF24jAdWdPG03qhUJnEaUFqhJguXOMFv3tDE/j45QN///HveImvvFuO/PrwyNF5TLfU3KklQm7IVunTivErdduIsVDylbK9Uq6vlPUdh3cnjHNMxz1vrMfvd0yfD7jnGXFPpNUT7QUxjmw8uTiKyRiXFEdpLGIctiSqcZSSsAM3mmljylgpXSUQioVTKUbrDRmkklbGpCVF8pbIKXE8HlnmGWsd1gyfiYia9Ib+GCxdKnXozGlKWeld5WuaOmlGWJPcsbh9iFJ1x1FT4JgDKR3oL2BC/pf0+MUVyDf9GugGdev6qIlNN04tbr8ZZ+5d5tG9uyW06Z9tIIwG0k1uOkWNsuxjRKuhBEPK3rsyI6Vjh57RooVlqdqxKnVoGEeKF3RaKwMzx4jQ1Qhe43TzqEUvYO8cInpTGfetGDXmW9Rw7aMj3NodKXbD1akhxuKDJ+euZoc6fkcRBeYDGnNZ6dShX9Io0RACrRVSibSc9GQKw8g40nlknDabhgEYY/j+3ffsd8Jut1B74/jwjuOyI6cLqRROk+fw5kjNnTns2K4rzy8rYd7rWNsYpt2ObYvE6xUM5BgRlDvd4Z+EMuxPD/zw+9+xOx751W9+Q5hnXl9e+emPH/jy8Qv/+J//jpYiuawYq+8roDq4psWPmD4KEF0EwjBlISjgf9Ra1lpdVJqGdCipAoLXroz0jjf6+ZdaCGHW97cqs9qKFmree1LOY6x/0yxXpmDVbOaBbu7SjJuMqDeoCsdW5F4po9Na1TktgrVCGeEcMg5S0jVQIFh9bTdt++Qdc1DJQ++VZRpGEANdLLF0as7UrO72QmWaA8YKk3fUtMIkxE2lOE1GwuAU2C5nnFNm7uV6pjmv48WYCM7r74ZlS1EnLh22lhA81nZiSdCtmg47zMEjPeHtRK3QRD0GrXWs+6bBDW6mj/f058Y5/ZreW03ATX6YX1XGoFg/LXRv75F2lC2lKi2g9Y5xbugunfKABy4vbxExirxrf4EJpIbTDWTdsBXTqpqBVEZIkKFVNoL3MHvD7B3TpIeYlhvdO6QUBMdpt/Duu/ec3r9nd9wTgsNakJ6RFjEt0UqkD06qml7N6Fwzgkn8OEpYercgldo7MW18+PrCH76+6mFqdLSs93gftMGAft91XUkx6bqrlkNirjzHjbfzgYflwN/+7nt+tT8isWG78P7tG37/6/f8ze9/xR8+fGFLmZ9ennm9rrwJi8qRmjYwertJh3S6lpqST/ZBNatGhM+fvlJyws8T6zWyP52QVsBOmGmmN4NtQq4ZMTMuVy610r0n5UKbG6E1JhYedxPXOohCtVGlMwVHLIVl3qtcqXewnXVrOu1gGBanCVoliqG7PcasbGXD5MwkhWoDIRiO1rD4Tm6V1QacQG2O2XmcFbosGsIhjeu6cpWL3rutsuaMtUJ3wm6ZCMHr5M7pQTtM2hTw3vIQJqzA5CaMDVjT7tO0+96LG+x5ENOJSeUQLWeW/Z7jcqJbR7eZVHSSEcQxOwe1c0mR3DI2F2JLnEvh09MLbSv41riUSOmNgGGZ90xh5un8iXPa6BicCEuY8QLn7cJWMjuEp9fP/PT1Rz48f2Bxnr9++xu+P75jsU4jtHvH0DTh0xRaTUwu4spGLhs1XyjxQFlfSZdXrk8P7B/fEI4n5ocdfj9p2q7puDDx6idknbH2RaVdxZBNotiAEQ/O0+MG1UEupCxILZhxgE8FehMNE4HhWerUlu/84j5kSrnqJCxeN9L1Qn37lvb4hmW3x81KmumdkTqJyrJkKKPGQREZHhQZoSajIagSY5WE9o7SVHoderJh1O9qOJQOlfa/W6/+e3784gpkPdcMJjDcO8nGtLuWt/83H+J/a+b7Rr8oGiow+my3aOVbpzWlogsEeoVVafSegdGVRi8k1e001cka3ZCdM7rZ9I4x2g22Vgvc0ssw3FhaL+N7tHNpjR2jlpEVVkcnUEYvcJi5rLU0tKg24oYedzBQR0e9JE0OM2KxxqvWtnUat0OCBjnQtZswzUF13COpqhXdAPstJtk51VvaYbRh4LBEWCYt8rc18+bNW7aom+2yX/j44U9Yq5SNuGWWeSYVpVJc1quimEplN8/EbeX49h1/+Lv/N7Z3tpTZ7YN+AlbuuvDl4cBf/+2/5de//x3dWr48vWJerzgxfPrxA18//ESJF7zzTPOBlFZiTKrZcp4cNc3NixmwepU66FFIN/mSCrfsj47qyO0NexccRtQtzk3qQx0YoxGeUttIeVTknrWDRtFBkU8dR8E4dc/XolIeI+5eIIsY2niNKgPS0AeNdFZdL0V16rfXrpuBhpPIKBJriSoJGSE4uVZSgclpFHqrKq24vlx0yhE6xnjWVFDASsPWPFBfFm/1/rDekFsh5aikDxH2u4VWIjk1MB7b/P2AktaV0jrL4cQ1R6zxQzO84xbk2FDNHii/OcdK2hpIobWqcg5Fv1Ba18Na1eh26z0yKsmbb6CmSmlFkX/cNorRKekoSUTGQflmYhFGZLfFOsi1YI2n1KRmsZSZfVAJBOPwOqKw/7kPM6RWgPK1hzZQmh46rO84wBvBBcsUrMZCz55lDnhn2a6JfC10H1i85+2bRx6+e8f+sMNPDmeaao1rROqqWmO4Y6XEWpq5BQh07Uhihj9B42uVu6wTqo9fL3x63Ui3uGMxWDsmZwMDt27Xu4dBKT3aqMg58byubLvErx8f+b/+L/+B//k//DtSWtmuK6f9kb/6V7/i//Q//47/79/9kR8/fuXjywufXl457INKExANWZJKaTrGdiOwZ22NYjqzs8zW8lwKP338yvF0YH/Y8fryyu54oJmKrqoTU7CcC3gTCU0PEmG31wTUaWY/BaQ3np7OzIujxoIXsN5ig3aekc787oH+soFtzDFjeiZ4PyRSiT7PzL0TaqPMe0wR/OSQc2WaJ1rrXK8r0rySNvyBnhNVhGC0QRTCkWJ1Klh6p9SI1MSWK906tvMTqcPrurHmFaU4eXazxXmVGe2CGpu9VTrKhGGyXpnNNGprxDWx23kWp4dxJwHrJyanjYxp2WPE8vWq06BSIjaoBNF0IaaKaRlTM7lWXl+vfPnyxHq+sLiJ63omlqytCud4OL4FEZ4vT2w1I9Yw+YXTcqRTeV6fSRi26yv59Qsfnn6k9cbvHn/N37z9HY9hUixhSaOppvgl6QUphWYzLUfIiVo3enoh7Y7kshLjxrZFTmvk8PYtfpnYHRak/YBdDqoVf/nMahziAsSAmBWbE1YMKJqaUi3VVcRbbM5kV5CUaZJotUDTSVbltod0es20WDXspTpsrZiSYL2StytpW4nbyunNG46nB5bDHmfcqIw6iB1IOrSRJjcN8Ri8GYZhsA3ut3aJRyyZvpafwQPMqK4VHfc/JBb/oh+tFrr1Iz66/hM9oHZ/688kDe1elN4MdGpgK/f/ZoyxldlZhwxi/Kx2w7/phdNEu5fSOuLMN5QKo2BufTy3jECC0dkYLtY7vWKMLdo4wMlwp4sx90Lnxo40YihFwxXG5X2nE9hRyFvjqE1Zo9BxNtCrofaKtIa3ZlAWdDPq/aYk6qq3Rl38JW33pLaas7r59YXREWrNeGdpNWNtoN02z6bd8loKMWth1AdSbosr59cL1nucnZn8QowRYy0fP3/SkT9qRMox8avf/oY5TNSqBfrkPc54Uq2klFgWlWH8m3//73n3/fd8/PiB3EBEjXfnp6+8fPmC1MZ+CRSUQjHPCzFfSLmzbYVcdYOvpd8769ZASRFqJ62Zf9IOHIeYUiohaGpe630UnDdaSbvLY1rVzq4RnRyoFl6dXsG7O72ktI43Blq5Ty8YmLmSC9Z6urFg6pBfKBtZHFjndTw2QjKsGPBeGbQi2GDuATjO6UhcvB7Wahe2UnQRz2DnmbgV5vlAa5lWi2LvQI1gVovo3jpWGiYEcu3klgCjNAqno+M2ivBp2lGbMO93xJi5rJFWukoxXl/oVo2Dyue2o2hoNNuxXtP4aq1cYqFklZMox9eypjGNoY/pQmcKC4KQ2nXcsIPwUQtiDKVkunFY5yi56PiwqXE3eK9w/5YJYVF/Q2XEwW94AbpGwaemfZRclDVsnL0b0m6+g3/OQ4xKqrrogc008HQtjrWOwVmLc4YlWPbzzLwLWiBPqnUvMWNMZ6bzZpl5fDhyOO5xweBkhH3Ujd4z0rN2za0ygBn6w/vIVdTaoyFFQjeDMiICVsk2ny9XnkeAh8EgzoKolKjWTslFD6hF/R43HT1oIMbz5crzdMYcjnz/5oH9d++Yz6+UP51pzvLbH97xH//Dv+I//8MH/h//zzPPl5VPr2e+f3eitKzrbjeD/tEBxV+1UrluG3G3KJPd6TXX6Xx+PpNr5bTbk30C07jWjnWF515JubKfA6c5MDlHLJ2d1/vyeY2KRwueljslV3Y7p/rvrglyXTrxNXLcGVKe6EvVoIkWsDbR/F6NdLXStCHP4j0uCX7/jpovrNVzPMzMdqa7E3G90mflOyNBpz5e2E0HmtmIaaP7GceOKkoK4eEtrayUnJAmdNt4OScu+YXUIo/zommwzmFbZjKO2TjohqlnnlOhG9h5r3KoBPNs6D2ws2BMp9pKq51YI5f1hY5HGpSuSZhMhppGMus58Xx+4ePTE18/feVNOLCtVy55Y+sNjGHyM/t5z+v6wtP1QqMRZOK4e8cyHXi5/Jmv64WMxZbCljZivvL96Tv+7fd/xW/efofpGrjSktCLyhqq0ftJUZxFTf0imjhbXml1BRqtavFcL2fi+ZXppCZDd1oUJ7k74MKknpHrM5t9IltPsSvRAFaw2eJLJBttMljncaUgLsNm6WUjj1AyoWO7NjW2kkglYarFOodtBd88NnQKQgJeSiGuV+L1wsO779mfHoeMsI5bWOPZDVqn3CRTHe4NGmQ0kEfVIShSVisDFRTempA3eeH/CAr5F/4QY+i1M08zKW/3ouQmobgVxzcJhbVWNcPD1Kd0im8fsn6/VcJFrdgxhr/xlukjfa9XSlW0mbFaMFqrrlXlUo6fPZ7XmqA6aLnJP34WaNIVEybCnTwwGjjDiMMYgeiF6Zyj5qIGwfHvbsmBgo7Sbxrm1hq53VKb2mDqWtUz1YI1Qh5MZWNGAEnT0UzvUHKFIeJvRovc3vu4iUekpogW2kYwFqwX5iVgxdCMY1kO1Jo47R/oBYwJTMvCd7/6AecDxqJUi5oUAeQ1CcjYQO7CJUe+vH7RTdsFGppYOAXH4/sf+Ot/9++xYvjTP/6BsJvxfqKWxtPHT/zpH/5eOy3WMu8fuFxWmGe2GHmNmW0bo/am5q42jCcijVy3cY1UUhlGBgO9Vmqp4/NRHJxVh57qX3+mQS+1Iq0OVF+l9TSKDwA1jBoLrWfVUY879Cb1yTkPLrYdI/+GsRqBHreNEHTC0RpI1fGnN24YRLXwKHXFOXe/FoHhwtYEOw3RKXQMpVvcLanJCmuKdPR66jeebrMsux0pZdwcmILDOSGnqNeU9QRniC3j3YTglRTQNMTi9eWF3FVbe4mJtm46aUH5zzlnNZqKEELAOseWM/tpIm6RkmGePSmuqsHtBu8d3WvX1hvHcX8g53pHMOasUa8F5Z9rsIKj1EyPqv8z3pGbso5rq0zThEi9S7IEZZLrvqAH0TUnKrq2OOsUGWVkRGIPcs4/89GF0bHtUAveCs4pesxbg7fCZB1hcixz4LibmJbAssx4O7wPgKkZVzOn+cBh8cy24YhIKfSakK4BFGL9vTjW2FluzSOVd4nc1xpEubld1LgpQadXX84b55hJPyOB9NaoOVKbsrG1uy7359VfVmMIrtvKT69f+Xw68PL0QssFSkFeEyUmlu8P/Ju/+jX/t//L/8Tf//EDf/rxKx/Pr7xeVwyNmHQi1GgaQOMDvUVKK6wpk2sn+EBYZny40mInx6iHdwzXXMAZrA9My57DXsk0l20l5cTbh7ewrkwOrltkcpaHSaCv5GIIk6EiTG4ioAz1abHsrKdUYbHCMhtiVBRcmHbkpnQYM03UohMhJ4ui75wlNlgMBLfTQs52ws4Q/IGSGzaI6tUbSNmQeeAht4o10I1HJqc0k1ZhmilGEAeP04HWDny9vBLJLHOgYtjbrkFCMbOmlUbB2sZueWDyE1jH1IUkRYOhrJCLDD4yXGIkt6L3n58osVCzSj8+ff7EtkVySrxeVz58+sLJ73AivG4vXEumAEGE4+7Ali58ev7EtWx0A8u05+3hOwTh8/XMJUfA0Epka5mDn/m33/+ef/39b3lzeEMhEmLQePPrSs0JShlrjRrUzJiMiRHIBtqF2jo9XKjTjrye2C5nppcH5sOR6XTAL0d2jwf8rBIi87RonWEsWcxIGDVE4+jO0UuEIcGxtdBTBmcwxROlK5KvVlrK5C2OVLtxbzRFLYpxSO300igx0+uFlAsxRbYUecyR48MDyzQzddW2d3uLwB5hP12jsMWoDENFhaNJJ9pQU7mmTlDpWs90bvs//MIgFr+8AtkFTyuNy/WMtebesbnpim+PEMLQ9PJPiub6M7rE7dGaAtytsSMQRC8K+7+x91/PsmRZeif2W1u4e0QceWWqysxSXaK70Q0QguBwMJyxAUnjX0sz0kjOkDbAmAEN9rRCoatQXV0q5c0rjwrh7lvyYW2Pc3OGfEHhoZnWXnbrZlUeERG+fe+1vvUJ6zBGu+aYZvUHbUWotaZFZAJFPVn7roesRRJGuY1znCFlDRgQc0Svl8ITkaMbQi33HOmynCCtcl3EiUrXKHinoomlCEFBJ4zR8XyVSrFL3LI55tpba7E0Ur/oKLtS9GAspQWWAKLj7XGataBH7eJMLWqb1RqTnArVOLquYwoz3ntub+9YDR3nZxcc9ntSLqzWZ/SrtRZ+pTIe9hrFmSvOerr1BtevmGMiSUZEBWW97/UBNpbVesX3fvAjzh494NNff8L5yQn9ZuDNzS277Y7Pfv0beuMY93vOLs64u9tyOEyEXDikwN3+ANWDcQxdR4gJaYLGUtUFohblKOdaND64dfi+c82CzSCijhMipk0yFuTY6qYjOkGwxh1540qboX1/RkyzB2v0mZzufYiPy3hpeGa9B9a7VrTWxr/36hri1KKHYohTou8GdXBozeDid+28I6WGtjmh5gpWkA5V3fteVdVm4esLm80abyzWG+bQqAe1aFpdrXivzi7ee3LU76lZ48hzU1DPU6B6y83tjfIeu46UEzFFun4glEycQ/MY1udzveoZ56mNqkVHuJ2jFFW4d31PyBnfrXDWHGkZaszfNvxScOIwJmtojGmjx+ZTLuiIenkuci543ysNRjTxcEmyM07TwqxVS7HOOWJQrnrJioqWqkmJv+tV2sHoqAxW6J3BdkLn1Vqv92pDNvQdq426DqxWnXJsgZB1hGrDzIrE2kQGE7GMmKzqdQWJVVCK8xTjG/Kq0xGOtC79OmShVBgwjtoSIM10IJXC9WFkH4IiYqLTilpK8/fOGjFdl/2sodR1STOFUiKv93te3N3yy5/9ho/fvcCVzOHVlqvxQL0aOP/u+/zoO+/x3/6LP+a/+1d/xX6euT2MnK56csrEkrQIqYKronZoJVNSUlcY27O2jgF1o1n48ONhxPiAdB02Z5z3KqpyuldEDG/ubjnrHM4LZ+sNve0J1dCLpYhDvCPmSE4Bt9powxEyKc/4lcNgSH7AhIIpAZMHOgsdM1VWGGsxdqDMiW5lMDEjJiGm0/vlB0Qs1ZwSS8UPgpMW0JECuXN4GsXIdEoraACLcU4jkSWzsrSwH3XC2GxWzNPIPo6YocOmzBQ0pnhYrY9VkRQtoBw6OTk53SB0FCKlqDvFFCJTjIh0FKMc4ylWpkNgt93q3h4DIU68evkSF+HsZM3z6xfcjAdCE8+vrWfVD+zDyNX+jlQz3vScrh+w7jYcDi+5Oex02iuFuRS8MXzrwbv8/vvf4fHZBSs3gNtQusTkJyZzxzRu1VvYREqKmAIlC7WqyNkWp85SKVLsntIPlGkkDWekMBLGPd24ZnV6yebBI1abNc44fN+zG2DnKpPV6Z6b1Y89ptp4vIoEpxxVZNlbzKrDdRpoFQ8HxtstJcZjE+pE6YRUdUKSoL74semVTMlKxwiRMmtxfXp+wdnJhsEPjSdeGrBGq5OkibYbqly1YFYQTAvp0uocabzjFsGDNFrVN+n6xhXIYZ5UaGB94/zlIw9Z3ipWcs6klLG2QyS9FQV7T72Ae9FXKU0Q5RIlZ4wV5U6ZQIwLn26xW6otV92oR3JDWDNK1bDLoZAbd9c6tXYzRjmsVlEzWuSzLlQtmHLRDcg1H07TxtAlL64XM6noKLcuXi8K85CTNgrWexXplEKMFWsTzinPuGS1DsulIg2lRIo+KKjThhiraXu1RdcaaVG3BsGiLFENaeiambwYh1sNSuvwQjX6eTz76itijJydX9B1vcbOzpGwnQnzzGE7cnpyQT94rFdxwXQ3Mu0DhEIl060HUk6cnJ2xWa24fv5SC5u+o2C5u75ld3XNydDjraX3XeNKNluqnJnmWY3ek0YpQ6GWlmZo1fbNWkNMyiv3DYFdRvTUhLdqiVRLEwzmxR5wob64Y/NjbUcI+bjmvHcYUfN+Fd2pSnmxBrS2x5hEiC2FrypN5Vh0U1VsQnNaQOk8MQdiiogxdF1PNUkRyFKIRR0jatGxZa66hgsZU5XrHkth8CdYl5nDpIb4uWCNNowhBuwwEPd7tQ0qQpqiCsScQ3+0VXV0FWrKGp+NNhpTmHFdx0Qml8LQOaRq+IQVQ86VPFfIlpgDMvSUmAk2E6ui/AboujUpZvp+pfSlqg4BfTeAUfP8WApJMtlW+m7AxEzJmZwrfe+oaMCNAZJRvoJtddsykZnn2BpjwXqrdoS+IwWdGkguejClwrrraBJXSil0fc+U/jNALDXjSmLwllVn6DpP79UZpO87hs6z6lcMQ8dq3TGsTvCdw9mi3Mo54epMn2dWUvGSsRIxdUaqNm1iGknSagIlxh5RKxHTVPim+Qi6ViRrnDrGI0ajgsVdE+PM9X4kpKy0NCtNka/OOyXrlG05pGl8S0r5GqgRUuTVbstPf/0pDwbPk4tTdoeJv/r8S27jyH/5L/4h7/3gPf7ZH3yMofLLX71gqpVVKThrCLWh70f0W/3ea63MIZKtw3qH6Sy1rQMxClB4o0V9SIW7uz0pFdbrFdZ2+K7TvcY6djFDjJxkuDw9ZfCeQsVbD+h7nmOgQ6dLxVpytGRXqIeMk0quWYW63pKqJVfdg7oYCJ1HQsJ0K11rLWG1GoM4T0hgyohLSacMncdsNjq1ShNSZrWS84ZqOmrVgsb1ToWvelRghh6pGht/st5wJgP7GJHeYVcZ2Qmu8y0Qx2HF6WSSiu3WaktpBak9K2+YZUaqpwaNqJ9SZRcjhcI43RHHA+NuTzzs2N7eYObCu2ePuN1d83p3w9gclWw1rPsVOWduxx1TnMhkejNwdvKUXArPt684hPsEv0rlwckFP37/+3zr4gM23SmGqCvAD3jbqSi164jjnnQ4UIom3pE1xCnEjKSIt5oOi2nivqw0lTlOem7FkXmOhBhYX1zi12vW5xv61XvYTicxsrtRkaP12FnP/VgzsURyNZhVx3CywZ5sKFaI+wPzboexHsQhd3fEaURys6VFefU1q/WelEJyFtPQ5ZoK25TJi3fyowecnp6zHrqWzKq5Dep4VTWNFgXkaktfNLUVvybq1BxHQfUdtVrV9VXVaHyTrm9cgWwbylRblvxSGC/FKLxFC2hUCjkGbFRFr1I6IlVLQX2kP1D1AUFRXS3Ai8YLp3u3CGjjibe+f54mnHX3tk91ibE2+GZzBIYQArVWet8dEV7eGmvaJpQopVBjxrquAclvEe1Bi9YWd5za7ylVI64pijY7s6jSm3K1atSuE0WOl2JL0KI45oL1C//aqgisFcrHHPbWedaUqUatjrzrCCmwXq/YnJ6rXVDX47seaz0np2fUoiP1hOCtYS5aYKaUcM4zrFZcXlyw7Tot0LzHdW38PawA+PLLL+iGHuscvut59ew5189fU2Kg65yGhtC4pVSqM+RZiCEzxwjVaiJUqUdqjAo4tNOew9zQwNKEbqJ82NT47s37WgcNOo733rdAkXCk+XjT4byhFIMRIcRZ/bONCpzMcs8RSjF64Bgdh2mTrn7fc4o4v9J7JDo6U8S0HNewMy3iGo3fpea2mRrSHBGr98iKHgrWO1JO2BaCE+aRVecpMWC85+LsvNF2NDAnxoQFVusV0zQRm2J9P05QKqvVShvPvIxaKyln5jA3mkhoXGFFIGsTrsaUyCVSjEayGqu85lIrNmalCzQRy5yTNmrOY8U1TrwoooylZCGmQkgF3690UmEscZqQqhZ3Qj0+B4ZGqWouFsbI8Vld3HFya5RTzCpQrRmLkGvGmkFtv1A3DOc1SjuG+Dvvcb3ASW9YD+pN3fWOwWmQwzD0DL3T5Lf1wKrv6Lse5z3WFNI8EinYPNPVQLdMnqyOfo1d+MGNb2yUVrFQuqRRcYx1ioYbLRakxXffF9MOJIIYxmnmdjuqpSEtJKcuSHhuegxN3pO2TvWZq8dNb/GhPuTE59tb/uqTL3mwWfH5zS3/4fMvSVNiHCP/J/vP+Ojbj+j+wXd48viC58/uqIcEybUAhUyxFSQ2kbQKZedUaUMPjXum6nMiUMTixHCyGRhz5W4K3N5OpDRzsjlDQzLVwSNh2Y4BNxS2o6UWz7pTAfLaDxRJHFLEYbArjUsX1+GzctSzNeQodJLxNRGqY00h5kqq6kIypUrnHWm0R3GUNUKYR2rNGrpiehLQ50ItkVQE1w0YsybkCjXRo7HBtndIa1AFp8W0NZRicd4iFcy0o+s67nLB1sJmfUInmTqcImTKHHDdWp2FYlY3nlQoWek/t9uR25AYQyCJZRfmth8WSgzc7W7Z396Q5pnp+sB75++wm/d8df2SfQwsHVTvPH3fs5tH7nZ3OgEw4HyH69e82b3k9e6Nghao09B6WPHtxx/wg6cfcrHaYIuGL5ETtvfUrsN7z4nzBGcJzpKsp8SJkhM5JXIKpJJJMeOsglo5JfABCROEDSVFcjklh0SZJ+JhR3d6SrdZ4bsV55eX1BIRCsk6ZiuISdQ4UnIgidHUwfNTWG1AhJx1smecxzmH846uc0zbHfEwkoKi3VLU4lRHM+38RWkTNRdKTCquj4mYAiEE0sUlZ+u17v3Gqpe7aVOigk7c2jMoTdBaRI6BUqA1h2nKPq2N/97F4u/0tdAbaEiBNH/SlFIb97YxaFVELzchUm7hHAsH2SyFYeN7LhzlUu/R5qWABi3iagFaIIEK6DgWOkc7rjZBtBhFiQGqkGLzz10QmppJtShCU5XuII2XuRTrxlrl8r1FEzHGawIPbaSrUCZSdPEvfOLCW6JAmj9zQyy7otZjKSdqkSYwa6p5pweBMWprxqI4L+UoFFzeq7NKQ7DN4NzbFTnp69rPE2dFfWnVv1lIKemDmhJ32y0pJsZxZLvdcjZO+L7n2Rdf8vO//mst4JxRXqnAw4fnbDZn1Cp42/HmzTUvvnzB1YuXxMOMHzylJIZhIIswhYkxzLjVhldXXzGH2MbE9w2GHtKW/eHQxvcLH72huyLa9Awe31IGNZhEVfOavqgHu7WWeZ5Z0hGHoadbrdje3VFyYbUasNYwh0CVinurQLbOEqLyv/SWGeW0SsI7QylapJtWZBqjXFfrHMaj8b9L03ZsCqFzPX3fc323RTpDNYW+t9ociCBWE7noPVIrJ8OKUjVaVtoD5pxvSLk2FdZ6hmFFyhVwJDJzrtSqIsOcq6aMWaux4EZUMFYqtl8z5Xr0FlYv3cWCUUNs1NrMkpI2CB6DwzAadRDxudB5T5hTo7IkQpjZzxNiPMNqw2q1oubKtL9GPaXVQcNgkdooR1XTMytqlWgFGhvvnoPcnsmS69caYXJDKcWqwNQajJO2vt5mfv+nXae9cLFxrFeacjd0yjdeD56h7xmGjm7o8cOKvh3+zhqcQKQSncGRoSQwtgXDCGItxnWIcwvJQsfwRtMCxVhNmbStILYNOTZLskwrmLE67i9Qa+ZuN3K9m/QArvd7hH6OQFVe8/1z1/6rHcIiQt97TtY9fe/Z5chVmLmOI7/68hVfXl1xYQe++M1L/vT/9RP+1//NH/DB9x5xvhl49uCMZy+2vPjymnSTSMZgnKXznpIHKrr/pBQp7d6vvKcOHdVUQm4jZtHks4erNSvveH63Y3uYyFkIMXBaBbuqhBjofMedWSGuYHPFFFh7QyC3VFPLIRe6GbCOXGYQS8S2hFQLIky7mZMTByVgsUjvSUnpgZWMtwaMBhYVCq7zdMYzlar2m8aQzQmmA5cLcR6hRrwxZCswrOi8UYdAM2AJqllJKPVIbCOVJqrVaOEz76AbMEVRxVTUCnMeOsZx5Hxz0jj5FukU9R9DYsqGBESKBrlsd+xubnVyWgPjtGe8u2PeTlz0l4QU+OzlF9yEqaXSCp2xnK/PoMDdYUvIkSwV7wYeP/6YSuHl3UsO7XsSgrPC+2cP+fG73+XxyQW2qig5YY+6DCMVZxy2O1EPZfHMHKizpcRIMpEsAnMkldpEvSPVWlKaITpcDKQcIe5x3Rkpbohxhz3sWG02uM0J/XrF0PfU0xNm9YGkSEasOmz1p5ecXJxC3zMnPftyEYrrsKe6h4h3mL7DDj1xv2feH4iHA3EO5KKaBD3zlSZWXCXbhMmZWmqzZw3M80ScJuLlQy5OT+n7Nt3k7QcxH0GvUlWrocEiOlE2aBMtLa1V97e/L5D/Tl+KrtY22m5CN8NRKHWPBC90itQEKPWI7pVW7EkzW1+ENYtiX0xLsmqXtEASxGiC0cKvy/rvKv9f3DOqbpSLtZeyLLJyg2vVh6dFUlfUg1gKLCbdYgzOyPG96Ph+sajTeFYaIpZLVYuwoiLCpcgVtJASK80XGrWWKzpeNO2QWjiGpQiIcpVrKfR+iUWWY5Es1h+RzEqhd4bOWbpek4PEWAqZ9eZErYHCrGEpTkfFOSlSm4qOPYdhrZy/OWARaoxM+21L6dPYbes6XGdxXrnWb16/5pd/8wt679Tk3ionO7fkr1JhN46EXNhd3zLNGnQSixZgxqLjKQMlhfZ5RuY5kbGUrBuqsULFslhVZVGfYY1uXkI9OLqkvN1YjdOeKQZ1R5CkqYW14KxXmkRV55OQCkJtfqNarBnrQBym0QsqRm0DW+S5iJrJW2uaZVS99/01hlo0cTDnRMwJ3zkQpWw4OyjXvWYsyiceGxLc9x0V2B4mrPU40UI9t6InRS0ox8OMFTStzwqHaSTGyLBaNcTBILlSTAt2sY45ZlKJzEmV0ClmUkE5eqWyWg+M447O9YyHib7rGHqPGt6bhmIUUs04lO/pvecwzhTT+OCmTV5yIqVCTFGtqooKwdQuUT//rKCm8irFadpfrQ151ubWOg1QKKJIaOd03XfdGqqW08dCMKmApr6ddf+feF2sPRena1arga7rGFaOvu8Z1iv6fqDve7z3dF2nyLFzOKO2TiYHBmvwKIJGr+N20zlM1/xZ2/Ne2wForFW02HotkBv3Vv+0AlmWP4I2NgaRQE6RNzdbtlNQVxfRPzrFWSwQl42U1kDeUysEpR9t1h0PL9acOA3uCTmx7j39WoM2Ss0UMs8/ec6f/feZH+5+wO/98cf88MN3eHx+wmdnA5983vH61R3TTnm3vqn+S6lklKdve/X+TcGwyro/i9F13nvPpne8sz7ndLXhly+eM04HStVmLKbAZr3BdT37eaIzgiW30JaM7RySIVUhzSNGNOI3pETfr3VvL4kiQkoa35ymEbfuEa8Nh9SMcQNhLMy14JxXwV0xLVTK4kyhWktBqCXjTSWGBH1P51R0SVGxKg0wMV79eMuc6HvB2kwMur/WpCCEMQbbeXAOMwWiQZM1q2Mg0/W9CuS7njEq/34/z2xjZMqR6+2e/TwzzoE4H8hxZJ5nwjjx5uVL4t2e8/6cSuG3r77g9bhVkAgNd3m4PmXdDdwddsxhVu9xI5ydPeHs9CHb21fc7N8Q83EUwMX6jN9779t8/OCp8sHRcIxiPM4YbYpzszlbzsZupZaSUomu4P1MGh2lTtQQKCEzJ0AyuEJObZJcMiVOWD9i04Y+rHGrmTyP+GlL3PX4lT6bbDbKD68H3Mk5Dx+fM1yeYZ1jDiPX+x0xJ2IpmGpJAmm1xjuP9B1m6AjbAbcaiLuOabtnHidKVN/8Wio1KYIsxbQ1DuqlXMkpkkJgDlosX16cs1mvGoCi9ZNhmZSrQ446eujPKo0qWpEWNkMLVvp7DvLf6ctYi5HckLbaUCDdhBf6xWKVFWOlViFmjeW1WLzzxDzpjZbmV2tEgyNKxtsmcuPesqk2rlxSljFYgy6Xlq9em2CK5SB2aKIBzTZNaRoN2sW4JoRLis5ioVSNLs7p3olD7c80RlcWEWJdHDt0RFmLUItVvrCx2iig/14t6ArO+OPnl7IWTt5YrFP0OqWA8UM79JIWzqLdOY12YK1X+zLUIzHmmVVnEKsfx4PzM2JNeGcZDztOTtaUmogx0g094l3jrEamUV0Wohg2qxV93xPHiZs3b7h984bb21stJqXDdR2nFxeYzvPm9pbtzS2EpE9z86cdNmuGtaKfWGEeR1zv+Oj9b/Gzn/5cxQemw1sd8+aSqSXpKCxN2GalV8WQyz16HqaZrrfaVddlrbXmiyZsMNqYhRCOo3lj9HekNGOWxsyoC4C1rlEjtLFRGwuDye4Y8lLEkCp6r1PA955amosAWqwZqXgn93zmove7lELKrSgx2uh0LajBijCNGhdu2tq11pFKZTcHxhy1iWk8W2Mq0vyXcy70Hk3NCzPOtjjVoo1TyplxmrGdb+4WykufU6IaHbda41SsJS0hUnpAHUXGg/ovxxBxzoOxTDERSuF0c0pKalt2iDNTmkkxQVBefdf3uN6Sk3qR5xSV3gFUY1vBVaDOGNFGMcfAerOhUEmxEAqsXEdpTUitlSzaDPvBUqaEEfV8pnbMYcKsdL9JMTF0yvX+z2Hzdn4x8OB8Tb9ZMaw29MOgSHGvIT7eeXwbyVrnmpd7gdIoIrY1sFWnVtYr91as1/Umzf1ANO1LnAOrxbN+jb8vjsWCaKNyfzgufxdSDLx6c8cYU8Ok5TgFXlwSdfDUFPFLcdyo9M4a1oPn4nTFkwcbXBXCbeDNfkfXXfL09JSb8zMOd3tiCszB8PLTF9zdHdi+2vIH/9sf8cG751ycDTw8X/HZ52/44ssrrq73pFqxuZApxBgoaaD3ysWdY0SAwXmMdfjO8vBkw+XphsENnG029F3HTz//jJQy4xxUiFcK2/0eY9RtwYq6E8ToOHjLmfNY6TBomM08abLgme3AWMoU9OOMFdN5lBF6Asli1pZ8iNRmZegsuAS5JIz1+KEjR0W1u66jOCHUwDxqkERNMxlLjUlFlsVgq8P1lloyScCfbSjzTEyJoSUO5gS2aMFessU4SGPErRwpe7VLS4lSLXj1izfZsEuF6j1TiOxjYEyR/WFLCJn9dse4H4k58ebqNa+fv+Dp6WOs83z6+hkvdzeEBgeJCOf9mvP1Gfswsp0OpFoogDWe080lYdrz5vYFIbZJhcDaeb73+D3+4Om3uOxOkKr6Bm8MvjXVrkakura3Z3WyAKTvKeIwKVJCB8UyVyHRis1YFPRKctTjeGYoiTlN2Lin9gM2TsT+hC4MFOfJp2uGy0fQrairwOrBE568c8nJ+RqkcphG6t4wJEjVIk5dPWoMVBtI1mC9ZdV1uH4grleEvlNalLPEg1LcqAoslKqFu9SM0ICTrChynmdKmMjzSIoz8fwB52enWKeAl0KNVYGioqDP0pSoFWxmSWuVFh1v+fsC+e/0VXLFNCQHvs49fvuytlPXAKfabETou4EQlSfqnHb3tAJbmim+egkf6cANOdYOyqIE+doU8IuTg5RCdqKBIe0/1trm+JCxxpCLdr1K1RC8dTrmblQH75S7bEzG++5IFyllGW3oawsx3COWuZKiOhjmokLCkDOlJnpvETLOV4zRRsGKkKi43mGdUItGVnvXUSrKZa2NJ2gUdc4p462niIZLiFHhGw2dUD9WixFYeQ0QiYeJ3ZtbzocTrDEM6xXOtSLNWlX/ow2Icx5jDOuTE7rVQKowzREnBt8PfPDB+1Qr7LZ73rx5BRUcnSIr1jGnwPmDNU+ePuVue8vhcOB2t+XRO0+5vr5jGidWq56UKs5bjHQc9lsd1ztNr1Ou+Eytto3f9fSWJpCrqHuKbd31QlfxzmPNvTPJYiuY22Qg13xEnE2L6BTUfzPV5lZhhDnMqhYujVPcdeRSmnBMAwXg6wEYiOB9hzWG2MZrkpsrQCm65tq0Iedmcyii3MOcj7SQEMPC6yBnGMfUuMqVadJGZhGSHg6zIqmd13XbCvWu86z6jpyhGkOqypvfbUeKkUbPWAJZdGN3vodqyKVxYJ0lx0jKlb73ZERH42FGpMM5oeaIJeOcUQeMrkPEqc9114MtjcqfNICn0ZxKKSwRwupYo9HU8zQp17ZauoY+L/cRY4iNtlQKOOux1uDNoM9K0YaGJuhULuv9vvG7XA/OLrh8cEG/2bAa1nSDWhna5n3sbCuMjdFCl0rNGVKCJrapYrQpHQZsQ5nFdeB8o0q4RqVQ5LjaVhyrYWsrjNsfFuR4maoJFQ0ZiePI86s7pvZZaOEtbU0VFm7FEUVuD9RCbeuHjpOTnscP1rz36JRpH3h9M/Lm+pqSIu8+eMjHT57wq/gVU0jsjdrIXb++4uW//ve8eHPNH/zzH/HB773Hdz96ypOHG955esInn73hky+vePHihnmedfS8XtN3DuOE3AKdfDOXNs7Rd561HzS4KEbeWa+R9z/gr7/4kmBH7GxYDytCDPT9mrFkmGesXZHnSM6Z2UTWKeEMpHLAOxWT3+3ucMOGmqJy6HNiyJUpZLJo0Eu+qyQ8tvMUE3GdJ80WY7PGJKeJ5FZYEvGwJVuQ4phtp+vDqXMLRpQdXyvzHOjcBodTN6Ywq8UfwpQrTiKpBIwIHiEHfR/SL7qArELUKSH9gDOeKc5sa8FK5TDNxBjZjROHw8j19TV5iozTgZQTt9c3PPviGU/WD9hsLnh5/YKvdreE2nhKAmvXc3lyTiiJ28OeWHTaVgVc11Nr5vbuObv9NaUkPV9FeOfkgh+/+yHvbc7oBYqpVONV2NumoJWsITi1pUA2uqLJluosnXUEo4JsJzq1TSVSq23pmw0AiIXMTFc6rM2QovrI54KbZxhWsO5h0+lEycGD777P5btnrNY9JQe2hz37mBBX6deW6jzGTkx+xgZ19zDzpI25MZiuw60GbNch3imy7yyyP5BmDRhTqhiYqrxrZRU7crGYmFpMdSBGLcRjDlycn9M30XgWdQAqogFWBtS/H9SKswEvhntK6jfp+sYVyDEErGljau7TsuwShHBE8TQTSQ2z1ZZsTEGV6FW5rdZqOAFUbOeUI9u4yG/HUy8paALUVJpgjqMX6jLeLo00H+aZzvn2/DfzpIXOQDPfLy01T1ox1jgRXddD+/qFT6qOHOmotM+5eb2GApgmVuRIIYHmVtEERyL1+NnoeF5dDKwRagZpyTu51Ib+aMqfbhr6esU0D9mSEYoi7XVGRMVbt7e3XDy4gFKYp4lgew7bA8ZaTs7OGLr+mEp3e3fHfhzxonHDm75jGAY+/fRzvvzyizZKVD5w1/c8++pL7u72lKwq44LDOcPm5IRy2LPebLi5veXu7pa73YHLx4+IsfL5Z1+QUiWlqSH7QiozIkoLWeyuQghNdNLEiLSGpJYjJSXlqIWc1U3kOFVIib7vj43awoWvtMMXdBymZ8HR3cQ5HXXlUtRuKmeojhgD0zwfxXzeO6qkRh3RUVitFeMdqWSsLDZljbccAwanz0PMLHHMXWfb641Yp0hBjlE59EZ/T4y5JeopleFttM82N5VhddLeQyBXoxy+rMEz1vZqdZWLhhSUqg2ttXjjyU0BnbIWr7XdY4MhlYK4DmcNc0wslmLODxzGCWsE5yqdVdTOuU6R4RAxJoNYrLHtcFumA7mh7xnr1c2k+YG091ZwVptUL661thzFejQnEQ0ubi4OVXm3OatQKZUmZiyZLBCn8DvvcecPLzm/fMCwXtP1rTh2XfPGVgRPdXW6m6jHeaamSM5BpxzO0p+dMFyc4TdrpB+gGxDXg1M0U4wF69Qv94gaL2EhjVLB24j4wh1HD+I8c9jtePHmrqUR1hZy0niOS0XCvT/8kW0h6mW9WnWcnW945/E5Ty42XFXhygqHOfDs8JrOdTw6Pee9Rw958dUrDjXRF0MxlXE/8Vd//ks+//wV3//j7/GDf/BtPvjoAT/67ru88+iEp49O+OUnPb/6zUtubw/cjiPOgXWGvh+USuW0QJCSoQTEZsRVYlQazoP1KT9+7z1++uUXeNdzd3eD7wasHwgxMnQrplw0Ic4NlGKRUOiA5CIuO/AdnoDP6rntsGRJjGLp/VonWLkgeIoRynZHv1kzbg90NEGjH/STTIFswJ2syEWnLyYn5u2E7yzFdIix1AGq75BUKPsDfb+mpKiDgKzUjOoM0xR1SiVGLeW6jpiC0kOaY1FNCZzDO892ngkkaskcsnAXE2MMlJzZ7W4pIbC7uyVWtc/77PMvOO9PeHz5hDe3b3h2e8Xc7DSrCIOxPFifAnC1v2NO85GeXkUnsFOYmfZ3pDiTW2rXRb/iu4+e8v7pRfNEF6xzZOnAt/WWKiVpPlyphSypoaGOIkEpSKirkR8G8BZnwJWZiUBJXmlqKRGLWiemnBiM1hs1t3CuLhHI5N6SSmZlEu98+30++t67rFeelBI3+x0SEv0A1kSGGNnPOsExoSO7yJw6ZtcRxwMlzkSr4mDnO2zXYXu1hbPWMm33pDmocK+iXO8izbquglUazpyLRlXnRIqKLIcYeXhxwXrVN2H4cuqpuFaM/qwlFGih6agd7H8OCODvzvWNK5AV4VOlpRgDdbFTuw/jSCnd840pVFvJpJYpLzivRu5aCqiDQy31KMJxzhFCaIWMay4LTqkQuTldLGEjVseGph0sNau9jzpnaOhGrc1ov1EexKGm3ZIxCL1xSBtZW+vux/m1EuLchEwKymg9L8RQqVVHrSo8pIlQKotHrzEaIlKrplsp77hxoxt/29pCrgmQNh52imSCumFYlK9YVcwXSsSbrn2t0DmnAqyqgp9iBT/0nF+ec3t3jQDr1dB444Xt3S27/ZZxGhnOLznsAy4nDvOIE+Hu+gY1cY+IFL766jkvX7zAGYuxllwF7yq9H+g6zztnT5mmwDRNvL66plttmKfKp599yn4/arFWMkqaTboZtHCCnOKRC6nUHJRbbAw5JbzRJDwxVvmlCN4YTIXOd4rkO0fMqTVSutmkqIVCroq4U7Qos06LtM6vENNCa2pCnLsv2ozgNOoJU6T5JCtKKKZSq2Ho12qlV5RSALU5p0DXd0jSrzWiYjfTXDGWpqvWqoWd0BDHpXwprTHRojCnqrG9Wf20AfpBke4QEt4NVGOZU1Q/cAlMoYXpGFEEtop+9tLg1aruGrUIru8IIeKt4KvQ9R37w34RWrOkYxqrzW8pQlSFF31LvjOiB0KaM+JNs50zx/2g5IIzFlmoMyx0FPX5Vi4ux8JYTPNHFgNWSO3By8YyZhXbuL5rhYuKNGPJVGOaSOZ3j2I9v3jI2cUjfN84xtYitmvrQDno0vywa9HCuMRESa1QRvDrDef9wPk7j1k9eIg9OUf6AfEDGKWwVLMUxWovVcUep1XKA3CtoD0qI2Ch+VSoObC73fLydtf4x+oQ8fYRei/Oq8c/IroHdb1T9PjihG89vuDBpmN3CLjeK4I/B569esXpas3js1N2hwPTbiQY3TetFcaY+eUnX/HF89f85j9+xo//yQ/4/h9+yNN3H/BHPzzn6cMT3n1ywq8+fc3rV3fchglboO+Um+7afRMjZEQ9d2vGSkWso0rldOj48PIBn15dEVc9mxNBzIG+aQ1KGdh4w+1+Zt1XruPEqvP0MuBrwFPIBootuJTpHdgipCoQUQ3EOOFcgq4nTRMpBmrNRAq5goSgtmquQ0risJvIDsw0kVKAbkUWi0W9cushkeseUzvcekUkaejHrOK2tbPUaaSWSizSHHe0Ya8FgmSMV9/72+2WbrMmjiMpF6IpTKkwh8whzmz3Izf7A7s5MY4zKSX288xnn36Gx/L+4w85jDue37zkkJWrXo7F8QneOm4PO8YQmnd6a6TEUUQY51vm6aCTMmBlLe+fXvDR5SPWxpHKiDMr8CA4qilkUZ68bXZmUjJOMuDJgHOZVJq7TdbzDmfJ657ZnWEvznWKtb0lb2+o00RMhZJnsoEumSZU9BQxTMkjOdPVwOOnZ3zrO+/x6PIUI5WQAok1RQzrVSLESS319h3Zjcg0EeYZExzed8zOE8YtpAA5Y53F9xq21a1W+M5jvSVuD0zjRIrx6HVcUyIV/ZywRgW40RHDTJgD8zQTpokYA48eP2q85KZXqrLoppt3Mw0JbAAfi7nBN+f6BhbI6iQA6iDRdYNGyNZ7zvBiqVZBD5CieeNO4R8q6v27oEI0xJCGCr+tWDdNyGeALMrpy1mjaRc011od6Vhrmyeqcjs1trqwBBF4r91kbkHPndex/Xq11vhlY5im+ejtrCKwokVebvQSo7xk6wZi0MI510xurg+KRsvXkG9rNNlqQTdzicf3CMohzkU9PKUdcOo40bwRnSOMzarLmsbJgvVJ33jFmXmeWFdFxa0I4gzxUBBrcF6pATFGrl69Qt0R3NGlQ1oU9rNnz5jHEd9ZTjZrRaZv7lRQYOToorF81idnZ4xh4jAdyLkSc+I7H33M69e3zLEVgKYlLaJ+pyKNTkPSMI0FlU/NJxKaEL/FbBq1vKki9H2HmHRcZ7E2zpex5KyOD7TPcakJS1ZBaBVpin7953mcddQbEoWgsd0NgatkOuu16Wkot/Ki1dnEue4+LTHr6zHNkSKXQi4VJ4ttmT3e50VAmlLCeqsODbE1f8cHTBHflNXfW70z9LWFObK92yKiglMhqX9oa/5ySY0DDylGhtVGnVLqQuHIxzFeLglbDM4U9abGMo8T3vgm7lvSm5Ypkb7GXKCEwhxVXLkZPLVUxilQi4ApOEH3BfSw6IxpjY45osNd56k1HydBxig/vZasnP+2XgzKpa2odZ3FkuZECIF11+s+obAkMWVs/N1t3s7OLticnmKcb0mYAsYr/akmag0q2MyZmgIlzdSkqF6tBes8508e0683nD16RHdyofQK21Gtp9KoGaJ0iyrKg9e9cPl7QY5ruwsNUVqK5VrIMXB3c8f1TgstnbyYt76tuewsZfZS+RjBWcMw9GxO1jx8cMLjiw1rbxk6DULphp4UItM48frmjnffecjjywuejZGpVDamMZ5F0fu7mwMv7rZ88uwFP/jV9/nRP/49PvzoIQ8fPuTi4Rnfev+S33z2kt9++prXr/fEqntzbrQQazwl62TxpBc2Q8dhjI27Dk/OTlkPHb998YrDfiSngqkZOThO1xtiN9CZDijEMDGnzEkRVp2hiFC7HrEGQoRUCDHgU8SvC9gV1nv9TEPAmEraHrCd4WDB5IjvenIAITI7bZhDE80ynFHSSJkynTUYW5Szanswws1hZN07vBHECc4IhxopKZPShDOeHApu6Akxk2s6JoEexhmxjrlkpnnC2p4shkMsHEJgP05s9zv280iuhTBPjHPkk88+Yx5HvvPB95GceX79gts4q62YVHoxPFqfsOoGttOBXXOmqEButEcnhhAzYZ6oOVJJOBEerTZ8/PART9cnmkRYVaOhk7WK73pMbeFJNVFqpJKR0jcRsSCypppELg4jkVQPTHFi5w35g+/z+Nvfx5yecvvFF9z8x3/P4bPfUnY75hAIpdDnSG8DnVQmF3T6UGe6E8f68QW+V1Fn5x2d95wawXcKCExxoJsCpjWqfdexH0emg9BFRepD55QaNGtaaXVFdQfe0nWOYT0wXt9ib+4Yt3u1mMyVnCMpFbWsq4r4ihh66+n3BzaHkemw14TSUnjnyWPONms9oxBEMrY2MzfRPbG06aXSrf6+QP47fSkCtlilLfZL7YCr9wI35Wk2ZW4LETBF7UwWvrFBtGNtAjcrixirsFiZdV3HNI1As1VrReSRd2otRcCbTjFao+NdLYwWXpA0hLK2UA3l7taUEW857GctIoSjE0KMkZTuRRTq+cpxIyjMujlW5ZKqmlXFiUrCR39ejgi2RWjr6EUN+psPrHWU0g5h0ffdO6/2NggkfVgKth2M6M+vzYLLWpxpyHuz1wsh8+b6jru7PUPfKcfRONI4sr25xYrh7OzsGJoh7f2O08hmvcFb2KxWjIeR/f6gr3OlllOd95yenuGMY5wnXl1fkaWy30986+Pv0Q0n3O2/YowR7x22CDUq525Ju1s8j713pBiJiWN6kKLli/2feet75ChgWyYMC/1Aiy6ncdRVm4Iitb23fKQLLO4gKS4JbOqqkHP7nnJP3yk6gySXjPHKhfZdhzNeB9YFHS02m0N1FdHGxohQkqVmnUwAxKCevsv7Ubvk5t7SqCJvx7EfHWFaQQM6GUi5IZVoYqRxzZWlVFJu9B2r7zXOQRHppamzakNYSkRqgYQW6k1EudgwSi7Yko9IiIil2qoNTNXwhCkGLebnoIuy3FMjut6SK5QU8c4SgopMrLtHy5f7eHwmRX3Fs6jzQi6K5hsRnFFKjTO6vnNrnpbPyXp/31zK7y7SW52s6dZrLTZb417EqpVjKdScKClQUqTGRC1KfYKKsY7u5IzhQjnM/uQS6S/AqFDpKC4+FsMLKtyKYtFph15voeFV2ng1KhGlzJRw4Opmy91+btLVts5bES21iYBYMGilkxlj8J1jNXg264EH5xtOTzwkLVaNVz5w7XrG/YEXV685vTjh0fkJ+8PIeLOlF53ciVHwI+bEFCvji9dc3e757W++5KPvf4vv/v63+MGPP+DdD77F46eP+fCDF/z8l8/4m1895/YqMYWIkcy603OlpIbMS+EQ92wPkVINq37gvPNsuo5fvXjFfr+nUhmGFfMSKuQKN6nifAfGMKWoBaXJ2LDnQEFKwVfB4dSGUiwzjrWrzCmxWa0ZD6M26XPC+jVd5wkhgBFMKUwz1PVKyULiGKdDm7RYdkXoasRKYcoVm9QJY4qBQ0k461hVAzYzpUTOAkW9iw8hIDEz14wfVpgYSUVFjtOcmKoohSsJYY6MIXC9G7nej9weRg53e+Y58ttnX3C93fLB6UM6LC/ePOPqsCPW0kRghoerU86GNbfzyDZM6ndc1YmhHO0WIYYZqRHaZObMeT46e8j7Z0/Z9Jc44zF4pQqWgrM64cSINiZJKGXZJwVMgNromKZiXaSEQsmV23Dg2XDGR3/wD/jeH/4IOxief/we/eUlX61XxF/9Am7vKGEm1ibeLhBqptSI7xJ1ZYhlYrvdU0vmpCVcdk7RV2808MeZ5nHtDWEKdJ3nphayDfTZMTmPdIHcTYQ4E8JEzRlnBT941idrhtVAprKPkTEFxna/Ks3mtS5+45k5RWyYmKYdq/2WcVTueE0Rnr7L6ekJIs38UZRfnlFhhcFQrdLLnNwL/r8J1zeuQC51OTSlIavLJn7vz7uEHAiLcroeKRkWcyyka0NpBcMS8VtrJsZy/N5pmqCqej1nHe2JuUdjdcwddDTbLJOWsX0zOzry8aw1+my2Trk2N4pcdLyv5vWVWrP6zFY9yJWioWK2lDMG2wqXhlQWFdgZY4hJX2/XeLGmgDcO6xpaawwl6xzFWgdV0WV9DVq456KxvKB2dyGnxk3WIAizVMqYxiWDw7TnYfuscxONxZA5Ox9UuBdVNHI47EkhcH5+2UIh1P/29uaOeZ5UwAYcDlNDOvUw7/uBWmC9WutYO2fCbkKMZXd3x+n5A7phw/OvXvD69RvlaoogzpOamX5FLdRKSzuLKZFrZTWsMXbNYTyQstaDxusG5pd0PBGmacI6dawwzQZHzVSUVpOlNMs8/dysEUpueiWrDhjSJhva0KECpva5SQXXlMTWOvWoNAKLa21ta8coHUc57e2ZSG9bGzZPbYFUEp3r8J1tiOnCU2+BJm3aotOOeiwgvfctYCHjjBBTbgWo0pbUwqpoca4rRRFuserUYmyLeheMuDYNUZRZ080aum4tnVdkpdZ8nNZgDK4hkqm0sX3NzYEkq+C0Qkh6HHTdgDiDFcip6PslNn/vFq9am4+6MYQ5ILVjiQ+nNUhm6VCE9qwob9FY/SxLEaprAjcRSozKbTY62Vh457/L5foB4zv9H1V5gTQ6RUlRAw6iBgjUomInadMHsZ02rV2PX62QfkN1G5D+rd+wlK3NGUUEahPX1UWO04gScv89tKNXaqGWmTTuePPmljFoCpo0PvvRvoLjR8mRuyzq++07j+86eudYD5oOuA+zTkBSolphtVmTUiRMgdevb3h4dsZ77zzk14cDc8r04pG8JKHqb5hqIYwHdp99wbPXV/zmN1/w2198ix/90bf57g/e4YMPPuDho0u+/fFT/uZXX/HLX7/g+vWWQxROa4+zQgiRlGEMicO8B9EwkJXvMRjePz/n8+2OjAp6pxDBdBjJ5BzpQc8IhJwnVpsen9T/W6pOeIrpiCHSG1HesRkYSmLa7cE7Sg6IHxjDTLWFGjSyOJaZuVi6aChj0LG/sToRdQrMJBFKhA6oTiij4WJYAzDPgalW+gKzjTgcU5wRN1DDSKbSVdVdzGNhTlG9tXMhoDZpuxB5s9syhcBu3HN32DIe9sz7HV8+f8abmxsu+jWXqzO24443h1sO5d6H+mJYc745ZQoT23mv+o6GWiowoM1wKRVB0V+orIzh6ckZH1484uHqhMF4PA7JSu0jVSQUbcBdpwCYt1R6as7EUrFZKJKwaJBWlwtJINTIfP6AD//lf80f/+MfcNYsL6u9wNofkzrdAw+//iV5V0hZMKaSjRCkIL3BrTxjHnl99VLFoOYB1igv0nmrjlbeYzQDmiIVNzuC93ROm+/dbofkhM0ZGx2jNdTgqNbgckJqhy0D0VnG3ZaDVG5TZJsSxVlwGhrkjNXHuah4t4RADhO7aVTrtxgJKRJTplR4V97h5PSkAY9KQ5R6T+tzpVKqe4uO9824vnEFsvJr5WuHPEAturGrz25RugELHxGcaw+cEazliDA7a4ghkJuxeCmFvuuZJo2q9E7jka3xTR1MQ5z09y7jXzGi7hrQ0OB2+OREqlHVp15IUQuZUtV+SxPYWrFdE3OL0MxJgJ5qumNyoDFJuadt7KdCIq1lK0U9Xb098kxrKQyux3tBLKS8WMTpmKmUQk6KOnlrMSTu7aFELcBSJrVISkG/xzXagTNgKC25r2O/33N5cUGiavBCztRSGMeRy1TY77aE8cD+5pbT1YacIBwOdN5zGEcWrDqnShRLCJHzcz0kS650foVzHdZ45vnA/nBgjJlcLN/7/o/55NNPef3mit1ux9C3+2YtiMM5lEtaIktCYozKl53DpO9rEe5Zo9xVp/zPXCKmJZlRsh5CWceQhoo1atun8eAZY1uUrnI01G4KtVYz1moaW0ltLXcIgVwKDsEZ12LM0UIs0gp72nTAUkpC3SwynbWqMq+ZUoUi2uh5Y0l5bshyphShpESFIyVjab50IqPPV230l4U2hBFyTNQU1RrPeSzgnVEv7taUGqOHsnVODexLwXa2cZorNU9ILniryYEsLh5FcMZTpLTmT18vco84VhGcCL5zlGIZ5wnBIrmCVUHuHDO5VsRZUiiENGKdJik6B3PN2MYRX3QmMSacU2vEklRvsOgY5qBcSWMNc5xxzhJLRqTxco3FGKfBEM1ZpHOGkKfffY+zrtWZWpBSKyVlcgrkOFHmiRIDJYcjD9o1obJxDuM7XLeI8TrEeGr1LAXukV6Ga6sSjgtAGurbmq/aqBI0lfsSkEPJxHHHyzc3TDG18aw0CtsCEPC1v2kNunM6JrbeYbyltwZvDLUkcsnEpJaB592Ki80JN+GOq+trbu8e8P7jBzx4eMnNV6/QLLnm33p8D5VMZUyF+e6O3X7P65dv+M2vvuDj773HD//wY7773Yd89O4lTx+d8IPvPOFnv/iKX/3qFYWMdI4pJ8KcGlgheCP4ZnWVijBOkbgfmXd7Rm8R33P5oBKasDPEzJwqK+8wnWAnKLYnuYrUghWLpEr1J+zmHaV2NAdfgiRWdORiqWXCdD3TOIJVD+KQDcYZpmkkVAGvU8JUMkwKZlivyatODL46Ou+42t8dp4DeZAKWPCaMT0wpY+NEFd2nYtdTDnssQqjCVCtBgJQIqfB8t2c7z8zjzPXNNeN+S97tefXVlzx//ZpT1/PO5iFQudpdcxsmUpuknvUrHm3OCTlyNe6Zsrow5K+tF6U3UQtVCraqWPzS93xwccGD03O8VwS9lhbvUxJa6UqLRVafeoOix7E6sJlcHIIhm0pXI94IexHmfuDpf/Vf8l//t/+c7z05o1Z4cXegvjlQTjzjxx+y3/0jDuOe8vmEpEpqlJXuwTmbD96jnAzEmrm9fUPfObzTtWNFaQq+aoNhnMWIxWIYbGLq+hYzbfHeMe4PuBSwztI5x9QFYvSkFCjzxLjb8vLVa559+RVfvb5mlwpyes5qtaFbb/CrFWvXIU6pjYSZeNgz315zuLsljyPzPDJfvWTOgSLKnniPd1ifnCJYBQjgSI+roud//WbVx9+8AvkIabSnaUm7K20c6LxtXMK3ETUtmhfrtAUpW2gSiwvFcpUcEQOxjXFzG011VnlB0gI8FvTaNP9ZW5vlUmlegg3WMM0mZfA9aY6UWo5RtqCFbgjqyxlCbCMgr04CtILWKAJZk/JTl3G+vkfTRvO18Z+tBk5I40t3GgOdm6PA8jtzLk0AVY8iReqCLS3BFC1Rof18QH1WWwBEyumIXltj6LpOk6AqHOYD5+mMWiuH8aDIbjU8eHBJmCdSUfqLpbDfXin6J/owjuOINIePirqFIOo3Pc8z+/3IYZ6YYuXy8Tt8+tkXXF3f8sWXn2MQYgikxretRTBGPX6pqkQOIejYuFYgH9eJehiXZulWkFI5GdbMcaY2PvGS1GiNYw5BbbGlJTfmQghzKww7UJkIrlREik4nGgKfUsHUNgYojU8oRoNVxGLdwhctDENPjFm5j42Ks9A2rNXgjRgTuRosSkXoOtt4feU4JYkxqmOGUdFgaWt/eQ7eDj1JKUM1ihY3rnFN+plq7So6Fs2ZWu19CqPVSYdDEQzTPi9o05yWHpnbcxnmuVkHapGlBXub4TT/zVqXe6k0J+eEYhQN7rzaGlmrxWK3MkzTRM2VNB9Yr1c6InSKepdStIFA3WE6Kt7cu9FUkXtK0vFZgM6q/Z72caUhQfplpU2CFrHk73IpWl6hpEanSEfj/xgmahgpKVBzUsTd9dp4ObUIM/6tNDwx7QfqqBViQ+gGEKW3vLX1cSyiyfpc0Jq95vF+/Hd5Zry95fmra0KuX+PtN+bRWz/vngNvrdERs1PXEUWUddriWtFQq66J5AfOTlaEMLPdjrx69ZqnF6c8fnjK7fU1837WCVTJxAYKmOa0kSmEWghZmG633B10//ntr5/xne+9wx/+wQd88O1L3n96xvlpx9mm5xd/+4KXd3u1O4tRmzLr6ZtjypvdllfbAze7LSFGYs6Q1HP3+uaa09UK6zqyTISSCalnToXDHNn0ATsLrt/odCrtKMbiyQQzchMqK2PJplLKjDEO73vmpKK3HNpoCzBZ7duS7chTIDj1Sy/Wq3CsKD+6K5ltrsrT9Q7JCecMc6l4mxFnmacDHk+QxF2FHuG090zTTBXLuusIFA7TzCFmcq6MYebmsOfFq1fEcSLnzNXVFV+8fIFDePf0EZ217Ocd1/OOUHUCdtYNPD69pFC5GXcc8nwk8RRqm+DqeaYLqihgIcLKGN49OeHp2Tkrv6KznTbZKKcaCjVHcjTYKoiPSPEUSYDVPdolcgHJSpsiqU1aNpX4wYf88X/xx3z8+Iy+UWY+fHDK5abjV1/dkMsJwx99n9ON4fWfCPn550w5s3r8gPd+9F3cyQnbmJlQT+LD/prra8PgLc4ajBkoC5rcXDCsCJ2z+KR6JmMNrvfEvmfa7zjMgeI9qXbE2LHd73lxc8unn3zKs1//hldXV8wIq6fvcn75iPXZOSfDGrt4eztLbyySI/M8sr+55ubqBdurV4zX1xymkXD9Rovf3uKN46kIq5PN/b5Rm7uFNIH/3weF/N2+FvFcbghfbTGVSumpeK/JdUX0gCttrFwKxwPZUI9uFYvjxVJECw5cxVpwXkM0FH2OkE0baWuhaWwrMIqijovgS4yhptzG540qERNTQ0vT8TWV5jSgo7GSK7VYTVurvlm/NaJT1S7ZWZRI76UhumqvZI2OSaWhw8ZajRE2pg3owTblmIjyJzvfEeO9aE1tzdqAtZomDFt8gvXwd962sbUenM5apvEA3hDCzPX1Nev1mvXp6bH47p0nx8T1myuG1YreWvbjCAu/N6vCeD10TLWSko74Va1vWA1rvO+ZRo0JPxwOzGFmmgKu35CLFpuvX10rTcGZRlmRY6OwrIUc8pFnXHKFatq0QYsdZTVot2zF6scf1BvYeEfOkQo4q+P5zisNYqFJ5FZEixh1gchaWKRU8NYeOca16nuMs9IUrLdq4+WV26aK8oiVyrrvECmkUnFoouB+3iFOf1guhZiTlsFGyCErYk4l54RrCG+MqRWgjbvfQj5gKVzNkYd8DN2pBed6xGjJszi7vJ0aqPW+8jYVxVa+6pFKgvqBH/kkojZltJGrFq0aN+y9Y5xGjsWpEVw1OhlKelh6p/ZL3gqSs3KYG+d7QYKdc4i0ZihFVm5Qv3HviSFQMLgOHXVW9Gc3sWIVOdpJgRb0RhWTakxjC1IyRqzyskNUJL45gPzOV0mUHDURMARyDM3LdKLEkRwmpX4gmE7fu3PmvjhuQSsqqlHKj6K/Gcqk78t0b+2pS1He/jfL/9Aiealx28wMyNR5z92rN3z5+kaR9aUBoiHfX6+S9TJgrD7zi3jYOcOqtwyd06TMpCmbuVYyGdMPbFY94TBxe7fj6m7HkwennJye8Gp7gFLJ7T4tbj1Hs8aWOJmobENkvAps9yO3V1u++PQ13/nuI773w8dcPOz4ve89YIyBf/Nnv2VtOs66XpPyijClwmGM7MOecYpI0RRMSoVcieOM1MJNCGAd56dnbNY9d4eZkYn10BNyYuhXDCZAVO4+MTLOO8LqHBcqsxPW3tJZgzWFPmT82lNSJpTKXJV+ItYw54qZdhjvOYSoE8xUqb1gciCNE3tjkJSYuwiTopcnfo3NmTwn8B3blOlqYRsTt/PE+2cPeP76BnGWQVSLMax7Xt9ueTOOxFy42R84pMhMJqVAOBz47RdfEHLmo7MnbHzPPux5s79jzBpBv3Y9T04fYozwenvHPs5tnShirOtFz/KjGFRU+Ll47D84fchlf8G57VjJMjVxOKfPnTayuq9nkyBUimtuE2LwIs11Kqtep7mLHHzPyT/6I777/kNWbfIcSyXVSsyQiqGz8NE7p5zJB3RfvM+WwObJIz768XdZnfcc5sjVGLjej/qEFNjut7hrtVO19gJnHWqopFQ870yjeiQwPeLU+jA6y9x7+ulAnkdCDFylwOubG37187/l09/8gt12C/2ah0/e4/13PuDx5SV439JxhamqvLtzlr47YVPO2JyesD495eb8gjfDl8wvvyJtd1y/eUXxKg60neOp9wxDD6KOQ+WIHC9+yN+c6xtXIBvjERy1avJdXWgWb1EeQMfSSsHgyAsVMfjOU4hNcKc7uLWWvu+/5uzgnCWE+Yg2L2EJxjjswjcWVcOnlFvCVqHvOuUlV3SMImqLZaxpMcIWJ47DeFDe3CJMSJpaU41nzoWaJ6pxSKMdmOZ7WjNkyQ25UqSrLGRWFg6l/tzWABKL+ugqMq2+0XqQRX0IbNc4Va6NFXWj0uInIbXZIVXlKXfdStX9RaOX8YAplJBwK0ucAwdzQIhQI51z5Hli5QxhHknJMMbCsOrU0skK1vXAjIhVZA717vXe0/c9+/2I9z0hBKZ5YpxnisDFw4cc5kzc7QnzHmvMMeIWlDZRS8V7dQTQJDfB2Z5qWuhGW0NiNTa8ZkXJnRNsRTNRclEPbDJDN9ACmXS9GINxFqfkA3UcKS2JieYlLYVcawtlqeQAKWaQqqmGRtdTDjO2syo0ywkvtdkodHTWU6whVlWcUytjDK3Y7nEFwhxatLS+Nmf1ni7hIiwWiZLJMbXUNY6FM9xPChaP8VzmNu24R6GPNJ5lnVGhuaFYsUAm5YIX39amIVNUIrb45eZ74/lcI9Y4pjgdUVl9HRUpqaUg0u5rxTilU4k1ZEnklMhZUfxQShPfgrEqLNztD3i3vBRhjkF5o1ZIove7ULFSjh7lUJtbxlIyVsSJxqAXjXtPse1BNCfR/wwVcg0jxWsYSpwmUhjJMVDiTEozNakFZZWCMR4jA9Yqci9WI6LFeKroJELVDQVqVLW9VDAr/Zu3EOvjuyxAan8qYJGG6OmXRMrhhjfPX/P8dnekOGgs7b1F5dfRY13f1pgm2lRh9WroeHSx5uKk57CfyFIIWe/B7jCx9h4GB50lNCvHJ6crHlxs+OqFMM2RJCokEl1SKiZcGE7tVVQMc4E0TowxsZtGbm73PPvyiounAw/eO2MXCrfzzPPtlscnpzxer+mMsD2MjCE1cbMGyCw6C6jkEDGlEK2hOk0qDfPMsDlFrOUwBcaQGXKh7nec9CtwDmc9JQm7/R3rvqPveuZoWPUdQ2fINXF4s2NfMoPvmZq4WkphmgLWGHzNRHFM06hajeyZw0TX/JbFFA7zzGZ1wmAt06huE6kk8nQABm7jyM2053yz5nbcU42FXNgx089CuDuwj4nbcWIKgf00sjuMpPlAHHc8++Jz9oc9TzcXPFifMs8HrvZ37JNukmvreff8Ec57Xt5esQv6GpSu07a3VihLm0Lo3FD1M713ZDFch4laYe0HemNxThi8Q2yl1o6Kx5aCkYWiCKYIsQjG5malKmQDtSjdLFfD7tEj/uDHH/ForRZwX95O/PblHdfbmbuDBp5snOUEg7u+5nRwPPknf8THv/ddHj46JcaJNzd3yN2BWoW7EPR8jJG7u50Kd3XjY7UqIB6LV4oWQmcttZ3v3hqCEZwTnKnMprKdRz5/8ZKf/vSnfP6rXzBPI93lIy6fvs+773zA08tLTjpPaFOsGpU/HEB9jI1hcA5vDF2/ojs5wQwb6Aaunn3JdHvL3cuXPBt6+s2a9WrF0DmMdSpNqLWl7pVliPGNub5xBfJykBsjyg1tI3Hg6IF8zBtn4ekqb9c5za9PpeLqPRq90C4WZE3H3/GIMpeScc6Tc0OpSsJ724SCVcNCWJDeJWDk/rWWVJoTQSWEGRGHNY6SkxbJxmCcjh/nOeF8RyoTRlS05K1RZl1VAVSpKnQyXhHJ3vnmgcqxcLHNYaOKCpRiiFjrEXGadGYttcxaNNbUaCno+LUK4iAkFaPVkjDSHjaKcmQbSqp7qaYudc7SGf19nff6/mpinkfCHKCq6C1m1BO4feZTmPB9T3iTNPK5qYwVxfbsdupn3HmrIpMQCTliu57DNBMyXL25aX6makHmnMUUlEpgW9pZUUqJNjrSRuq6dtT+rmjKVZseLI2JUjAUje1MxVIoYknoJCG3AknpLYZSFqcVaYI0HVE5Z0EqKUT9+tasiGnhJFRNgXKKaguCqUmFb1XdBYSGymYdS4oVsA4vmkSn6HnzWnamiUxr+91OBZ6pNC/S9ncuVKOH/jAMX6ObaL23FNccP6u3i2hQpFcqWgBVLbMWZMiYluInpaHjicUb3FrXjO0rsSjaZKxROsvRlk1UeNsmN8vz6qwjNGblEuVeRO0Tw2Fu7iN6b0KYkWoJJh6pK/OsI+dsCsnqoTy4FqZaS2vARb++3k+E7gN4WvFHs3t09n8Bmv6nXClOhMkwzyNxHilhVKunnCg5M4fAeNgjRNzFmSJt1mKsfA051hVldbJEodZEzQEoiA1vmf4vEPP/vDjWRlk/GdpnWSBP5P0t19c79nM+TkQa06hdR5nfsVCVtidpM6gN6fmm54NHZzy53LDbqg5BY9oz4bCjd47zdcfgHXEXuL65Y//uY05ONvRna57tR1w1OEVCNBqdpTSXpTXQ11F1TYaUuLrbMs4z43igf71i9zfPSL0hm47RwGfXb5jmmbN+UFHTHKhF7QenlIk5U1D9iaLJBek6CrkBHJmQI6v1qWoxKsw10K9Omac9nXUY19NZpfplEcakupRQKnPMGAJRPBEYQ2h2W0IYE0403TEXQyU0mlXhbtaI7YRh471aK1rDeDhwKIHeWooxmgKHIaXInEZ1SUmWOQdcZ5WeViu3OXGYEyGr5/EhRMLhwDzuyPPM/u6G5y9fcuJ6Prh8Qs2Fq3HLNo5kqXTG8f7lUzbrU55dPWc/79sEcmlclr1iuV9tBiAGZ4Un6xO++/AddiHw1e1r/oJf4qzj+48+ZJCujf0BHKmgzXLxiBmx0unTb9UFJhULNlGxlCgEqcxW6L7/PT56ekFvLYdY+NOfPePPf/Ipznve//ZDzpyQX1zx7PVX7F99ztP3HvHR73+Py4cXChhMgVINpRrVg9xVxnkmxEKqI0VoE97CZT6lDit8N+CsFskYgxeH+Ka1EIM1FVMyu/2ez5695C//6q/49G9+Ts2Fk0fvc/nuBzx+/IQHJ6f0vdeEzVqJ1RKk0OWCQ40BnBh8m8Z2w5qV97huwHQDxvVcff5b5ttrrp6/pN+ccL454Wy94eSkb3rblitRFeb4Jl3fuAIZtNCIUW/U/xz16rruGBe9UCgWZnlt44danBZDQCbj/ZIyltpo1hwPZw3uEMKcjzxTwRFC4/9ZoYp6EOfYxDpdp7SJsggGXTPy1qMizG8n9mWkeb7mlPBiNYZ06IkhIDlhOo8sQjDniUGRN6VoCObodyjHEXhu6J9zTiN1G5JXqZi62MA5jDhirq1oNKTYooYb+q5CNkWGltTA5XdUJySjBuMpZXb7O87ONsQCcb+jHwaGYd1oEXumedJu1HVIhRwiVgy73Z6h7/HGIg5K1TFXLZUwF0pWz9RaYTcemGpG3EA/nHF3s2UKE3GMrIYV1sJ+3AOGYRgotajyP0VNE0pLOiLHNXGk2OSi1JWq1hNVdNRrjaXmiBENjjjME7UOVLMoGbKOooqiV8skIqUljIP2O/SXltqM85zB2ntXFhFLlQxYpevESF5a9pq0sbONR92oQcY7DTwxartmrY4ca62k0NxcFt40QGk/z8jxZ8E94r08R28XgSLLyNocqRjH399EsEqJMaSQcNYjnWtc/tbQyuKzCU4ci5XiMhkxy/HYnpHSzOmX176s7eVSa0NtcPtuIM7zcbQ/hxnr1N87poCgqviYaD7TGjVdW3ohVcNdas3KiwUV1/hB07Jy5t4CaXHPqXgvX/u8QgjHdfW7XGGekJKYpwM5zFASNPeOaZq5urvj9u6aTSecbgYtNlthLEfLNjkKa478iVogK33DuICY8tZvlfviuCZq4x9r8dysamiVcJ5Jux13uwNzVCRuqY6XYvh/cQlH6pFSmPQ3rlYdDy/POL1Y47+60s+2KqpfUuF2u2fjLf26YzwExt3I1esbvvfxu3z45JLfXN3wbD/Ti3AiBt3llleghdYiOqz3/ze5FnbTzJgyJ3OkDI6DrZhV5uzynN3dls+vrhiMo7fuuD6ptfliozzNRmFLpeBiRLKQreWQCyFnwhwZBqX3xJIJ2dKtVszziDGJk/WakBJzyviup6+FuWS8MQzWYbvEFKOnMZAAAHNDSURBVDOmG8hzZC4GasJvBkIsTPOIMaJ/2x5nLKEE5cSnTGc8MdzSOUepsI9R9zPjiNOWwzyBeLzt2ZU9xRrs1FZCnpliwXjP7e6OOUZimEnjSJpHpu2OLz7/EimVs/UGU+Fm3LENE7kWOmt55/wxp5sLXt+94W7c64ShGblV7v21lb+u4m5bdR+47Hp+//G7/NE732YulX//1cCvXn3Bm8Of848+vOWffusPeOQHbPW6lsuSkOcw0ZGMNnnWGErpEFtBsoqqRfnHh7MT3vvRh7yzGXBiOOkM/80ffsD33rlgNplpSrz5m884/OVfcXj9OQ9/9CEf//73ePj0ke6zGeg865MNwUB0jlwdxewYw0QslTIH7q5vIWdSmLk8PWN1kun7Fc7Uow2mQwE4b4RaDNuY+NWXX/L//pN/y6d//ddUazl99wMeP/oWFxcPWA891jh0pq61ia0VIWNNaziq+tBXKsXqc9d1ngt3ijUtst5ZXn/ya8Juy93rV1w9fMi7Fw85Wa81ubYYdWAx6f/Hw/3/v9c3rkBexGi1VrquO6JdtaUAlVyOBc9xFCzKH6xFR6OdU+5STglaKMfbB/7ip3pElGtDyJpwKBxRahCjyGIquvEbY4/2c0uhVGslNf6naZ66i/2UlcYjpjYrLH2PC3otWbBGE51oXDva6zR2EVMlRekaGtp1HaV9TvcFLuSUF/c2cmpFfS7HsTtIKxAWp5AWnJISVaSp/rXwqdZQcqUUwxw1tCCGrEWCeGKayakyTzMvX76kJkXjVORUjjZlJRflESZFCPuuJyRFrlarVeOVe/reM04zoSSMdwz9KeAZp2uNZha9Fyk3UVip1Nzs/aw5Niy5oTm16HtbwluWaUJK6p8ssnCGK2mOSlWwQiqZ3FIFa1VxqNIQdBqwFI/QAiga/zeE2BIgtShUP24Q4xot5L5A6/sesgokqxi1/CogOZNyJGW19nItPEPR6yYQq4sfcFNxNxevnDWMA3T6sjhx6fqkWf4tT5niOkthKkujYJV/ruiybfxiKCk1xKcD27yTxZJrwBT1io0x4oxtMek0EaO/5+wuTSxLAZ6/ltpkrT0KApd1L1WbPRUkDoSoqGiOEe87jeVuXuTGGijCHAuxRIZO8MbiXd+QYm365hgUgU4J25pGMekoYnXW4YyjVo0njzGysFf0Nf7ue1w4HChOiPMBSmqIfGGeAq+ubnl19YYY9rjzFaWmtjfZVhAvn2LheEOlKG+oppa6NyNdQPz9i20u2qjPceQe1yut4NRyhpph2nG4veH1zR1jCEd0ePFjf+s3H1eTuoNYxCrdqLQ1XHPzZC8w5kyMUHMhNTHQeJjYrnouT1b4Vc8473j15pr3nj7mvYcP+eF7e958+gXXU+IgwhmGoSHKshT1X3uPywhfNCooJw6HkV4GbK/0sDjNPHn6lDfO8+blFWaecWLo2rO67JW6eI0Ki5sWQIooZ8BpimXN6mns/aAF5u0bhnxC33cqVI4ztRisi5jJMvsNruuRklkPPYwV662Kw3NmGNY479nvR70z4tmOO7w1TPOoXvTGUUsgS2Jmj5NCKIItRc/CWojTllQNGYerUHJgMnqXKYmIhv1YY9neXnEYD+SUSWEizRPhcODlV8+Zx1Gb0hx5vbthN+1JRc/HxyeXXJ5e8Gp7xevtld5zoLYQj8VHfkGOrVmYCJWNd/zgwRO+/+gRl12PwWPf/S7eWn721W/5f/7NX/LV1Sv+xQ/+Kd95+jFCTzVgRP3DdWJiMaVCrCDhiDQXsrqw1IJ8/yO+/9FDTnrdSw3w4LSjX53x2Ys7bv7D3zL9uz+jvHjG6YdnfOsPv8/lows6p04PRSpiLa7vWDctBRSkE+72lv0hEHJiOx6Yc2QKmTEkLnPh/MTS9aqfErE6FXAeqZkQIr949iX/w//4r/jbn/wFkuH00Yc8efdjnj56iu0dVirWVLw1dNbjvcFXMCarQ1HUGkTb3cXRS6jV0InhfLPBCHToZPrmi99SQ2Lc7ZnGAzmdNRcozQ6gWeN9k65v1ruBY0EMHAtQLZANqshu/rANUS2lUKzSEmoSBIvNjSPclPzzPDfkWI5Fcq0V6ywxRxV75CYgEDl+XSkVyYpop2Cp1ZKjRWwm53DPh26FtmCbtdaSiOd10xDlTdFCCsqRvqdczRgzYiveOhYDZKUfNGrAor5/67UvrZ41Rpd2r4JCEdERvzEYUWcI7eozNemzYKw+5KVAopCp1KrK3poy3hucaOCDNSdkEqkkUhX6buAQEvEwU6KiuiEEcoxHOkIRLWrWvufN9o0WwkWLa9/p2H0OMymZluoWCduRfUzsZ+W1FV94c/2G/TSSppn1akUpsdE/mtm8uPskt2obIpaPB/pyH5Vf3ryxq7qd5BSR5iFse8PcCkxphb1xQi3ogUg9umXElqS2CN2WIhLrKU0R7Kyl4jFWUaM4Jzo/IFV9VCkVK5aCa8EiRdP3Yjgils45DUpPqtIGpR5QwNoeI/YYM87ismIN2iuqb/LbqWc1C/bota0NhzWdfi5GI6hNE9QZcQ0VtiTJdMOgrioI4pwWJyLNFzbdu8WUdAQg+u6ElGL7jMyR0pFSOTaozrbCrOpza5wlSiLXxCLuoyTIFqzgnVPqjfNaby8oeNZUSbM0fTIwBw1EOMyJ9brHWyGEgPOWVruRpbLue3JodnYVyKX5Ibc9KFWc8e09iop5f8frsL9jcFbdDET3nRALt3d3vHr9mrvdLd6BsDr6u6vyX59jqct9bZZ5RKVGlExJgTQekP4EMyjCpvOrqH/qwjterqWIqVACTG9Izz/j1afP+OyrK8ZJ74V1HdZZcopH8dXycxaXnWUN6RxLD+9xjry+G3FSOUyROWeSyJGyJhWudgfWfcem7xg7x6vdni9fveFHpx/wh996j32Y+YsvXrGPiVQzKymsMaxEBa9SIaE0J1uhNLRSWBrKQpgCVbxaSB4mptXE0/fe5eT8nP3tjukwUkMkpkIt6uJCEXWMsOpUUJ3DeNWqTIc9zjtM1zHPs6av9T21Fg67W+I8YJxlKjPeeigG5e0bJMyqVTBANbgkFCJ97zlMB1KEztu2J2wRhENSQAAsad7hpOLcCuOU051TVDcLCtf7kZxy+/mVaDzGCGOYMdIRwkRKE1hNFsxzoqRIjjNxnpn2W7784kvqnOitZxdn5jhzmyJz4/Y+XJ3x4PSC6/0dr7dXxLwgmfdaguWcMuJwptFkasZby/fOHvKHj97lnfUlm9Warjq8c3jzMYLlJ89/zZ89/4w304F/+cN/zA/f/0Ncv0ainqfVRWztoGraaLEG6TPVOEwYyWli6jve+dF3+dajU3wDvCow5cqLV3u++JOfcv3v/pR6+xr3YOCdf/gjHr77kL7zuqdSj8CVFUtnLeuVA7PBec+q67iyIzf7HSFM7OeJuRTmEomi6qKTfMIw9IgkdSmpicMY+I+/+YT/+3//3/HzP/ufqCGxunzA6cmadWc4WXlOVgOmgmkBJI0LSFfVLrOmqEYB5NYYCIZKacJVKpiaORt63IMLSv4AL4W43+KohDCSw0h16gomsjhm/ecgkf3dub5xBbKq+/Uwgta556JJV86xhCGUqgfuAlFJ40aK1GPIB9Sjin8ptpc0L2gon8brvfW78lsWbeqOIUnDRnKFEgM1VU0wE6UJLGhxzm3cU9EY6AILoregt7mdzvc8S68uE0YRxZKLcg6NIqamfY+1VlG3ViA775im6dgkLHzJxaYs5xa6oCCRHu5WObz3o0lRhAoNnqC039uYYmIsMbXCJqvobBxnbN8RpgnQ6NQqnpizRjbXSt93VKsuAXOYSfu5Rf8uKYZZKRUsgkE1uJ+jJtY9efKE589fUVIkTDOddfTDQM76fu9RnqqoZUIdLHLjw1bube3atUwErLXkmtWOyhpSXtBT38QkSmNA7mkIGg1udXT4VlMELa3QdZQcNaylpYvVXPH9oKJPq1OCEhW1tg3ZNqLUlVINxVQdQzYbP2jIcW1CSTFQVGW8JP2Jycfi3zmjjhZN1HmMlxZllVlRb+YF5YkxHvnT1im6HnNoSY4tbbAqcq0iUa1EStaktZJbypnR37s8ryLgndIxlNPPcdqSUqKUius8UpTSoIisul20j1Y/d5pkrE0OSo06PWpx7FYfPnKzmNKEuNKap0xuoSa5VuYYSbHgrAbULDHynVH6j7NZY3qPFBMV3iqdypOj/o4UE9b97jPIw/YWu1ljbFEf6lKY5z3b3S3bw5aUZnrXNZ2BNrlvR0Cr+0TTYdS3PKVrpuZIGnfYYUNdR7Cp/dYAVfnJtMKlsoQCZUh76u4V82e/5Iuf/pSf/MfP+Zsvr9mFjLEe79RSLtfYGlL0NSwHajvEndE1qgKtwhgSb+4OrDrIFGUAWUN1HdWq+G2Kkbtx5tHJitOzDVdv7vjk2QsePjjl4w/e5b/wDrGev/jkK/YpsQNmKoHMSkzjlCvVpIp+OlKVr664RCVF3Q9N0r10vNshwPnDh7z7wfuIEeZx5LA/sN8dGLd7trs9cQ5ILXjpcN7gh06f23hgjjN26Bico+ZEGIvyTl2bxhn1A885UZprUIgFYWKeD0yzx7YGqPOeWsDaQkaYsjSNh07fKoVaMjEelJ5TwZgRJ0ZTKDHsi1BEv59qKFEBGO8ycZyJInj2ao9YtShWlD9rVkCKHG63fPHFF4zjyFm3ZskymlIkov/8YHXGk7NHbKeR19urNp0VdUOAr/dfy55gpCUDGj5cn/PjR094uBlYWcfKOtZdz8acsTo9xw0ndN7zk2e/5NfXr9j/h3/Lv9hv+ccf/wNO149AFCEuJCwJxJN8jy+VOo2kOWga5smKR6c9a2cadFK5nTOffvqK3/6rP2X3k58iuxvqmeXJH3+Xpx+/x2rV3+syjpceolagswYZBhUXWndEs+8MHKaZFAIHEXrvcQghJjZzz9APVOfYlcTPP/mC//P/4//GT/7dn5BjZn3xgIvzh5x2PS5MxMOO6g2+73Aa80mJM3MIpJTJIRHjrIVyVX/4VOuRI11zVZ53A4VMLlxgkM05s7GsjCftR65evcF3Wy2ojdK4Sv37Avnv9KXUil5vfEnHompBd5eAhoXnpjZVHSm0IrHR6GJMbXwqX/MknlNiSYVyziMlU6U1+EWOoqrOqsVcSoUULbn5uloKIlY3IbHENGNQtFeLBJ0jxRhBVExWaj4WW6DFunOKLscYsd5BC+Rw1hKjijKoqHq5qseuaW4KmK+j7JSKzUXPCLk38of2mnTyzuot/rZ3llhanDGFtJx5ynHRAsJ5XOeIc6TJgLDOE5MexF3f03UdfjU0lLBxUWsh5xnjPKUJEbVpcYgol3ZBxb1zxJCaSM9DNxCDopjb7Q5XITdhnlQ58lAXbmqKmRTT0uPQgse4R7fkWHDmktuBVOich6zjZeUeA60gVbEC7fubTzAJ1wrJJao6xsVCMCBFi9tQ1OKnsx3GeJz12M6SQ9LUvioQEtmo64P6gyp1BOSIFhqsUmOa+wegLhy5HJP+TBMALQ2R8lCUKLqIElNKUNr7EjW+9+LVy9mqI8hyL4wxLPmqzlpyjphm56YBNQVjmjVcp9Ho1JaqlxNd35Bna5jn+WuTmhr1fgx9T8ztYG6vtVKpJiMLklFTa0qa0M95RXmB3un6qqVibEepNM69uiZgDMYbaoYUMsY5DSmo+npTEUpqL9w5nFgqVnn67fnLpXGaY1Skv1RNFDRCSm8fnP9p1zQdOF/3eOsRK+Q8E6dAOMzUGHFV6Iync07DbZpTBW1tIkuwc2tcaml7pCLuadxh+x5/fgCzuIw0YZ4+5O0/GUkT9XDD/OIznv3sZ/z8Z79mvxuZZkFw1NY8Sxu9Vr7uYHHkA4u0CPIFkdYrhcR+P1EvOgZxdA56EVbOMhrBVcFU2I4zG+84Xw2Mq8jdfuIXv/mMJ5cP+eijD1ifnzFXw5/95nNKLURgC0wUetRq3IvhaF0tDQBpr7o0y8PSRH4WYRcLKSTCNHFxecHp2RlnDx7qc5Uzc0qEORBLolBJtPWF8Ch9QEm693CYiNsdaZxJpWLEI7VCVNrJXJKKVetMsbOigdUSU8YbmstQYZwC3qsTSK7KO12chVLRPc6IaWmzlVoXPYlOmYrtdA2IxUrGYZnmmfGQ6P0AAiHNSBamMGoIVIFSIjFErl9f8dXz54zzxMr65v2d8M1KMFPYuJ6nJxfEHHm1u2GKUUEiGn3jmJTXVoeIChZFC+R3hhN+/8ETnqw3eNPhnQYr1SxYU7ncrFj1KzZ9z8nqlL/44hd8fvOS/8t//FPe3F3xX/3eP+Hdi/cRt6YyKpps1VqtjDN5zsRckQ7seODXP/kbzh+c887jC3aHwGd/+zm/+df/humTX7OaE2UtPPzht3jvux9ystE0QpqnvbRzxIKK4cUov5mMOINZqVWaSMY5PSd240iOmbDbs0+FNI2kriP0HVjLpy9e83/9V/+aP/+Tf0OaZ9anF1yeX3J5csbJsMEWQ7rdsp1m5r7HO09NKpwsIZBTJs8zOUZCi6MvSXUUR/ppVQcvaUCitP8v54yUzCTw/OaOl9apxmqhTVmr4SPfoOsbVyDb5kJQi1IESktTqo17uYh3FAEFcibHJr4pkEoLPKAdzG/F75ZSGie5ebKXehxP59IK3ypIo2ioM4YjlWahlloOes3UouIQa7QQUQRWx/c1BrxGBWkIiVvGOyrcMlaaE4Nrft16qCzcS+eUqiHGHoM/vi4EXERXWkiKE4rJ94WdAYd7C1nWJiPGeExRWw0DN9vd0ctXjNOxaNXwDE3tMuT2fbUW9oeJ690WEe2MsVZtsoLFiyVVPQi+9eGHvHj2jFfPXzCNigDv9reK7uVCyovoS5HVKQd832HXG663e+Y5cX19TckJ49QdZK6FTqwWUO3wyzmSS6MtSLPmMwuibvGuU1S2TRWU0oKKt6yjlqoWc/OoA1nrjmEw6n+ttoMaDKMbo7UQQmgWUGqnlnLEmL4hpRlvO1zntDGI6u6BVGLWZDzTxlohNNGoFWpUNICGvCkCJ0fHizhHnJNmeyuUkpAqR55+pbaAm/uQnCV2OaZIzq2xRBDXqCS0pustpH0RoargsLSGs1CyUFucbEX57hooqby1vh8Qyfi+b82QORZXFbQJbAIenWyoJdwRnba036dNi3fdkVYUwkwpzdKuPbe16lpSnraKLo0RLYZzYT2s2IadIsNVSLlgUSFfpdJ36q4RSsINfUPpaQh0m7TUJrI1gvFtQlPt77zHlRSwRuhcB1KYsooNQ0iYlhDWOa++peY+Grr1/w0pXYKEaqM0JEWQaybPB8IehrTDuI3yUolQ8xGFlhyp85b59XNe/OIX/OQvf8qL11u+8+F7/MF3v83u9RX/4Vdf8qefPqeIO6LrLI5ALFO31sQYixV79NbQf6mfeyxK1xk2jtOVZd0Jh7XjsGtuJmIoMXN7mBiGgdPzE6aS+Pz6jr/+1W/5Z5dnPL58xMePHvOTz75iihEalSIAoargsK+FtXFHIZ+0UJKMUm9KFfXQ3c8ayOOtJuZtD+yvt/ihx3Qd/XqgWw/0qxVnZ6f4YaAaQyqFKQSdaCb1LI7TrCEmAMYQ9gfKnJsDBeCc3rvcgoRyhOXzsoP6QSe1XvPOkZK6NlhrmXJr5Fqhr1x49axVpqGQG4JoBMgztSi9LonhEBJVMsb2Om1EOcYWg1R1Zso5Mh9GXn75FXe3txxSxBmDFaNuI0XP1s44Yo7kWrkat+xjYIrh+PyWtkZrmzTpzFXX+OA6aslcup7vnz3kweoEZy2d9Tg8tSpyaSXjauK8W7F69IR1v+FsteHffvJzfv3qM/6HT37G3bjj//Cjf85HT76N9R3RQMZg4kwa55aRAC4J/aHw4s//in99s+WD97+F3N5x/Zvfsnv5nBr2YApnH3/Eez/4DueXpxjTKF3CcYpWWP4ZFm0LpSqfWix2vW7vRdF8kcI4B+Y44mqE7CmjsEN49uaWf/3nf8Ff/tmfkaaZ05NzztcnXPgVaxwyFdJuR0w3HIoWtTVnSg6EeaLGpIBejDrJK5kcI7W5aump0SZ53E9Uji4i7ZyowKgbHUq1zMw5kcXghnv/9G/C9Y0rkJfNV8UE0gocUZN55MhfBKOInBN2YdQaBOU1mhY1nbMKbQ6H6SiKq0XDBQQh5EzX9W1RGaoxxFLwIkfBXwypjW/RAqQhZN5okXE4TC2swikHt2b6rgcgl9iGjTqutaIFZ61LkacIQDm+pwXtVOUrR3GXUj0W31poQ59CQ+w4okpeLAUt7BcqyVFZ1MRy6/W6fX+BqlG+iDCsVzgK5NiKNB1h56IivWAMh5Ch8dCwgu86ckzMQQWTxnu69Zq7w8huPyJYpmmGqjHKYJWjjI7vcy3Eoh347W4LaFBIao1Faa4EiCUtKWterc5imtU2TvRA6nuPtY5pnFgwLKWlKMpZUMqJFVFObVsLxllCKqQYNQHMWqUwYFu0eVUbwGZTJtLEiFiqRJT3rOrpzjcf5BQ14tXpa7IOatIxX6kV3wQRKWcKWQteUxvnWUf8iPLTjRF8p41C33vmEKjUo1eviCiFBS1eYlXU45gG2UaGi+1ayEmbx+ZsoULG5sDRUOdaMyknLE4bt6xUC2nR7drc6c8zzQrLGX8UzmK0kTBVnVZyLYQ54LxrrjKN610rKWnRIS1Ge5nrlrb2rTXNBxhNxusGPceMxVVHdYV5UrGUQZPPSgo4V4GINR0liwZ/+B4RbUTCGFj1q9Yn24ZkG8QK0zSz6gectZSU1AHFWlgYC7/DlUJUmk1zjaFqwmZKCWcE4yy+fa4FRb7tMho7Jl2pJdsyEpW6IOuJlEbqfqKmHZWH1GoQMqYkahyp4x3h+hWvP/uMn//k53zx2SsevvOEf/l//Ie8+9F79BS2f/srPnxwxtp3BKze95iWmvxrl7S1bI0ockrbl1AGSM1gXcd66Dk723DW3ZDXMK66ZokIphQOY+B6HHl0suZ8PTBf3/GLTz7HFsNmOOG3r160vVqBD7nf1igUYq1EKifG0bc9xqDFV2znShF9bvIc8LNQx8B8d2C+OeB6T7UG13e4vseverrVgB8GDWgxRouWovHsaVR9RA6BeRoVrGn3UUQQ71kNg1KvfAfSpohSqCYTc9GiyiraF7P6P6g+QM+4WgrWiM6aKjhBhalF8zNL1SYz18ziwqEfiyKahkJJM2T1vM9FKW61KK3i5uoNr16+ooTYotahMxZBSFX351IrrgkX9ykwHlqjlZV6sBwvFQWQlhXqnKcfVkipbAQ+Or3kSb9hYzy2IcwVQ8FSxFLR9DxDZTCGD8/OObHf5qTr+JNu4GfPf8u/e/EZV/PI//6H/5QffvBDXL+iIBAykhJUizMFU8DHmferkP72lxz+9teUecalzGlO3MUJ9713ePJ73+biwYXqN+pbe+8iKi5VG6sKJVdiDI0CqsBFZy3WrvHGYmyh2sLdXSGOEzUESgrsSuLzl6/5N3/5E/7mpz+jTpGL1TnntedkrLiwYypb5jmSwkyIgWa2rzSJqpxjAZ0YNIReAYZGHTUt9EqaJSlyHOM0RQBW7ulatS6iXD33soDpeuQbVlJ+s94N92dALco9ts3SqipF8y3lfYuSRosfI0JpxcJysCr6pKKv+8Ly3rpKE58MJYNQjqjbMspi2VRL88VdCtmqCKo1FiNo4lfJGKt0DqlZ6RhOiEG5Xs6pH6I0XnIthWruF+sSlQ3gvaKCGR2t6fs2R5uuRVFdUQRGRH2WaUh2LfU4hgfunTusbd1x+3xKJec2qG0oq3VKPem7NbVoaERth0wuMIes4Ra14H1HNer8oF7PjovHj7i6ecN+f6eJZjkT4qx2eqK0gb7xKqdUOBxGcq2EVAgxkWJhvx+pVZsj9TZ2KoNvtmspRfpGF1Gkc+F5V+62d62Yaalx6L3ouo5aKs4balahUWc7rHEcppkYchO1peP6UhqF+kuXNlJW+khuiWFCpaPW5shQsgbH5KSItHF4a7BOJwbWqptErqhvtbHEtj6lLtzpckTnllFHTrVNFtTW8NgkZv2ZKSdSXjT8mipV29fkrHHL0jZ4RANvcsnHEaiiI/eFjU5UtEBfqA65ZOXKv2XFtnyPCM1ZJB/dV/Lyzy19zotFvD9u6IsN4rJO78MnWiP61lpfrzfasIjgnOoUlFrx1v13C70m6kRELFIzcQ7tWTaEeVZKUcmkKVIR5hTBKG9+4TSTm+BKaOtb7RZLVe7m73rd3e4I057BqytGChPjFLQQFp1kYEX9y0sj4rSGVa3e0KQwc3/IqaAxUnMgh5kUE2XaY1ejUiXSnjzeEt685s2nn/CLn/4Nf/vLTzg9v+Cf/G/+V3z04++yefIOMqxh3OL6z3EGFZzW1tTWrNzVr1XIujGbZq0lyyZOpYoikHME4zxnJyc8vjzj8+E5FGFcD1zd7KFqkRVr4m6356TvGFYrhv3I9TTxP332CdZ23OSihgVwpNmoVYyiZYuhwSRarHlRYVitC8q8vGLlwpqKIsGlEFMl7/Vei222XN7hug7fd0jnNYmxWWeFORDHUVNWQ2AaR0WAa+UwTcy5Ifxa7bLqOlZdTzf02N6zWg24rqpIKtNQSWlxO41SJrqXL5OaWgth+WypxFJbwBNKzWoWgLonVKW3VaVi5ByOFJM4z4z7Pbd3d4zbXdMl6Hnj2ySgUEl1sWsrHHJQnQAtbVNMo7FAloWK3qYHIoh1DP0KLxZXA++vTnmnW7Pxihz3ZoWlx2QwkjBeMwwyA2SDcRVvO56eXrC2jlPrOelW/OSrT/j5zWve/OR/5H833fCPP/oHnHSX1Aim6J5i/j/tvWmvbOl13/dbz7R31Tnnzj2RTTabVFMiRUqWLUqGEQiRDccOkLxJACdAPl4+QQInhpEJcCxHli3Z4jx3k93s4fadzlBVe+9nyou1dp3TfuNYLSBU4zzERUt3qFNVe+/nWeu//kMDgqNLYGjg9gcOZQY8vkNmYnzzNV7++lvcf3SH4Ne9TD9Qkw5GcWtWe/QGuehZVmohBm8JpuabPiaaPwVxBIQroO935HniVx894V/9+bf5/ve+D1PmwXDG/eJJlxOlnLMvatvXLJGn0vCtX3+XsgZaie1rtk8L1lCpJqN1NS/ArpNOlJUWJOj9vt7/gjoEFQRiUF1GSkcq1WdlfbY+DeoY0ao6LKit0qJFRTHrMN/N0kq78YZ1fJaSJsjxcBauC+OcMyklnDh1ZDDlfe9dUdJatUtsyo3svdGLFkJYAeAMsdVUNn+0LlP7LkVQgreo7CmrDVDXG7jUeuRhggVMtGZWPtat/gdFvYvXl3f9MxXrGb/axt3OKfWgoWihc6rAbTepJUdeiT5EbT1cVNJyzZEWUcWxCa06CzEmKhZcYiIfcbA92SjdpQkpRk5OTrh77x7n589ouRBDZCqKojvxxnmF5BNzVheQOWfcEFnUZJjDYaKUBQy91YK/kZeZIUVc0KaktqaoWy3U2ilFnRloikh2hNXlwjnl7amZu46JY1K+7GGaARW1VXN+WJbFeL0FnDPaTif5QCnL0ZHBeaPC2HccQyDGQLCQmQ70XsmLIvISFEb2fgAH07zXQ37d/BDiMKgwyP79Gvu8Ckid80oncqLIuHh8b+RS8CGC6/gu+Jg0itzKAhWtGU1A5GiN1hpHHvN6b1dzhMglI3gNPDEe/1r0rpqAtcBeO9hmG3u/9pmjNkXK6N2cJuT4Ha9/x3tvzhz1WJyr/OWGnaOhybXos5Cz0mZOtlvmJbNUnRao77IWkcE5qI3t5oTdfq/j6ib00mhOi5epZHLJBI8JKkX9sgUiAR+Vh2+g5KdeH37whNdfukPynuZ1YjIdJi1ynQdxTKUxLyqqlKbP+foGmqGn6uddjPe70MpsqFUl15k2XcH+OW0pLJcvePHee/zw29/lL/7t95lK5e/8nd/mm3/wTV760hcJdx8g6RTwMO3JpXI5LzRrPjUQqZjoed3HdMd13uH9Otzt11QvO7QPOeND4N7dU770xZf52c8+YF6u2G4GngbznLfPVg6Zi92Be2enxDHCNLPLmdI6i08KnvR8HBVf7/pKGRKbYvUGcy0mtermmqHcY7DiQRyZpnZgrSlXn05vFU+lzQvVTVTvEe/pztGc072/6+uJF1yu+p1bHLlOiRT96x1yy+RSKPMClzuqoHtsiozjyHarv3ycFbltjVp0f5vyRFkqNChNXzd4iwYWdXYZBn2dGCMxReZsqG5XG9CWM2Wp1FKY5oXL3RUITIcJX7VRLnRDj8Nxv9DiUL/BKuC6opOVRumrPaDeBrLeDaLC0iENardaCi+HkZeHLSdhIPoNyQUGifjuUBfQSu3qxtB6pwsEO1edE+5sN3zz1dfYjgNnJ2f8xa9+ygcvHvO/fvff8PjiGX/45b/F5+++ihCpbQHXGEXBin0p7HPWaG+E4hrtlbs8+q0v8+Cl+8QgSm2rTZtfuZ7ert71rWkSaG+VXvX8c85zTApsGXBs4ojcCUq/yBP7acfHL8759ve/zw+/9z24mng0nPGgJ8a5U+pEzntaz/bcaKeR0CJbY9TV3tOhWommubxWP+iX350Kb1bhc3DpelqCKG3QGmsdl2mwicfRxRNSJHuYWia5T08h+3Van7kCebWrCkEV/nQNQCh9pjZ9gG+K9lrvBJvldSd4B0MYjyNqAZpzxwKwNRWfqK2JcrBEDG1sevirdVXFo+iE83YuiqOJFZO9g/eYTStp8MQY1PFhUU/YeTbk1DnrBoHeteCvjdZ1vH4MUpDrYILadPR6FJaJOzoTiAi9VDbDyOEwE0OgstqPaRGjopCuCXdVSEOiSWVIyYrBDs0rP7ppTHKrWrDnuNpmdZJAaZpmlmJUJ448c7o54dGDl4k+4IeESxE/bnDOcfniOdGroX5z6pRRaiXkqJuNKM8phMDWO67yzFIq86SNyzAkpmlSzq0IIZqtGJW6VJp3tFbMaaDSGgTbALoXvARLa5IjctxKJQ7Kg/Wm1q29Uq2AE5ymJ5oF6tFWDxOEGlcdMK9p5atJbzdcU64dG9b7LSRNyXMuHkNYei+UXMyi7qZ1H8yH6dgwOStaY4xHX2a6Tk2CD0YrArpnSAO5Vuqsv9ktLt07p4iIK1bcWhqlBMSidNbPBeqxvYZiiFnLrUZzznm6cYGdrIi38jodOjFpDVxziOsEdyOa2IoqdX2p1jx0e+460QVKyzopsaAb5zy9zkeRbanFfq5YvHjSCRPgUyCJsCxV0c4GtcDqCBOCKM2lquC0O0eIkTIvNEHFfFUbx+bUXcYJzHOmS8MnvXeYP71I791ffswXXrnLZkj4ccN+f6DM6vCB16jjeVo4m/zx2hxDPejGW2jQVm6wh7bQa6YXFRbnaWZ6/BH56Z79i0ve/tHP+ZM//TbvfPSUr/3GG/z9P/pbfPmbX+Xk0Sv47R0II7ikL98qU164mLIWAH31GNfp2nWX0A2oUIqWrFMAJ0h3eNFre3VY8Gng0etvwniHH/zgPZYaaOOexx+/4FCKiYqUQ/7iYqf3N9qkSNOmLo0BiJS8WAiM3utH1uVapeGskLbmVvEzk8SiTZtgpYb+t9JtD7bJoSiSJzqYA7q6SgiaUOMDzillj6oRva1lG8c3e19ixaPt6TYF7a0bsq4R6e65mNuNUiqKocaKFaundDMHnRX9br1Rmhax3ju2m5GzOyecnG2JKVAU7WGeMvM0Q6k4HEurTLUoncwEp02E0jUVTwGkqpHeXF9r6do8IGLcZ6UMggoktT92OJ8Yh8QQIq4V7jrHS+OWbRhIMRBsaqtLw7wEDWOpAt2toVkLFCHGaoLsLV95NHK6ucOj7Qn/+t0f8+OP3+dP3vkRH12e80dv/S5ffvSbxOQQFhaBqXT2eY/vmVgHct8zPzjh3te+zKNXHxG8NjC1dpZSETJ4DVgKdMRjUza9U7wXo2Sqd/WqHfIuKt3M7p88DMybDZcffcCPf/o23/3OD6mXEw/jCfdlZCid1mZaWZCy4Fq5pl+aHd4aDBbQRN4qFYfaW7ZaEad7sIij1Wbcf6VXSu9EEUuDVCDM642n77M7BtFkzhA9xQnPD5fMvTKk8VPvb79O6zNXIOclIyla0aBpQeIDcUx6mDUNMQheC5IjOko39KnRbRzrvTd3AI4ImSJyAiUei6vW6nEEoaIiRYhlRbzoumm2RnQBt25UNFWzdkUbvffE6JnKATBrsd51FH8Ej41THbyOwXo/xvfeFODRgdbZrj7DtRqqKwzDwMJ8FPTNy0xIwjiO6pvrrhPRYhwpTV0i8Mqldc6xtELpjWp0FIzGocgomlwkjVxm5oKK2mwzdt3z8NEjhmFkd9hx9+QBRTonZ6dcXV6wTAfdOMw3VQVc6jaiKYEqZvBex4t5ruxyplbwzl+Hunh3pFn4sI7rtaNfudneB6Af7b+a8XC9OQDkUo5CrlbVtsvjVZTVoSG4ECiLhk+ouf013UDdRFbfX7NAQ6Otry3O3CdQWK4vtfkH62RiRf+xz9YNCa1VuX56yZta7Mk1VKlNwwBNkd394cCSs3qzdhUQCt74nxX141YhXM6adifI8WddizU6McTjOFffs1zziLluFHRqYd7IRe9pET3Q1zS9Wq+R3W7x3ccpTatHbua42bA77D/Bny1lodSFGDb0UklxVLBDHIfDgRAC4zBokWCNXS4TZS6kpA2XE6HVSnBenwvpFrVeuby6YNyMlEX5nTkXnTSJHti5NeiV6LxqChb9bsZxy7xMIBbUs3oQf4r1+P3nPH78nAd3ThhPCvPVjrZoqHbBmRAsc2/rVZCoV+LYQEurinj6Ak39v3tdoGrgSc6NDz98xrP3r7h4PvP9n77Lj375mNc+/4j/5r/9B3zt977O/VdfIW5PkbSBsNHimIDawWnc9eW0aOPcNRq6mZPCNcNC7wFnVLPemwVEqH3c6oBycTWTqyedPuJzpy/xzd/7JUv5AWfbgWm/8KMfvEedzd+8d5aSeXx+TnIeC85GaiPg8NuReT+x1J3dnyst2x3V+sUsQJV2YOE/Aq5fx6RXlE5ebe9rdLIV20qBdzgr2LtTd5lm1A1Q1DO041ZhjZsVsU0R32vrTbWiO4pvzemjWckuXaly2eh9Vlej+5p+7/p39f3VptPOir6vcTtwemfLeDrSg7C0av7q2lT2BkvTiVPusGR1QxALHiq29zgr0mpXzmrr60/U76yxVs26B2qos4lIHbgwMA4btiHi68zY4eGw5cQPDD4QnVOEUoQqShlqQHUO50YqQU2gxEFfPfy9ChJ1G+bRaeT3v6jTyu32jB+8/zY/fvIBl/tL/uDN5/zOG7/F9t4pl6WS24Snc4eB2gv7U+HhN77E6299URvxknEu0lCqldDwXRFgROuA1clDRPc88OZLrFNMbP8NPti9X0kIbdrz9q/e5S++812mFzteSqfccwO+Fg7LrDzm1mG9rgYilK73gOop1FfciXYgrtk0u6vft4h6uWNIvzaB+oquOwJKgwmK+NCk40WIPqj/v4Pi4cV8yfnhgtPTu+pY8hlan7kCWZw7jpTXIk+cxewGT1BFmnV+xZJgzNd3Hbs6C3kI/ngwa2CBPx7+x4O76FaklkBa0EZDqRU5qQTv1Au1a3xlWyNteyE45RwDlOVAb/lYUGhGuxZpOn6/TnVb/ZCdbeJrPeREBU61aCDAYTcRkjYDxQR2y7LYpt4UKUSRy14rySmdQ+kV6kVbqqLQmumut0zOmZIzrenfxztq74xjJKyCqJpJMejoycvRt3fwkYevvEyPnrPhPt2K/u3mhGe7p/QWyTNcXV5SloVxM2hnvVRqE6Q3DksmhAhOKF3Y10xsHnpnt9vhvTc3hYa7cU84Z551rFHj2Ub+Xg+e2nHdUbMmvzlLx6plpjuUz9sLThzTPBOGUTnmqGAvxkiv/VrgiFF4WA9jRVBba+R6zZ9dHUKO0cmIvf8blmVOJxWrLZ3YeHp1Z1ly1rCO1tXZojXSkCi1KqLunB6+os+JFiKR3oV5LsSUdJIC1LIc0bU1PnktsNZG0TmL6TVrQ+on6QzYv72mN3izOVJxnvd6cC6z8n6DRL0ya3NjI28PiFEuFEUvn5iWOKcHS1jHnR1mo2AoDaNdx583TbZcL8h1YIszTUCk9c487/FB1eYhBNJmy26/18MhDfSuKLkLIFUbsDlrA9Jro8fIkhu1TQwp6Wi5F8qNBuivunbnE8+eXfH02SXjnDm/2LNfdAa0OLiaZuiZUkez/eOaykKBuqAbQKWLseNrhrrQm3o+/+gnH/Dtf/8O7z654O7ZHf7RH/8hf/SP/i6vfPkNwuZERT0ugo8gwZ4fQ4FbZZoXXuwmcq5H3mlrnwwZkWOBrE4xWAElDnXgcR4vwm5aeP/5c367zmzOXuYP/uiPaAg/+Msf46Iwz5m3f/oBLEr3ajj2ubLQ1AUDCB2cUcvCEMmz8XOlH/eftX7r6O85cXSxaYW95y4r5UhpF12EIOraQBe6aFFcel9N7sCp8FMEDaDq0OZKEdMCyOrZgCL7CCKK6nW5pp603qkoPcYbQWGlHMF1wMOR2mAuAya5Uh0BKw1B95ntyYazsxPGTVLuPoqIUqrt/TBXKCJEcdCKWt71ruEqQO5KgWpWpK3Wk/34jGpDvTa0TgTE0btOa0Q8LibGzQmbEAglk0rnYRw5DQNDiASXtPHHAYneA/REdREvUfeHro18c1D6ej084tUFoy4zpTqSP+Wtl95gTBvubbd8+72f8/6Lx/zzH/4FH5w/4/e/+k3uPLxPiY57IrAUDlvPnW/+Bl/67d/gwb0zbUbahuDVy7u2rPdSr7iaFclF0wZXEEC84G1S2ZqKvPVt6h3mgF4yu/Nn/OTHP+ZP/uzfcf70Ba+e3eO0JdqstItas32Pjtr0PnTr4+OU6uI7QNW08y5gDjEKDIn5vytqrNNE1SFEc/lyHX2unVM3J68uUzqUjXjx+Bg4lAPPd5d0gTvbLf7GNPGzsD5zBTL9k24NYiIfz/XDSjfRkOh4T4VkzZwqHCkNR9QVdGTSHeCFXivLooicxsi2Y8EgVlG0bgWNvaVm3rar6AlgM27IuSHWCTs83keC99BVULXUcvS37XAcxS/Lwio8pFk8qFiRbGicFuDVRoUWqeyEaZrsPVValeNrh6CpUsotXR9iHSCG5K24ccbV1cjlTiemRM8ZnBbAuS6MMhCjIuzOdaIJKFKK+BDYnGw1gWq/Z7PZICLEITGkgf3lHo9yNrPxj0ur6pfsHeWQudpdEdLA1WGv3pG7K0tIG6jmX70GYKwUA9CuOi8Leck4r0in+tK6IydrvUbibNPrnS7qv7wivmv6oAqVu9F4guoA63VzpiK/rg4Hdu8pHUfvu3ViAeCT2nKt9IwQA8OQ2O8NjbXRmP7ERqlKEZHuFLFEP3MrlWGMR/S3FAGUKqHe2UqJyU0pRbUVcq6KbGeLWzW+eW8Nb9dxDdJRuO068KSUohZWFmLySb/uTqvdin535C57py4C81Ju8HLleH/143h2VUvLMcAGIMSovqJVrfrozbAPUVGqD4xpo9QXS36cDwdqrSzLTPBRnQgM+Z6mCe+9NX+OWqo2Me76flj9v5dSoS9mJ1mMQuU07neZqLkRojDnrFMCGrlkhnEges88XYsU/6qrTIXLi4knz68Ih5mrpZCbKvr3ZeKwTETXCKI2iOKuR9K9FlUjYrN/V5FelF7R9DrUJvz0Vy/45997hy/cu8M/+ftf5x//w29x/62vqAgPHWvrDNlzFLrpDAN6YZ4XXhwmllKOP2u1uzousYmTbtqWOrZO4MzKzClF7ue/+IjHH7zH68OGkzt3+Na3fhfKxE9+8h7f+MYXyKXy3s8/gtIIHUpT3mvrShEqvauSvxb8EMF5vX4rrmpFG7avrlOT1rsG2nSd+jVD4JyN9bvdrN4K1TV3UNAi1XevmJrX4kTBRTGgRu9xBxSnhak4h2v6PtRNABvFKy+427PS5caUqDfjFOt7uZ5C2VSJGwWtfbaUIidnW7ZnW1KMOK98/Vp0UtZqZy4wV2048M6+T5WiVERpGOtPEi2U5brL+ERjwY1Y7xW4aphuwXvicMImRkIruGXmzCdOY2LjA6MLKtL1UH2lesfGeYJPRLMQxOiHFa+UC3EUJ4b8CxVHMZpHa57kEl+48xIpDpyc3OfP3/4B7370C/71uz/m8f6Sb33td3n9c68z1ZkpNu5//au88dtvcf/+PZxTp47unF6doyAS5YqXRihNExBF00F9D1qgeqGWbMh8xXW935XuUnnx7DHf/u63+T//5E9595cf8vDuI14azsjPLjjUYp91FVwqjUeVQEo3cR2NmEbW0Qg4u8tsEoFD6T3mL+1FaDVTpBPF0Owu6ngRHBIjOEdoBjA6IZj95ovpil1eOLtznyGMsD/8J+9nv87rs1cgoxuAjvzNegmQqihYdobyUIl+JIbBxrsLIu2IthxFUk17+9oqYnzFFcG9KUxa/28NtbDxc9JoXB+88r5apzsLlwhKhq+14tCYaBXLKcqqY1/bUFGbLPGecVTEUtX71hmuccWiG7N6J3tAx5eyvm5Vlw2xQ6jbRl/KwmbcUEsm+IHmhRiDFRSLiau00E0pUqs2Ez4GllI0FZCVY9ao9UApnlYzG+9wvRFSYhxH8ILfJMQLwyZRaibnzKsPznjx7AlXlxck549et4jyu1zQA6s2CDFxOR+Yl8KyZJaiAqja1IP5ZmG8OovUWhk2Gw5FzeFZrylKuVhFbk5AQrf0tUULQyc4Z1zy5gAllbsQVHCTG7kqShDg2MSsSxsUb97LemxoIaeexita7J3T4IDeVUjTKh7MolAFgSKOmIRc1mhWRXG0gPfgdaN13tw+esVJgC60rE1hdF4nH4Kh0zaJEL1/lzzrQe/VDQInRKfNh8jKq78W2dGacZxvOEmIaLPnkyG5hrzdaCA0VKMaz1uRYKFb8WmFio0Cr5sLYT5M+v6cI6WImAdxRdG8UrUQF6fx1d4HtRkr6sDhrGhuy3UzrY1rUxu3okEftWS1+bPAhPW0r2bzGLyDrtMW3x3JQYqBbHHm0Ck1g2uUKlpHHvmTf/VVl8bz5weGk3P8mCjOg1lE7qfMXCbubD3ROfve7VcrULORqz10K46NbwoBcQPDZksaR0qHB6cbvvTKHU422iQq2CUcffPk+vNoXHWm18w8z1wdZkPrnfGLbwr05MjNR1C3jdYoZjkJID7goiemwIuLmT//yx+D97zyyqucnJ3x9W/+lgrSWue3f/N15rnw0XtPqblSnZhewSgm68TQ0iK9c7Sif7Du4WsDV2ultHCNxArKoXWCO9LmoFjqpViREcQZ+UJQuzFvgkMTJmB0orUYL1XH8M6b9aWNsMWTj14fN8pMMdTd/nfcX+TYTq6MBgvfUNRWx+b6IIXgGTYjZ3dOGU91PwbUwrM2am6UUpkLFJeoNo93MZguZwVjhGMiojX1nTXdsh/f/fV7vHHpbbn1++qqA3KtItOBMwlsQyKau4Kg4kVkAAabkgaa90iEVTSuyPT6adVeDVaxmoM4qBf70jUYrDkexDt8/aWRF1Pm2flTLnfP+PHjX/F8OfDVx6/z2qNHfOP3f5eX3vw8m02g1UXFmE5wK28DFGxD38eyZLIvtFQsqAccVd1N+nr2VqPGgbO02YvdJd/+7vf4v/7l/8MPf/Y22zjy6M4DuDww73ZI0a4jaMWL6x1v13iluDgxuqU1RR5L7XVilE2170shrvMN/btecE31Fd4PJKfOM811qtVTwQmVikdtOS/qgWeHK7pznG1OiQ2m8tfgY/lrtD5zBbLEa84NAB2GlGi+ITkfH2wnUcM6ulpn9a4bZ6mFaZporTEOI2XJzHnBBeV8rpxQ7/2x2IzxmnqgXEtvvGS1OdLmthlHdy088/r2bOyPCTp09E1XTqjGhBa8cdIuLi6OBbnOI6+5hYoQFhU5idgofUW1lWt9PAycZ2mZAAyDIpcpeTCRjgjM83wseEJwDKOOY6bpwLKoFZm32GLo5lPcGdNGucBdKQs5Z2JIOOlsNyMvP3qJWiopJuZZXUaCSzx79hhXK1e7HXOetOAUc2FoDbxDQiC3zn43s+TCUvI1d7cLZ2d3mZeD8bmjUh66pitWQ2WQdbNQ1wSAawHdGqLhjOoA9MYwjoAYv9kKS0yw5iJDCDSqiTSrNTJKwdH3x7FJMV9A3EoW65qCiHP44GlNEaYUIj3d4CCvXOU4EFOiFXWf0AhrzGlDY6gxHqWrHScqIDu6p5hvtDgVXziEWrV4E+mkmMiLcqy9V37ukpdjEI1ByUc3lJuOLqvNm1ixoYhWozV3vBZHt4t2HTUNkIsWI6u4UMNZMFcZRWoATRe0wqOXbqI88/8WTwxqfyZVo8xLbdAb0UJj1skQdois79c5T0oD3qFJgU7DWpJP1Bgpc2aMI/M8UetypJnUWqhFefp+k8ilMU8LjMl8aAPVKYe1/jWcH7U2nj/fUUInnoykcaMai9a52M+0MnPXbxhdx4nJyKzhbCWr4MqDHK+PWVER8OOWuw8f8K3f/Dx/8q+3euiLFhz67CiVwh0RtOMIQAu0lml5YppmDovGe4vo61/H0IpRWhwhmlVmVwsxZxBlF3BBdQghqMXjB88OfPf77zDvZ155dI/tduStL32OZXcgz5WvfPU19oeZxx9fkJsK5XK/FnLROr0U/DbiQoCcbzR1/TgdKSXr9EuUC71OIHWPtka6cxTtrTivFrDK+7aejgakDq5CF79i7DQnSBCKrMK5Fe0XgohxSZuOu7GiihsIu8OuDYp6g1lpWlHcV+65fofjoHvhsBnYnp4Qh6hBH7a3ltwoWZP/prlSxlPc5hQOE7hmVAili2C0nRWUwX726k9//ZNhnVB+4vcEkPU1Ail4BikwF8YmbGNkI4EogqcSeieIWj3qWRHBJ1pKlKCaEC9CtwRCtdFUUAIRalcPB8JAlw217ahX2sjVFDjUmedXH7PUmThsmfPMB+dP2ecDr7z1Bi996XViEna7S02ADY7uHSKRLh0vQUXtovZ4ta17tqM3p6CR7U0KROjevKD7hu/q+f6Tn/6Mf/En/5bvfP9nlOp46dVXSE04f/oUsnrLt5pxrareqZtQVJR4ElD62rHopRypaYKivuptDcmeimb/3hMJ1rgNIYBPZGk4aTiX1G+7FaY24bqK8Z/PBy6WA+PJGScx4VtD2qefkP06rc9cgVxKwUUdV9eypuj1IxVCBW7ReMWaQCWGKOacjwgCaFEgAiEFmpm4r+KjWqvRCNoNjqgoWtxEOYrzgRi1wAveWwRpO/o0i4nwgGMwh5Og0bhdu1HlRivauI7UQggsy6rYL+pPXIohorBuSsl7lqXQRBHKsvKnvVmgWbEQoo5YVkSgNZhbu/HzogEHSr/QkI1KKXp4rk2HGJIR/MDKx17WGNGu4hMbrHF5cU4aB8BzenqHaXdgd37BvNtxmA60VnBSac6EaK2T68xSYH9QZG/JC7mroESa0Hpmz4FhCEeUfxh0QnA4TOCUjuC9HAvclDRhcI2SRRShrmW2e0cPpFr0MwOf5LgHda5IPrAsx5zq470Wg26epVRWGo+Iv+aMO3c8Olbe8hATAhwOe7sHV66mU8u8WrmJ1ir8Khz9vEvFB+U0OueoOetBa8h8bYVlmY9FofhoNA6lC+SiauRm/r25VftOjCftuvH3w5FjPM3TkZu/jldBjlZ2K854pJo4dRLRukRpDCkmQI7C2NbXQkMFQrVrwxnE4Zs1m1T2eWYVXNZSFBztokEgyQpnlFrljO5RWiVEDTG5Ft9W9rsDIp5lycbTbpRaEQs2Cd4ztY6TgRQjpWR7hhIhRA7LQimNlDamWVjwLlozmJW3+ymX4NhfLUxUUq5sTztDrtQGV/sDUjPD3ZFN93jpSCv2fCvNgNrUWaON9C6sXOzuAn7Ycufufb7+5mt87bX7fPR80n+7TuJktSvT4mPlyOiEv9JboRcFAHJRdH29wY/TBdBxr1P/1BAcyzJbYdFxknDBwmO8x7mohXkVLq4yv/zVx+ScOTvRcJ8vv/EK81LYt8rFfuH5nDmcH+AGBaBjfV2pRO8JKbFM0zVAuwIKXWxPt30zKg8zt0avnSaOYKNqZd0ZtcJSGLUJ0L1VQzzUGYCGoqC446SvO/Bd9/BOoxsNyeHNF1xH75iDhu4g6paxUj2PxXC3ItQJ4h0peKWtbRKb7YYxRUja0LmuNmy1aFNSixZqh/3EvJuo8YTh3iuI072uZC0mXVudP25aNF5/x8UmSe7Gd77eG2sD4kSfo+50WheDCu/aMpNqZ4gbHfMraYwuyegkOt0KEvQzhkD0I2EYtfmiQ0rgRTU+TZAYkRCRHrVQDkKr0GqhMNM97PuB7/7qR7z9qx8THNw9e5nDsmd/uOR3f+9v84d/9+/x4M4Zy2FWWmGHmgJNGjQPXkhpQ+pCdxYEUjIxJYILuFUEZ/7ImjbbqUUDf3LOlHnh3ffe51/+2b/jL77zIy4vF9783Bs8HO9y+d77TJd7IkJyjmU1j16xFZs6rEaFKxDj7H8iK9dYiE1Fd851NQowCtMgju6F1pIG3YREFgXDoofWgt2fnuQiAsy98OxwwdIq98cTtfdb9kcQ47OyPnMFsorudDR8c8QOHAu+kgtdYGqLbuzreAbBiRq6O9EuvYqqeW8Ww+uButpurZzXeTqoD7PZ+vioHqjUqklV1QzxaYaMGf/UKRpdG1TyNcpr4z2aGGUCoFHqYkETDmmeXrRIrKUoSh1UAFFK1/hW0eQm1qIboVcILqgzRfS0quLEUtWwyBuXdBUupjTiXOTyQqkNTTrd9evXNA5idMFGTYrWl9ZxPjGkkWEYeHD/PpuYyHXR8WN0nJ6eMh0OzL1wOe2hajxwCh6CehAfpona4LBUDrmyLwvTMiE+0BZ1HlCAQ1jmQuuNs9PTo2hMx+LBUGE97H1Y3RlWBKjbNVEEvzentkLd07rDBZSvamPlVdjTuqJz4hqtyY37QtX5a0BMLTOrGKK1xjiOKlBCGwhNVHTqn21iu4iKLmpfkK78OnVmERVfFofUSMdQ4SOYZWlZvSFezCFCFek6BbkuuteBixNHzYtyQl3TAlYc3XU9WFakVbyJU1QgGrwe/N7M75dlZk2MpDWGpLaEn3TA0ECF1Ue8SadSjg0RXVkAiCLGrWRaVcSktwIScCa+FSfGm6zG86wqHPRqZ1dKxhkrIBcIYnZLTpiXTJ4y85LB6aTEucBme0LvjcN+TxgFaUVFjoYULsy4DtM8KZLsEzCD8/hB95CyZIIfmSadtogof/rTruQjtXb2+0z2E9IdrVgQz/7AxsE959lawdURelUP4lY0utz3aLikquARjSXvBNwwcnqy5d5J4oNne3JeY6l1X1tpaLDSBVC0qheolV66FscWdbwWdebno6N+0fvmWkg506TrtYnRGkvVPXizG3ROHV6XDJdXB3ottGVi2A586UuPmPLCtGSu5pnvfO9d9vusav0uR6RTalW0LcVrGp0Vyc6pnM2j+yeogj/FRBFMTFppxj2PXYsWt4YvCGaTpUi48/paqx93t+/NGUKsRY1dH3GshDpxGvZSUVFjN0/h0tqxMBbhODb3MRBiZBjNIm0clLIVtEGVGIhevYprrixT1oTX3s0jvjJfHdhf7WlNiI9exm/O6HkP21Pk8gKWmV7UU5t2DQTY7mXfoyHSIsf3qNQL5cdHJ2xjojtPCZ4UHIMXOByQUhldJCFEwOMIeHzXVkTEmXDTXE9c1OITRw9Bi700XtMX7EoKXqfKUV+r5R29aFLqQRo/+vgdvvfzb9OBN7/4m5z5LU+ev8fLb73Jf/2P/ku+9puv0+ns9lfUOlOaRnBPuVGbTpdOzgZcaEq9qKo58DhS0sbZdWfTABUQ99rI88R0OHA47Pjgw4/5N9/+Hv/q33+bj54+49HZfT539z5c7Tk8e0ZeFvWOdmbbCpqG2M3RqcmRM6/37Mp1N5olELrgu1pW0h3JBbyPSEiEOJBDZzrs1a4yBQaXdMouC7UX6AvBeU7cCVWEJ/tnXBz2eOc5jQOxVlpe/oPpwd/89ZkrkNfI2w4WGHJdHGvgQ6f767GPd8oj1KXoQWsNn3Q8iiEKa/Le2jHfHCuDXNv92L9vreGCjTHEFMqtKRe1mt2ZuKPDQa7FULVVPKhoWakrdyyoL3KwqEiLDy2GOgaLze5iD2Au+JCorRJD0rQ6e+8160Yr4vDREVNkmeoxDreYWKRZoRfjwGazUc4iyuXu9p122yBDCHjpRHNi6J0brgGWPe+Ehw8eaQCD12JDQZ7OtN/TqxaNh93u2uvSrL9Kb+Tm2M8Lc9bCrXVBin6uhlraeTswMBqKD+rpfDjMx9Hnmna4JjutqXcdo6Qcl3ocO+e1+HLgg6bydSANaf1r5GWhd8i5HdMae1eLq1o1iW89MK7RF0WtnaC+lA6wzW6zGdnvdyzGr/VhLWQb3tDUvDZrPpLXuOWm4iblia/3OTZONTtC5z7xPkqu9F4JNPP11kLBeRNWtk7JakvIWrw6daQoJR9DYVprxCEpWmaV+mp7F8I6jndWMunvr/ijCrIczVxauo2Ok4tKB7IGoBS1K2ylWXKjp1R9tp14gqDImFQLRfAa8FKbjWHNb9TeW29Ni+iuryWGei+1QlWxXi2N3jW4pmFUpSYsuRJH5WZPh4mSNZ0tjSeMw8jFfkI8jMOgiGSr9rx8urUZN0wUDtMVixNNFvPmAFLhNAZOLYFRjJPYmtKdWPeBFo97F6J7B5hXs3fgxRIJlZu6ooZH7oBoSIA6XKORtkZlkd6Zl0JZHSKOP0ePcG2+3fU0znjEHkcISo0aYsAFZ6l0avkWHIxD5O6dDaebQHKex4eZsHQe3jvjjc8/4GouzE14djnz05+8T8vNHBjsnRYN9UhD0gle5Xifrg5AzqZerXdNGu3CZkyEmJgPM2WZKbVSOlQJbMxpBRpuvcIOVtzd+2DWWYKThifSUf6tdB29a4PI0Qu6SaMrK0STQtuqX1DKxOZsw+mdE7bbjUZbB31+dC8xzrfTZ0tiwAcT/vlAdZ657sm7A/M0M+0n8n6ilo679zLx7n2dBviIxFF3eO/ok7ks2d7F8RTV22J1rVA6gRyjl1cEOUjgLI60GOjbkbPNQD3smC/3jARGiYQjr9dQUpTWEdyAhASbDWFzlzCeUEOgeK9OCynqfi2O7juu6vkQggqevU8qoJt2tPnA3Cu/uPqYf/v2d9nnia986Xd55dGbXD75OfcfnvLH//CP+cY33uLOSVR3Ig/TMiO9kYuwXzpTrggNP2wYk96jOHWJOJSCzwWfFA1vVZsHEceSFy5351xeXvLkw6f8+x/9lD/9d9/l/fc+IvTAF+6+zLBUHr/3LvPVJUtboDdCU9pI7cbbl65COrsSKiptNM23U9TYGRpvdopDHMFFovOk6HFhoA0D1XW8dIJEvI8MYaDjmSsqmG0a0DVKYi+F59MlU10YxhMGH2jznpxn1bt8htZn69OAIbNVUScT0q1WXyGEo09mR9NgXINVaHLNRXSaXnajG1qR4nW8vv59fU3lBQavQpbG6q/Lka6BFcPN/GVFIq0ZutkqranVkZ5BuqW0bj/Lir3156sLghZXN0Mlmqm1aoMYR3wYKcsMhizmKesIzwXoGjEc3HAs6Lt1tyBHx4RhGAghmVBMrZpW9EjRT38cqatjSKW1RRFitFBWTnXnwd27xOAtvU5RlpcePuDi/Dktz/jeabkzH9SlQ4JQKuSls9TOs92OXB15aaamHqEtdBoxBvVNrpr0J70Tk45vD9OB3jO96ch7vVEE4yKLejbrqFmORV012zblwAa1TUuJw35PjPHoYrJyjFeKwTzPrEmMq8DfOUcT9blupRo65tlug1prlc7gPaU2XIDSF0IKxL5hWWZ6X4tuTV1sWQUztWRKm/HxGtUWEVot5GwTihCOXOuVytOAfmMCIk7v2xC1UO/imOeFNs/KFXUOH6L6qqJFzjBGSobgPMVVbTraQnDXdlJeVGTYW2cpRUUpor8U7TFKStOgGZo1Wd6TZ+Ww9nZtyae+0itvVgvc1cLNWUBItYN6HEdaWXDSSSmQYqDHeORSZvO3JdgouWjy3CYEDoeJITicWUA6F2ldGyYvjmDQY7TXa02jiV3SZmG336u9Y5sphaMLhqzpf59inW22SJ5YLhcije3ZGa+cnJJb57x3zoLoNCGaup9uLhJthTn1+dGeHhGnrg7o+FZE44LDKi8T00moylCpJ+JBAn3lfq97FarrqFZYfhJQWpMQtUDuom46mltS1XUjeOKgPtTBa4GM16KP6Dk5HXnl0QPOBkcvhcvLyMXhkmmTGE5Oiemc0+3Iy49OePfdyFS6+Q/bO7DGZzOo0041RF33ZBXvdbEmiE5ujbgs+OjYbDZ4H7g819dovTOZroUQ1FpLVn6wecr2dhTRdqNXrK4U3hB4Na0QEKNOidI3Cl2L41KpRe3mvPfcfXiPV9/4PCd3tzpWrxqQJOaLL1iTY3qEYbOhm8hOXCDOmf35nt35jnyYqLno5CwMhHuv0FNSx49xRIYRN4zIMNBfPKMvM50Dx+b3xlr1Hb2v+7P9uUWIVxq7lvF47sZEqI1ytVdqhfMMOE2BE0XeNe0R6BUvgneq9fEx4NNIGxwti27ftVKl00wM62ICl4he0fXSO/lwyXJ1zjJPPJnO+fO3v8Pj8495/fXf4I3Xvko7TLhU+dYf/j1+53e+xumJNucR6GmrlKlWoDVOjEJ4tRTmrHZ4wetzojaeXTVOtVMolKK5Aw5hXvbsd3s+evyU733/J/zZX/6Ad9/5gDItvPHwNT5/eoerjx5zeP5MKVGW8ey7CvQackwOFEORldhTtX7oum8lHEkCeI1xVztO/f+76HMh0ug1M3TPEEZFnT04nxAfdOKYdWoYRak/l8sV59OO0gp3UiJ1qLMGVEX/2SopP1ufBj1owxApxmfrTQ/PZlZNzZArt9pWHQUaio6UqpuRv3GQrQXQuiHcdK9Y/Y/XQVNv62uJ0Q+aFS2rs0I4ck1XBAVLJMNU0e4GirkWXYfDgTXZDbpxaf3RzqzWShdIw2jIbWOa1dLtME3XoQpoXLOYIKXWppu7uWis7hjDOLLMs/3MYFSCtWVQ7ho+4SRQyIr00nDjaMl9Qa1nvCK4KUTOTs+UUxug1c44JKKPXF1c4c1uabfbUcsaVVygO0qD3ZRZaifXBhKx44bGQojh6CHce2NIg3bTRjGY50n9re3zruh0XT2BbWPXCQP62v662JSu9j3Om6+lFWellE+kE9LNScNeS4iIQIxK8YhJ+dtKSYGUAg/u32e/u2SyxCrv9IDIeVbP5WaxpPbzNOHQKBGG8nmvHN1Wi26UOh5QSyrzNu1mrbbem2mI1GVmtToERZzFqD/dNmBnxWbJ2bw11ZHEBx0dx+C0CEX52Pp+bUTcFK2rpRhKbN+D8XVzLnqNuS54vYkIm31WF66jzlfOvoKY+h0Xs1T03uPMmUPT8ZQ33luzsWI9xlP3Dr150nhCC3qfOfE2Atd7ZjuO9FoQp9Meb768y1SPmoLa1Nqu5kVRUqN6lDoBnZJnPJU+d7xTkVT+a1DpbVLkUBdyrrjgGTcDj+6dUqk4VxhawQcxOz2l19B1pG6qHE2eaw2p1bqVoEimU5TRx4GTIeKdpjnKkCBqSlkTj0igScBiIdUGMwjSFsSrWOi6OL62d9Mt1/yCm9rOrZO+4LWgCynih0AMjuC04cUJPqjzzcnpltPBI/nA7nTgct7z8bMrHj8/8IuLzNXkENkohUeU3lGtoJMOJS9sTjaM2w3z4WAcYXVgcD6gAXFZm7auPvB9msG81bcnI5etUm0vOORMw/QGyNGzwoujO2d8W3tundrOifiV3EK94fnQxMR2HeZamc2KcgVKhjHx8JUH3H1wBtEjrdFzt8mXNn7ee6P3KQc3xkhuzaZcnXyY2J9fkqeJXvT773RkexdOTpVCkRJycoqkhGsFioa+9JLVCu4Gv1ufX6N9GHiyxmSv1x9R3vMuT2yiY3/5gv1+T8iFExePvG7pFenB7p1+dE2pq+FdhVYytRVwp8jGE8qC9IJUR3AJfMSHAR8jPqpPd56vmC6esuwuebrs+Mtf/YC3n7zDvQev8ZXPf5PTkHiS3+OrX3uLv/23/4B7dx+idMYKUnWy4KM6V1BIDnpsLKWzn2Y2w8B2FGLwDIO+/ZCMp49Os5acocK0m3j+5AU//OHP+dNvf5d3fvkB87xwGke+8uARQ8l8+PFHULI2B72z8oibTaoNDrk+o2wq58WTzPouOI8PAQlBpxUAFEOUOwFHEMBZMJYFWnXvIQjN6dk9NXXhiDYNfzZP7OaZTjcqlGOIg/Lw+6efkP06rc9cgewMWcW4jUE0KW47aKKc4VW0ohG0/TgGVpuo7gIhWYFtXOO1Ow8h3ogC1oIjemfeqqq+b70xxHT8PT3EFG1MFtMsouPg1haw8UsvyinNueCCO/I1Vx/WdSyeDNEshv6tYsGVe+2cHNGwWgs+BnrVGNYoq8+uWGHXGcRTSyWG4UgZcEETBGtrJOf0oPKOeVEbstoaiDfUW4UZocHgPSfDCdhhJxSGMdEqjOPIdrvVa1O0kbhzdofz5+ea1NM6l+fnSuNwHWpkWbT5mKdKqcKcK3NupKhWP71WUggMaRX1OMIoxCikOOgYfJmZDlk5uMwgSntYedO1ZnP/gJSiclidekmu/HUx8Rt01vRBuC6gj44LCHSHoFHcw6BC0dIXRDqRjdIS6Ixp4OWHD2hlVt/TWpQv3juxr1MC1MLOXf9sPcwUfa69Hf2B3YrEinBYJr2nvfL4xAFOzeSnw8FcW/pxIqGJdoVx3LDfT+YBrJxU6BrV69UnIo5butMYUueaNX1CzV6LUR+Yi42ODaFfR4tYU5lLBReOiJiehRrQkotaIznja67hA70Zpak1vV5NfZ6XlpGgaL/z+pqtC9RKLbMiT10sSXEN+6mMwxl0IVhIcPOK/KoQR4uiliubjTZepS60pdN7sCK6ELynlaxNeAxMi+a25TmbuEw9hWvLRIei438NIj0fgta0ds03IbEdEkhhGRJ5abgYcEa76E0bTYOZjghyO6rOLSwJC2IwfqKzZ//kzgn+dAsh0X3SaycqnANvzfagyXyhQBiUzdE5TrZWIHsdy2uBpYLR1hu+a4R7CJEhRZJNWI7UDKf+4XGIxOiJacC7zp2TE/yTC375+Ioff/CCXzzemSWbI3pregy06OvYflnorTKebthdBKOpGd0mJXzwLNnTDwca1vTmwnK1Q04bg9EzDru9nimtk0um9lXLoqJU79RXoLeCd/4Gze66EdXQDqN3dPV8P+SFyRx6ersGcLz33H1wl7NHd0mbhB/UXaA1E2I5B0HR/27nRRNl1riq1JeeK7vzCw77A9Rm7hMdXMLdfYRLidArstnQtlt9z/uZfjjQDzvqPCkKf4MsdN389GNTdKRdrACUYt2KzruqgMUyMeBx5rnrxOHtuT8CTr3T8CzNwlksRhvX8SnSvaLKruiZlEaNOlYqmTo0lGXh8OKcy+fP2O0v+NGTX/Cjj95hc3LGb7zxde6nU6an7/Pqaw/4W3/wLT736kOiw2gR3WKzxcx7lHrWeyVIZgjQeqHkmZZG6I7gdZrqbYAj9CPaO00Hnj55wo9+9DP+/Nvf4+1fvs88Z3ytvPHgJV7anPH0/V8x7y4Ri+NWlxNvKLwBUVynEPreCS4yN/WYT25ERPeIEBLeArVkpZSFQPCJ5DWXQGLCx5HYGs13nB9pISpQJwnXZ3INeBeYS+Z8ulCbUrQwHsSRQlJqzX/QOP1NX5+5AlkVnN74h2HVwzFNE2t0c7PC4pPxvdjDqE4Oa/GxFqJJ/JHesAoRQki0mtVWSzgmqXnrvJzopEu9XPXfHaaJcRj0sM86YqxVN9ZsBfw0LWzG0QqLjr+BZuZSDOmTI+JmH1z/a2ifiv4qvejveReolsoW42BhGEDXkIhSM6GpH6ymwtXrAnBVzXYLliiN0hy5LHjnSDEhluCTc0a6BqA4rwXRZhx5+NJDhqQ8sGEYiOgYNueFUiuH3Y5lmo+NQetQKhyWmfP9xGEuxGGghcyYEm2u1hCsmfaNvDSG0auHc6ssU2GaDzY+BXDGY1Xxy9p8rF6muSzqCGIj8zWlLh7pMtoYVeNaOhcUSTcKRa1VeePGg1dvbfVD9d6rulqUQ3h2qgilotXGS3eR6JuOx4Vr8WNX/1QdCQul9uPx1JrREoYBpLHkasiholFrAdpr1dG5FW5iVAGfoqHO689baSHKX2614bseDuI93UIEpDeWVRTqYLPdcHV1idAIKHdzaVW9oo0aAh7nwvEAXO/dNQzHrzZspSr65Zyhxo1a7HBdadBW4EcfaBSiV7tB5xU1cVZQSQff1ZWg95X3qojddNAJS4iBaVIv7WEYmOZCw1sjZf7l+g4NHzQRrV9T4GC/2+FCYEgRqRBDZMkLBeWY11oYh0QKfw0FstPGQeknyjsvcwZXbVxuY1atEJTX7bSQFVZ7P50A0PVatl5BrJCujWWauZoKm03izssP8af3IWzofqRLQD2T7WbBow7gDfxMw/P8KrM3MehmUG7sflYebaPhWlGvBxOtuqCc6SF6Ukw4H8ApMrr6uPvgSEEdGoLTe3fc6Oj7+W7mw/M9l/uZGCISPWkc6LKn9kowBM6LUs04v0CGxOnZlt3VjlZWmlnDhUgUR12yBij0DlWDg8pFZ3PSGDcjQ7qjIs950WK3dUV7zQqyi05OrixECa4pLc46hmsNhP55Lgp+3ERoV4Hn5mTk0WuPuHf/Hmm7UYQURVc1ZETUjq2bjk7Uw11qs1hjIS+F/fmOtmQVFjaNqpbtPfzZA3xvuBBow0jD4fJMvzynvnhG2V0dUXN9X7YsoGTlDq9zxhX1xq5dTJFhO3J65xRfi4bIZOhe1j5IG1q6jv7FK/2EiquV2CA0CF2dkHxUjnSfNebZpUTcbGil0JeCNFhyYbq64OLpR1xcPeOd5x/woye/hM2Gt37jd/jSy28Snp/jY+Gtr/02n//c5xmTR3qjUFW700T9tLsCTQb843zkbOtwPinFr3f1yQ7q0OGoJp7NGtu9ZHYXl/z8F7/kL3/wEz54/wWeAcrEg3Hki3cfwn7HiyePya3iBbOzFPKasNihSTdrNmv+nSMQ8E6Z7UEc0Xz1o/cMMRFC0qlNb2xcUC1NcEqrGU4Y44iXQG4LmxBpPqACbSjO08qC+MTl1XN2045cJlyMbMcNo+lyfCtHoOazsj5zBTI2Zu0SEKdq6GU+UNvhBt2BI/e393b0Lu4VE9s5Ezgp0hl80AAHAKdCspwtjMMpclxMXeqcP3JQ6VpE52Kexzbu1VG5juQ6QqHSSkOCUwqAKIJTykxMkd7rkeva2hozrGu1wlI+X6Msa3w2eJeQ1mkmAKQ3teZyjlYzwTtCdOSmnfJuv7MoSv0BMUQrNDy5ZOZlsdCJQkO5pzZgVe5V9MdR+VrET/uJ4f6GYZPITbmvORfSOHJ1dUUKkSEN7C4vmfIObPRaamFeFnZzYZ8XSqmMKUHpVDJSOinpzwQ9AI4IWFeLNCdRx3ghGMqxHoLXAjWlrABiXGJRJ4l1x+51LXa1cA8hULNRM7oWKtWie1c7wdYaITo6RTt5AtIV8Q1e8E7/WxYdU7UGzmnksw8a0rKi1yEYL9mJWQPqxlhshFly0aJLxASdyt9clkKvjdKLHpK2sYJu3huv4+DWdcTLDd5uCIEpq7PD6mbSStUSqFVqW7SI7o5WGguNZVYxYb8RktHLQrZpS1kbkRCOPL01ya4ty7Hha73jgtoKFRNjBh+JYbTDWRFJH5weXPZsrHxwROilHKc1awOWnG74tTS8DNRSGTcjl1dXdCpd9LuNYaSURS2rQtRGo+lzQ9dgkiUv0OHhw4fM88w8TwwpEkJkf7VnHEa8dyzluomJNn16evXiU29xzmgoS1mILbIsmcPlpDSSfaV5syGUNexIhb/eOVxQBNiFoM9KKTq1AejKH87nz3j+8VPOrzJ375xy9/UvwOlLEM5AFJ3Sqbm7Hqnr7kfrwrSb+dn7z5hq45V7G772xQfcOxv52Ycv+Ol7L9gd1FKyV+UKddTJR4LHJ/Wx9kGOjgXBGtuYIkMKBFRQ5FwgpkgMOhWYZt1HF9/xPrHZniDhgjkrPzWK7hGtVOqVjvc3Q2K4f8a8VJZ5Ud9mZ1OjEFRciQnPOrRSOFwdaEXPgW2MMCSzkNSI7TwvzEuhm6tKbU2L7JtI6390ySf+64Pj/qO73H/5AWkzKpddNClOi2Gsc1yt33R/wnl8t/joBtP+wOFqUk1KVzCke0OPg6geIiaamoHTLs+pzx9TL5/RpsNRm2LENJtIcl0k33j/Sm1X1H+z3XBydspwsiWkgKsFWTL9xV7T37wjSDAEWUNovIvmwuSsybT7JjeYJ1ItMAZyAnLGjyNu0FjkmitLqczzjsvnj3ly/hEfXjzmp88/oA6J33rrG7zx6pt8frzHbtmRT7fcu5fYpoZ3KkZvKNqtExbdX3WipcmZg0s41/XLF1TA2Dy+qxWm9MqyX5jmmdIKu8sd7773Hj/84Ts8+dUz7rgNS88svfOl+y9zbzzh/KNfUaa9ZvF0tRTMVJKJbavZqgrqC62AgzZZCYuGjomTtGEcRmXCS7PQpgCusYkDPiYkbvBpS48jLm4JPuDzQaeYKRpXGfri8bNQqnAxXbAvM0trnIbINkWC6NkSg7+1eft1X84HSm74KERp1DyRolBFPUtXJXY2MZpOrzyYwIcOfQ2IaMo9Evu1Fr29Kq+tVw3HcN5ZRjnK3XRmauT01xAiOdeju8G61BanUmpWK6Ci9AFxnlIzrVeWpaqQxdBi5xxDispP7TraLaXQshbKwX6GIGb8rWPD3pwJdTplWeiiiTjzUgBPUYhY0cemgquQBoak3rS1qD1QKVrw+KOrgzcD8sYQI71rFLMGGukYNUjndHtKaY0QBmKIJB/ZL4XZFLq7qwtKqcSgSNdSOrspM+VK62o1Nk8zwTnGKBAE51RcE0IwHqUKU8QpEr5ULeRyUe5dsECC9RrcFGU6GVFRYTbUQxuZtXCrtRGj3ich+qP7CJ2jt2drlS5CTAmsYWm9kuKgoiWB1hbu3Nkqwt47uXaWVsnS8B1SGnQ0X9WRRbyh8UYGaE3/PqL3uZNorquwnla1NYKFMwSnoirc6iBgRX9XcVDra2ytOgiUUsyPe40TtSQmnNIsHASUjoA4lmXRgtWvji7XQkA10vfk2kwYqqK9VjNzr+pbXNcYa72W3tkI06ZA3USXuc5Em8YEEX1mxVHK9fBkDS3BNAI5Z+UsNlW3L0vBiY47YzQbrOiovbHdbgyV7YwpstvtjQIy6HTFGo952R/5ls+ePdPncRgR59jv9vrMlpnQFQFyzmhJqnZB3XI/3QrmLpGrenPv54WLqwMepXSljTa+Pqi4Zh1fOwm4NchimaEejsEhazHXamN6ccGzj56wmzKvv3SXk4evIcMjkLNjISzGKz0+BIhSmA5XvP2Dn/Kdd37Fo7PI3/87b/Kf/+FXubMR3n7vY/7Fd3/Fv/reRzz++EpRfXudII7kg6K/QYt5dWUQVdEHxxgDKaiPuzhHD54wjOobXh2+Nnxr1FaQCOkkkYJnRlhqpYrQgiK4oXbanMkibLaJk9MNnc5uN5GXSi7qelKN5kNfx+TK6V72M3UuSFDxd4gRFzS9Mm0941Aoxu1tRldrtauXcluLWPNk7CtNwYqt6xNCyQlOOD3d8ujVl9icbvVsadrIV1HgRW3ElPOsdJJGt2d+nSbWVri6uGKZ5tUeg46D8RQZtsiyN/pAp88T7Pf0F09pF+e0aaYV47GvvFdDGcVik1cLRIfSs9KgiPHmbMt2e0IaExKC/Z3IeP8Oy1yQqRsSqs+LosiO2DtRhOSC7nOiIU70iiwFubpChlNiTOAGddzwjl4aBViWAxfnT3n6TIvjt198xN7Bm299gy988S0e4RinHc+uniL3A6RIbYsOQpxX204DDwKOgqdJ0z2TatQlbAqi4EQNivi7NZmwqP//7vIFH/zqI97+wTt8/O4TzvqGfT8wHc559fSUN+8+IvbG1e7SrEaVelMtLTV0teF0CMGaw43lDSjdQ4guEuLIybhlMwzgHK1lCGov6eKWITjieMo4nuE2d/DbE1zc0FzUPb4tLPsDQ0y44HBS2MwDY4p8/OIFF/sXLEXtcWOIpEH1SwkIuXNwjc/S+swVyF0cXtSvsRUdOfbmjsje6sBQ+yqSU2L7yWbLNE3UrHzVGD1iNlqtZrXJEcF3M4kyAViral8jWJSpCeeKjTVLUX6b94EQoiLW2dwgzI2C3im1WJHRaMW8b2v+hHsF6GaXF0WRndnBXVMhGnnJOH9d8NTeEacDxrUJyDkTRy1EY3DUpqibM2oBoKLGnJlQVNx7dfYQArVmkvcmNrGxjlOGlDjtbKnmfhk8Qwjcv3efi/0O7z3TMuv3gxYoT54+5emTjzWqtXX2h8zlbiZ3bxzXBGgM5pAiYJZcRkOotSLN4VNQIchuRymFw2F/5G+D2vcrBUf0u3eOWoqhLYoa+ORMt2klp2iATO+deS5Ur9xCvWyKOufcqLkoLzrq/YWNL9d7DOk419luN4xjJHila85LptAoFLbjxmzyFJFPMRFGpxZiSyHEQHNQm6ITraiXsPeOaZmVItHV+sf5lcYgKgxS7MxsqMTQHg0BaSJ48x9eUXCAIarFkRONIq29IF0I4slLRa0cOApFVzeVNUZ6LuaW4FfRjR7kMQbykmmi9AX7wvVwbnrgNxoinhAT3ts9RiM5FXwNacM0LTx4+IBnL54cfy6inzcb+q1yBGE/zag3uufkJDCXhcPVRDWB2G6vHqBDSDYZ0VCI3sVsohzzMrEKQb3XAKCVMlTnrFMMp2EAiHqNNon0BsmCi9ZW5tOsYM9pbo1cC1fTzMU+EkWlOmc+skmJIQxEEVwBV9TLtJWmNoUl0+dCXyb6Uq0pFpoElsNCmQqVxv17p6STU0WNLR6jr/Nw3XGtMCr0+TnPfvJD/uk/+79579kL/os//Ar/wz/5Y770tbfwdL725EPe+urPeeO1n/C//dm7/PgXT5jmxTyq1UM7eK+Fsvcaxe612IoxMMTAEALBqcsJPhLCwBiSot/OIf76+T453ZCGAbmalEbWQVojOm0KmzhcbeQKCbh794TTkwEHXOxmnj3VyRpZm/huHNSGJZjVBrVSloJzi4lmnVFPbFIpmpAXPfSoe4Lek3p+rHXxKoBu7dqdpVXVwQxD5P4r97nz8L5SiFqzz9u12an1ukU2xFUMzKmtHx0wylKYL/e0ojoStVALuM0WX/aQC2UYcFOg7y9hd0m/vKAdDrRloZsXtjiPD0n5g1YPNeNdi3cMY2JzMjKebEnbEZ8SPvqjFaNSkzzDfadpi48vdDpGM7JOx/eK70JqDVerUheqNpmtL7Q+0qYd4XCJCw+oISnSX7qm3+4uubx4zNMXH/Lh+WN+efExL8rMwy9+hS984cucSWRbhKvLp+zaJZ/7/Nc5fXDKtHtBmRwnmxPEebpTwXbrHW9CtyVXJossD07POUE5xnWBBW2o1Te7My8zz55d8Iufv8s777wPe0g98O7VC3rLfPH+l7ifTrm8umA3TWSnRfahd6J0Ehpj7pxyiT1NGzGvjtGg1KjoI9shsR2j0imkISngwxYXEy4IPgbG7RknZw9Jdx+R7jwkjKcQolKn8oH9xQWtTJqNUBbiqGDEoT1jv9/rRNooZn6lPLUO0lgH7Z+V9ZkrkKUpqltM3BRiOFqtiQjjODLPs1rJGNILus0vudDNjaHmhq8NCYFWCi56WlW+ZDia2yv9opvYYuVUrkK+o+VWa8pHytm6XajGSV5yPvIxXdDNtS79yAO9+TrY3zv69tpZu/ond+MyK+2i0bL5FdcKfY3ivVa+hhBQx1uOjYMY8nlMRQP7LqMGCTRhGAZmKxqDD8d0sta6FQi6abTWON2ccPfOXQBOtidatBsX+uzkjP18xZOPPoJeqeKYC+xzptj3WEo+xqn6FLXgjjquVkcCpSLE6DQRsGlBuyzz8ZqDFnHVPpfWv+qBLTEpAro6mbZ8LPhSSsegES0AvbodNL1jbjYugvlko+PZbmi9JyjtJWqq2dl2g/RC8oleq6Im1QISBocLGsxSe2fYjvjYOOzLEZEW/DX9x6k2uZm3q3il0bTeGbcjLFa0O+WOr6EkPgQLO1GaT3WOvEzHVLDre8waQkMgk6jtfC4ZvByty3LO102h/bsqYETLY8HcO+Ss9n+tNXzTRqvYAS5osl0pxRit1QqZYONW/a6dOA7Tjrw0ysX1z3TOHVP4rp1guoVRJBVU9c7hcLjReK5NnNJAljzTJJBSYsmFUpfr/cD+jTZFmTQkeutMebZiR++vcRj1z7eJVvvRy1aC5872DvDup9rjSq0sJVNao9TGvCxczQujVyrCEIUhCcF1+tWemrUoastCnxekKG+9G19W0VGnnES/wdXK2TByfzvy0kv3CEMEKl202Ve0+DoBEjrkK6ZfvsP/8T/9M/75n32H3/vaK/x3//0/4Ot/+C3SvVfBjdx5s/LgN37JS6/9GS89+A7/y5/8nL/84fssuZCCx3tRMan5b6cUGYaRIY2MKbEdB4YUNdI+qIOGOA1R6rbv1HVjdJ5hMzBsB+SZ8vHXdaSniQnULDpXnBZ3d++OvOo9L17a8+EH55y/2DPPCzmrD35HhVvYNEJ5OGoRuSaXKbfYila3WtutHF19F/4oXOOYhsYq7OqdXApVOncf3eHhq4/0fqJRu2lbrOFtoudeR4V40jG7Tr02q6PEcpiY95M2SGtxbvSsPl0p/awstFndLZgnmCfaMh/j4J2PuBARb77toqJqlwIxBtLWCuPNiI8B54XoI2Ij1iCiAlJLuQwv32d/WGgXdXXUVi4yzQzNVFVaW4FWcWtyKh2phXbYI+MZ7mRD7VDnQtnvmHfPOb96yuPLp7y7e8KL0NmcPOTVV19j4xLDobLtkY+unlEHx+nZwLw753KamOuigSXBI+PAybDFxQAuUrpwdcjMtbJJnjFFxiHq5LI3NugkrIGGcy0L58+v+OBnH/L4Zx9xeHrFqTvlyfSEF9MLHpyc8erZA+UZLxN1mfEoit4EIkJEhZdjGim94lpj9EEL5jAQndOArqZZi3NZiGHER68WrSngUsKnkTicEjZ38Cf3SScPObn3gLi9iwsRHwWpmTRuma/O2V0+Y65CcCqGPN9fMOUDtGLaBZsgbyIxCuVQiPmzVVJ+Zj7NMQSjNhPVKDK8HuLVNox5yayUAdqqbLaiJDdq7xQH3SgRvfVj4EWpDanqdtFaA9fJNbPZjEehBuiY1pmn7TTNmihmBvq9Z3LW2MZazA9YBGxkihRSHBXZPAo1biB1YClV1eh/JiKy0ZyO5f3xsK6rQMdEPYryaaHbe6c0bQxWr066Jq3FlMwoX4MuDvNinFH1C20WlrE/HDgddTydcyUNxi2titB3EU7P7rI/HHAxUmtmd7VXV5FceP70BfurvfpFLoXchVxVjFiMo1prNaqHXsce3FEU01ZbNxu75zyzHNQCS1aaQYwsi16f4AO9VlwM5KKvX3Kl9o4PjkpnWQ7mf9yNGrGik04/d0epKyJM03xsZBQd6riu/FnnHLkVmnNUGuOYqEuhZOUAjj5SauPqak8RuLPd0Fpnvz+wFCEGYRQhL8qV761Te2YRlZktOdO9EL2nLQ3xWroMg2fJM76CE09ZCpWq9AXnoBdw6oaCMx69aLQtInbfaVhMiInpoIp3y4Ojo8EtNz24S1GqRC5KJ5AQyJVjM6KTZA2EaLkQvGPJmdi6RQzr+1jmGSeO0ooWQL3R6szg/bEh6HWxqHQtrnOrai0nFuUujto7m2GgVk0/61ZwaINkrho05iXbNEFMId8BRdg0l8Epith0qpTL6l3eNbTEB8I4cDgcwIH3Qe/dqpaC+92eMAzM00RwwvPnLz6xX/1V9rir+cDVciBXRZF3OTNMC9k7NoNXYdJUOH92yb7u6FeagkauKiBr2CRldRrxuDQgKUDUZyDEyOfvn3J6tuXqMBMuz+lMqO+xrC0wAFIz5cl7fPuf/VP+x//5f+elB57/6h//Pq9/7beY0z2WMkDfAgFOIq/89sx/Nl8ybiqP7kd+8NMnLIveP72aoJJuThrq+tNs/53nzNU0K4oqmbrfc7k/cJgm8qL0oC4O8eCjkDbJmq5qoMLqzW7856bxw7V08qLF3uGQOdsK9+9uON1u2O0OXFxMnL+45PLqwDwpMogVnuY8bDZlawNxHaDhuljDtn5j7ZqiYnoP3b21uBdRMWF3ne3JyN1Hd0jbjQEvmq8XWsTZ+ZCLiTWdU99c0WJyjfnORUViu6sD82G6sXd2beZLVrpHqzCvN5t5PedFaTgdxIcjRUJ6xnVNnvQxEcfEsN0QhgEJ1mCbDqWhFArnBJxGXfdSaN7hN1v83RPmy2fMTfQ1uzY0mYbvFXrF1cyhzDBBdx7n93SKtmkhgnkBT4eJ+eIZV7vnPNu/4L2rJ3w0XTDcu8vpvZdJYaBd7iB7rsLEgR395IQPzp/z4fkzDnNhv79gmg561ji4e3LGo4cP2J6eAY6LuXAxLXhpPLp3l9deumdTpsjZZlDry1aZ9wcuz3c8fu8D3v3hOzz94CmRyD7v+ODyMUP0fO7OQzYhkuvE+dULGp0kStWxaCbdkzsUTPsSdXrivEZddxz9qFvJmpIXTQSdAjIM+HFEwkiJAwfnKEumzjNuzmT2OO8JSQhO7VlzrSwts+SJjHC1v+Dp+cfMZeZEICPq3NIq3XcETw8NN4S/8v7267ikf0Y+yXvvvccXvvCF/7/fxu26Xbfrdv1H17vvvsvrr7/+n/Rvbve423W7btffhPVX2d9+HddnpkBurfH+++9zdnb2CSHc7bpdt+t2/bqs3juXl5d87nOfO1KY/r+u2z3udt2u2/XrvD7N/vbruD4zBfLtul2363bdrtt1u27X7bpdfx3rb36Jf7tu1+26Xbfrdt2u23W7btdf47otkG/X7bpdt+t23a7bdbtu1+26sW4L5Nt1u27X7bpdt+t23a7bdbturNsC+Xbdrtt1u27X7bpdt+t23a4b67ZAvl2363bdrtt1u27X7bpdt+vGui2Qb9ftul2363bdrtt1u27X7bqxbgvk23W7btftul2363bdrtt1u26s/xcoFgL4hrpgxgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "\n", "def visualize_results(orig_img: Image.Image, output_img: Image.Image):\n", " \"\"\"\n", " Helper function for pose estimationresults visualization\n", "\n", " Parameters:\n", " orig_img (Image.Image): original image\n", " output_img (Image.Image): processed image with PhotoMaker\n", " Returns:\n", " fig (matplotlib.pyplot.Figure): matplotlib generated figure\n", " \"\"\"\n", " orig_img = orig_img.resize(output_img.size)\n", " orig_title = \"Original image\"\n", " output_title = \"Output image\"\n", " im_w, im_h = orig_img.size\n", " is_horizontal = im_h < im_w\n", " fig, axs = plt.subplots(\n", " 2 if is_horizontal else 1,\n", " 1 if is_horizontal else 2,\n", " sharex=\"all\",\n", " sharey=\"all\",\n", " )\n", " fig.suptitle(f\"Prompt: '{prompt}'\", fontweight=\"bold\")\n", " fig.patch.set_facecolor(\"white\")\n", " list_axes = list(axs.flat)\n", " for a in list_axes:\n", " a.set_xticklabels([])\n", " a.set_yticklabels([])\n", " a.get_xaxis().set_visible(False)\n", " a.get_yaxis().set_visible(False)\n", " a.grid(False)\n", " list_axes[0].imshow(np.array(orig_img))\n", " list_axes[1].imshow(np.array(output_img))\n", " list_axes[0].set_title(orig_title, fontsize=15)\n", " list_axes[1].set_title(output_title, fontsize=15)\n", " fig.subplots_adjust(wspace=0.01 if is_horizontal else 0.00, hspace=0.01 if is_horizontal else 0.1)\n", " fig.tight_layout()\n", " return fig\n", "\n", "\n", "fig = visualize_results(original_image, images[0])" ] }, { "cell_type": "markdown", "id": "235a6c7d-1f5c-4cb2-b3ad-829eee29327f", "metadata": {}, "source": [ "## Interactive Demo\n", "\n", "[back to top ⬆️](#Table-of-contents:)" ] }, { "cell_type": "code", "execution_count": null, "id": "38788603-90b8-40e1-9bee-6743a0175417", "metadata": { "scrolled": true }, "outputs": [], "source": [ "import gradio as gr\n", "\n", "\n", "def generate_from_text(text_promt, input_image, neg_prompt, seed, num_steps, style_strength_ratio):\n", " \"\"\"\n", " Helper function for generating result image from prompt text\n", "\n", " Parameters:\n", " text_promt (String): positive prompt\n", " input_image (Image.Image): original image\n", " neg_prompt (String): negative prompt\n", " seed (Int): seed for random generator state initialization\n", " num_steps (Int): number of sampling steps\n", " style_strength_ratio (Int): the percentage of step when merging the ID embedding to text embedding\n", "\n", " Returns:\n", " result (Image.Image): generation result\n", " \"\"\"\n", " start_merge_step = int(float(style_strength_ratio) / 100 * num_steps)\n", " if start_merge_step > 30:\n", " start_merge_step = 30\n", " result = pipe(\n", " text_promt,\n", " input_id_images=input_image,\n", " negative_prompt=neg_prompt,\n", " num_inference_steps=num_steps,\n", " num_images_per_prompt=1,\n", " start_merge_step=start_merge_step,\n", " generator=torch.Generator().manual_seed(seed),\n", " height=1024,\n", " width=1024,\n", " ).images[0]\n", "\n", " return result\n", "\n", "\n", "with gr.Blocks() as demo:\n", " with gr.Column():\n", " with gr.Row():\n", " input_image = gr.Image(label=\"Your image\", sources=[\"upload\"], type=\"pil\")\n", " output_image = gr.Image(label=\"Generated Images\", type=\"pil\")\n", " positive_input = gr.Textbox(label=f\"Text prompt, Trigger words is '{trigger_word}'\")\n", " neg_input = gr.Textbox(label=\"Negative prompt\")\n", " with gr.Row():\n", " seed_input = gr.Slider(0, 10_000_000, value=42, label=\"Seed\")\n", " steps_input = gr.Slider(label=\"Steps\", value=10, minimum=5, maximum=50, step=1)\n", " style_strength_ratio_input = gr.Slider(label=\"Style strength ratio\", value=20, minimum=5, maximum=100, step=5)\n", " btn = gr.Button()\n", " btn.click(\n", " generate_from_text,\n", " [\n", " positive_input,\n", " input_image,\n", " neg_input,\n", " seed_input,\n", " steps_input,\n", " style_strength_ratio_input,\n", " ],\n", " output_image,\n", " )\n", " gr.Examples(\n", " [\n", " [prompt, negative_prompt],\n", " [\n", " \"A woman img wearing a Christmas hat\",\n", " negative_prompt,\n", " ],\n", " [\n", " \"A man img in a helmet and vest riding a motorcycle\",\n", " negative_prompt,\n", " ],\n", " [\n", " \"photo of a middle-aged man img sitting on a plush leather couch, and watching television show\",\n", " negative_prompt,\n", " ],\n", " [\n", " \"photo of a skilled doctor img in a pristine white lab coat enjoying a delicious meal in a sophisticated dining room\",\n", " negative_prompt,\n", " ],\n", " [\n", " \"photo of superman img flying through a vibrant sunset sky, with his cape billowing in the wind\",\n", " negative_prompt,\n", " ],\n", " ],\n", " [positive_input, neg_input],\n", " )\n", "\n", "\n", "demo.queue().launch()\n", "# if you are launching remotely, specify server_name and server_port\n", "# demo.launch(server_name='your server name', server_port='server port in int')\n", "# Read more in the docs: https://gradio.app/docs/" ] }, { "cell_type": "code", "execution_count": null, "id": "25b32d46-09fc-438f-9e7d-add85806558f", "metadata": { "tags": [] }, "outputs": [], "source": [ "demo.close()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" }, "openvino_notebooks": { "imageUrl": "https://github.com/openvinotoolkit/openvino_notebooks/assets/91237924/88bccc4a-5789-42ca-8a68-f402c3e7c5a4", "tags": { "categories": [ "Model Demos", "AI Trends" ], "libraries": [], "other": [ "Stable Diffusion" ], "tasks": [ "Image-to-Image", "Text-to-Image" ] } }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "0026226267524ab0acb07c76af89f576": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_3fd9743846414852ba02acbd2305c0d3", "style": "IPY_MODEL_a30941b13a9346758893d70b15f4192d", "value": " 737/737 [00:00<00:00, 46.5kB/s]" } }, "03545c4ca8314d77b931e6455e4efd4e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "03b70b2103ca4dcb837e921e4340ac2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "03fb0f21f02b47598f2231aa6c7cb97e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_67d0b52077014fc7a95d5ead4353415b", "style": "IPY_MODEL_48e5f7d0b4334c5ba2c4ab65dfc16f06", "value": " 18/18 [07:41<00:00, 31.98s/it]" } }, "065b4741ca92488997398b71a5632f44": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_533d14b899b3404faa4020fe5fe80856", "IPY_MODEL_bd5587cb38aa4178998a308226267423", "IPY_MODEL_c29f6068cec3412681633b5e1db2a50d" ], "layout": "IPY_MODEL_1d4739a2913d4009b122a8becb56011f" } }, "08360714832e4cc480eb25fadf15fcb2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "0854fe06a8114e7e93991ca42a3c2efb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_c59ff1d6a9494c20bd886981b1b17693", "IPY_MODEL_b6b2f46fac8b412eb3fdd70807f564d6", "IPY_MODEL_7144f4716de347eaa2d711b5b537805a" ], "layout": "IPY_MODEL_c0aef47f7cbd4efd9c715c8d01940cf4" } }, "087c6f10acc4456889b7e36cb805ff9f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "08cc30de01df48c9b7c66a465a0cdb31": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "09d5dea10e9c4d29b92711ae8c673c9a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "0b3164f20d944cbdbc98170d145b2039": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "0b8aa6e61c424bcfa1d055ea4862837e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "0e90994e8dc04df993298d5504536d64": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "0f934f58c3af4430b430834315eaf9c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_af243c5eeb3c4d1bb965fe8b48033199", "style": "IPY_MODEL_41b59a9c903e4a4a8465d284f2bf8939", "value": " 560/560 [00:00<00:00, 14.6kB/s]" } }, "0ff1734b84da4584a1655e5be0c35ff7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_2e4095fe2db646748c8591607bd5ed61", "style": "IPY_MODEL_54a83679db7640f9ba22159e9041c8b3", "value": " 492M/492M [00:23<00:00, 21.9MB/s]" } }, "1127ab9b2024422e9e8e40c1e5064eb3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "1301086c42e3401c9d1a40fd1c40e696": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_4a926c1e58594d63bb7538ffa74b6ffd", "style": "IPY_MODEL_8359b525ebf747dda6b9e8b84030d541", "value": "text_encoder/config.json: 100%" } }, "1463c6aa33054bb48d33a04da42b38b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "description_width": "" } }, "154eebd3c4404fa0b064ad7cda164da6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_878edb1ca0da4b94a798f76e3969666c", "style": "IPY_MODEL_6961c880b8f841eaa5de4c1c033444b2", "value": " 1.68k/1.68k [00:00<00:00, 122kB/s]" } }, "164ce87df8374c5cbe1b4a8ceef1a941": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_a7a23981677d4dbbb288bf0c39a4c189", "style": "IPY_MODEL_6276059fa3b44a50916c30a5b104cbb8", "value": "model_index.json: 100%" } }, "166ce4aebd444318b14ce13f228c0fd6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "1797a2d9019f4867a5fc040a292eb5b2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "197b552ac6664c8a95a454f5535b4270": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "description_width": "" } }, "19a9efdbcd10487abd1aa22984e1b50b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "19f5aff228574c3d8a218c902242822c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "1a207839a32044bba70da5974b97b1cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "1bc27150a6b542c5a68a5c63404777c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_f3a63877510043ebb3f7c0b5b626da57", "IPY_MODEL_b65e84528862407ba0606389cbedb288", "IPY_MODEL_b2f4e8b69bef4b66b406125e86bc4182" ], "layout": "IPY_MODEL_c53fd516fab646bb9cefccb5e7a9ad11" } }, "1d4739a2913d4009b122a8becb56011f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "1f21148e42984dcdabe567dd8d1d99c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "1fabb11fb0c44e0586e4dba4fc404b73": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_ecc600aff09040a2a0efe2266894a449", "IPY_MODEL_a703833052db437b82c84335a3efcbbe", "IPY_MODEL_ba1f9ae4c3e4429cb0e1eb200821acda" ], "layout": "IPY_MODEL_ec1ae1ad7031449e98cfd3692a944ce3" } }, "1fb361e7a29443a0ab521b20789dc61b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "description_width": "" } }, "1ffc4883a81d421ab38f9f8140151860": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "bar_style": "success", "layout": "IPY_MODEL_3151d27de2d846c5b19bcb8a9d08ae16", "max": 7, "style": "IPY_MODEL_86057615088e466d83c593f5941e1c22", "value": 7 } }, "22b2aa6b4d8a4ed88f5b4d099ea19c3f": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "layout": "IPY_MODEL_dd0abd9af82a4b61af61a187f6c72169", "outputs": [ { "data": { "text/html": "
Applying Weight Compression ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 40/400:00:000:00:00\n
\n", "text/plain": "Applying Weight Compression \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[38;2;0;104;181m40/40\u001b[0m • \u001b[38;2;0;104;181m0:00:00\u001b[0m • \u001b[38;2;0;104;181m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "22c9b3cc6b424505a920a1deef65b91a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "235bb350dbc545e0a425eb4203834a98": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "264816be3ea84dde8b49510cd40dfba0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "2895265ef13a43b5baa2cd78c99c7cbd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "2969d4a7294942c3a0ea0f92075f0b3b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "description_width": "" } }, "2b9a35152a84452294a33d22a900536a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "description_width": "" } }, "2cac655200f04814ba646211b0f72890": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_9c3a567eaf964ed1a852a44a69eab130", "style": "IPY_MODEL_2895265ef13a43b5baa2cd78c99c7cbd", "value": " 7/7 [00:01<00:00,  5.87it/s]" } }, "2e4095fe2db646748c8591607bd5ed61": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "30f673ffbbda4513a7983e48f85faf0f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "bar_style": "success", "layout": "IPY_MODEL_74115e00d1ae4283a65c15296c98301c", "max": 18, "style": "IPY_MODEL_9c271a0037e34bb8bcebf034b5a1f5f4", "value": 18 } }, "3151d27de2d846c5b19bcb8a9d08ae16": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "34b5bee47f054b5ba4006c27fcd9550f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "374d2ef121f14afa97e3a3b137edb3c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_7140f187d2fc4f86bcb97781ca440722", "IPY_MODEL_c5b4a8bef4ba4d99acaaa2fe12bf3ad0", "IPY_MODEL_73e3bd766c1c4df8af50ec04bc814e3a" ], "layout": "IPY_MODEL_ff2f5097e39748ae89e3a63b98076644" } }, "3b6c2ac837ec4ec6b9261da27f75551d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "3bb2085675de4dd3839862d70744ae32": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "3ce60ee3de884e33a650704058f7f584": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "3e40e1b9172d4311bc114bc8defb2388": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "bar_style": "success", "layout": "IPY_MODEL_db929808e7354e168644f769bcedefb6", "max": 560, "style": "IPY_MODEL_5b48c408cbcd49e8a7d3ab81372d51c3", "value": 560 } }, "3e9d221fc338402c9071ab2381d844e1": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "layout": "IPY_MODEL_6311c631526f495684aeabba8c58b3d3", "outputs": [ { "data": { "text/html": "
Applying Weight Compression ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 794/7940:00:130:00:00\n
\n", "text/plain": "Applying Weight Compression \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[38;2;0;104;181m794/794\u001b[0m • \u001b[38;2;0;104;181m0:00:13\u001b[0m • \u001b[38;2;0;104;181m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "3ebc911ab2dd4b08aeb253bc5f5c931e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "3fd9743846414852ba02acbd2305c0d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "4037392b6c914bb0ab91e1b962dd9a21": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "41b59a9c903e4a4a8465d284f2bf8939": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "42fcde6f92ae44e0b4b8f7e0521623d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_8aa8c92e1421412bac985a5edfa9773b", "IPY_MODEL_30f673ffbbda4513a7983e48f85faf0f", "IPY_MODEL_03fb0f21f02b47598f2231aa6c7cb97e" ], "layout": "IPY_MODEL_f07146a9129947a0bfb9852d2b9e7ec3" } }, "43f8773233a440deaf2bfd122e8dd858": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "4532fe61ebbc48c991769d70b1895813": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "bar_style": "success", "layout": "IPY_MODEL_4a8ffea9ef9c402bbd5627b58bca8a6c", "max": 334643268, "style": "IPY_MODEL_c63e9ef45af742d88db5ebf908d70cec", "value": 334643268 } }, "455db030c58b49e6bfd8096553896b2b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "46032329c440472cb7fe39266706c6b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_6ee8e514e151460fa0c50852a0887531", "style": "IPY_MODEL_c2abfae2dfa344aba0513a34a466f6fd", "value": " 472/472 [00:00<00:00, 12.5kB/s]" } }, "4741a4b0a54f4c21b823690e6383d61e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "48e5f7d0b4334c5ba2c4ab65dfc16f06": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "492f4a453773422bbae9df34f1c6c456": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "bar_style": "success", "layout": "IPY_MODEL_9ebc8d7e135e4b1588b5f1c81c86a999", "max": 474, "style": "IPY_MODEL_197b552ac6664c8a95a454f5535b4270", "value": 474 } }, "49b7dfb83cf243158653c6ce8e198ca4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_options_labels": [ "CPU", "GPU.0", "GPU.1", "AUTO" ], "description": "Device:", "index": 0, "layout": "IPY_MODEL_d90cb4f682a442b3a33c73404a4e62ef", "style": "IPY_MODEL_2b9a35152a84452294a33d22a900536a" } }, "4a7160b5f4424ed9bea9f3d121d259d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "4a8ffea9ef9c402bbd5627b58bca8a6c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "4a926c1e58594d63bb7538ffa74b6ffd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "4b505900c1d845079be90ad03cd82d7c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_08360714832e4cc480eb25fadf15fcb2", "style": "IPY_MODEL_43f8773233a440deaf2bfd122e8dd858", "value": " 577/577 [00:00<00:00, 26.0kB/s]" } }, "4bc7dd1fd618428683e84fb60e034e45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "5105a2cde46543c6a49b69e2f3f6f549": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "bar_style": "success", "layout": "IPY_MODEL_1a207839a32044bba70da5974b97b1cf", "max": 1059962, "style": "IPY_MODEL_d085e12e600f47aa8b0e3860c9b06ee8", "value": 1059962 } }, "533d14b899b3404faa4020fe5fe80856": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_1127ab9b2024422e9e8e40c1e5064eb3", "style": "IPY_MODEL_f13a7fc3a204478192438338512a3aa8", "value": "unet/diffusion_pytorch_model.safetensors: 100%" } }, "53abf92b334a4912b02eb7cf3c96d15b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "53c40f03d3334600be00a7d2a888904a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "53ea89fe77c24884ad25c1f1ff0c5956": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "54a83679db7640f9ba22159e9041c8b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "561fe4a704424dedb9226bf6961b1618": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_164ce87df8374c5cbe1b4a8ceef1a941", "IPY_MODEL_f1a80f2b60ba41229f893c4ef507bc7a", "IPY_MODEL_4b505900c1d845079be90ad03cd82d7c" ], "layout": "IPY_MODEL_087c6f10acc4456889b7e36cb805ff9f" } }, "578ee60ec25e41a696162f54e814a53e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "583b33af9073438faf3cce2f749d7007": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "58ba3a1cd8774f6a9f1e8394d98ab283": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "description_width": "" } }, "59adf9ab8fd14ab7a8227164028eaaa9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "5aebc61448074b2e8c86e0a6e0f7e860": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "description_width": "" } }, "5b48c408cbcd49e8a7d3ab81372d51c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "description_width": "" } }, "5b8eab76b07547c4be2d9e2e06f8e766": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "5bad6e1c63a74931ba0404bf61115b8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "5ec73bcdbde2478095ea710133a4f58c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "description_width": "" } }, "61bef432dc9a471686dd059fb88438e9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "61fafb527a3e460d94314bd7237b7a8e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "621ad2bc11ce496c80d700c81b89fed1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_4037392b6c914bb0ab91e1b962dd9a21", "style": "IPY_MODEL_19f5aff228574c3d8a218c902242822c", "value": "tokenizer/merges.txt: 100%" } }, "623e0be542184b278e6e84e798cbba26": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "6276059fa3b44a50916c30a5b104cbb8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "6311c631526f495684aeabba8c58b3d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "64248e7855a847dfba568654cf6cc35e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "64c1e23c39f8449886df9eaf016d1969": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "659c3890923544a1b285b2eabd2288f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_80759150481a48d6b1ac96cd768b528a", "style": "IPY_MODEL_b43801ce58fc4a72b1011438deb0dd5b", "value": " 335M/335M [00:16<00:00, 22.2MB/s]" } }, "66c57b4b690c453b9f54e53ad04566dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "67d0b52077014fc7a95d5ead4353415b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "6961c880b8f841eaa5de4c1c033444b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "69d0a161f64840609f9964d1161e1533": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "6b044ff9d2e042d796cb2a340c370003": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "6b33fe2ea66a4bdca6009b8a84a89397": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "description_width": "" } }, "6bf444af9842418fbdd15db0eea10e7f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "bar_style": "success", "layout": "IPY_MODEL_03b70b2103ca4dcb837e921e4340ac2f", "max": 492265880, "style": "IPY_MODEL_e2753d2b97604ac8ab3587df80d53c5e", "value": 492265880 } }, "6ce67a8e6397481f9c40b531d456b8ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_fa12b3662c344c76891b1f96079429a2", "IPY_MODEL_5105a2cde46543c6a49b69e2f3f6f549", "IPY_MODEL_b1c3b03dba7a4c4dace9944a8f1ff132" ], "layout": "IPY_MODEL_e8b9215a53514adbb0a2e43b504c8765" } }, "6da38813eabf4e38b751d1e4a6a2529e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "bar_style": "success", "layout": "IPY_MODEL_944600f026c04f97bddf6bb2d3ade203", "max": 570, "style": "IPY_MODEL_5aebc61448074b2e8c86e0a6e0f7e860", "value": 570 } }, "6ee8e514e151460fa0c50852a0887531": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "6f269b8ae61641748c003310d08284a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "7140f187d2fc4f86bcb97781ca440722": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_c6b1ceca9d164a30b2f47eaf05c7645d", "style": "IPY_MODEL_a9089d7d14e9439dade895354e6c2de3", "value": "tokenizer_2/merges.txt: 100%" } }, "7144f4716de347eaa2d711b5b537805a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_235bb350dbc545e0a425eb4203834a98", "style": "IPY_MODEL_c6cab0696f964705a31d44d4c9b87543", "value": " 725/725 [00:00<00:00, 70.2kB/s]" } }, "718ca322c8714a02b13d6c950281c578": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "7297a22ca8a846c391dd07d47b455783": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "bar_style": "success", "layout": "IPY_MODEL_0b3164f20d944cbdbc98170d145b2039", "max": 472, "style": "IPY_MODEL_58ba3a1cd8774f6a9f1e8394d98ab283", "value": 472 } }, "73002d415d614011b6d6efb1256229e9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_9b0f282ed9a449da95f7bda1ace51e67", "IPY_MODEL_6bf444af9842418fbdd15db0eea10e7f", "IPY_MODEL_0ff1734b84da4584a1655e5be0c35ff7" ], "layout": "IPY_MODEL_9b26be19ccec4526af5972265e1ead74" } }, "73e3bd766c1c4df8af50ec04bc814e3a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_53abf92b334a4912b02eb7cf3c96d15b", "style": "IPY_MODEL_e11867b3851c4877ae3e09f796cf7f77", "value": " 525k/525k [00:00<00:00, 959kB/s]" } }, "74115e00d1ae4283a65c15296c98301c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "75dbade35b8c4cb69ff47be4ff590fae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "78c3d672130146f8803ab0d6487e0d3f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_99789828b1f44bfaa3efdb435cbf3ecc", "style": "IPY_MODEL_61bef432dc9a471686dd059fb88438e9", "value": "vae/diffusion_pytorch_model.safetensors: 100%" } }, "78e45ccde81d436291f81e1e6df2425e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_c0308b65c44f4718842d8513edffe71e", "style": "IPY_MODEL_09d5dea10e9c4d29b92711ae8c673c9a", "value": "text_encoder_2/config.json: 100%" } }, "797b3a271c4446fd8db91b994a95a400": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_621ad2bc11ce496c80d700c81b89fed1", "IPY_MODEL_d1e22d64d0664d129b6f6b27488f1123", "IPY_MODEL_8b51de321c93497ca770144772a60d0d" ], "layout": "IPY_MODEL_64248e7855a847dfba568654cf6cc35e" } }, "79a5cd1a0a3141eebbf7950ca0556078": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_66c57b4b690c453b9f54e53ad04566dc", "style": "IPY_MODEL_19a9efdbcd10487abd1aa22984e1b50b", "value": "vae/config.json: 100%" } }, "7c9fa4b4b37f46378ed7f3994cb48b2a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "7e56578dffc14dd7835c688d85adb51f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "description_width": "" } }, "8057d2f557ce41e68462cc988ea85125": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "80759150481a48d6b1ac96cd768b528a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "8350358fbe7f42c8b2743b6ae4ddfcb1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "description_width": "" } }, "8359b525ebf747dda6b9e8b84030d541": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "86057615088e466d83c593f5941e1c22": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "description_width": "" } }, "864b3d849f224266bbfa9a9af5a66d19": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_a52b7d631d884e11ae01e6b0a3415dbb", "IPY_MODEL_8839fbb698074c67a2aa03693489a066", "IPY_MODEL_0026226267524ab0acb07c76af89f576" ], "layout": "IPY_MODEL_b7f1ac0875c74678b5469028bc3bac44" } }, "86daacfe02b9403c84078075af3f8ac3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "877fe60b705449fa9081ce2b2a754038": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "878edb1ca0da4b94a798f76e3969666c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "8839fbb698074c67a2aa03693489a066": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "bar_style": "success", "layout": "IPY_MODEL_578ee60ec25e41a696162f54e814a53e", "max": 737, "style": "IPY_MODEL_f8c552ccbe61432cb1804a48aa0064da", "value": 737 } }, "88cd393150504d0c992190e68f04a931": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "8a5f6c47080a489aa3baff90eaba2701": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_cfe92404ff124245882869d98c4a628f", "style": "IPY_MODEL_264816be3ea84dde8b49510cd40dfba0", "value": "Loading pipeline components...: 100%" } }, "8a6885e5f2f14e5a92c7d5e07ffcfabb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_78c3d672130146f8803ab0d6487e0d3f", "IPY_MODEL_4532fe61ebbc48c991769d70b1895813", "IPY_MODEL_659c3890923544a1b285b2eabd2288f9" ], "layout": "IPY_MODEL_3ebc911ab2dd4b08aeb253bc5f5c931e" } }, "8aa8c92e1421412bac985a5edfa9773b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_da84d423e7aa44ef86ac80d54699f0ec", "style": "IPY_MODEL_cc8a744983d941bfaad4d1cadc5fd05a", "value": "Fetching 18 files: 100%" } }, "8b51de321c93497ca770144772a60d0d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_ab9ebdf0de4648e489ba0cb7ad224ee4", "style": "IPY_MODEL_5bad6e1c63a74931ba0404bf61115b8c", "value": " 525k/525k [00:00<00:00, 929kB/s]" } }, "8b7e56f8a93243f9a60d21d03762921d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "bar_style": "success", "layout": "IPY_MODEL_0b8aa6e61c424bcfa1d055ea4862837e", "max": 2778702976, "style": "IPY_MODEL_cf12f90487784ee9a6e92d5442deca56", "value": 2778702976 } }, "91f326c3b3804da2924b33437ad4debb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_b8cbb4ab1bbd4c1cad1bea0a81de5ee2", "style": "IPY_MODEL_3b6c2ac837ec4ec6b9261da27f75551d", "value": "unet/config.json: 100%" } }, "944600f026c04f97bddf6bb2d3ade203": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "99789828b1f44bfaa3efdb435cbf3ecc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "999d00cb9fd3459ba7ada97f22308636": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "99b49780f7f14a08a730161e193aa3ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "description_width": "" } }, "9aa0ab20c78649c9899478727d23315e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "9b0f282ed9a449da95f7bda1ace51e67": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_718ca322c8714a02b13d6c950281c578", "style": "IPY_MODEL_623e0be542184b278e6e84e798cbba26", "value": "text_encoder/model.safetensors: 100%" } }, "9b26be19ccec4526af5972265e1ead74": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "9c271a0037e34bb8bcebf034b5a1f5f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "description_width": "" } }, "9c3a567eaf964ed1a852a44a69eab130": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "9d9ee1317cec446ab21b9b18a7a3f244": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_e7e5479453a94fd9a99f8cd0a699f2dd", "style": "IPY_MODEL_86daacfe02b9403c84078075af3f8ac3", "value": "scheduler/scheduler_config.json: 100%" } }, "9ebc8d7e135e4b1588b5f1c81c86a999": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "a0a27b6359724b12912eb84c5bd22ebf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "a30941b13a9346758893d70b15f4192d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "a45110d54e72466388c92634bf630ef9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "description_width": "" } }, "a52b7d631d884e11ae01e6b0a3415dbb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_166ce4aebd444318b14ce13f228c0fd6", "style": "IPY_MODEL_1f21148e42984dcdabe567dd8d1d99c3", "value": "tokenizer/tokenizer_config.json: 100%" } }, "a5da49c3953545dfb0b94b98fab095c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_78e45ccde81d436291f81e1e6df2425e", "IPY_MODEL_6da38813eabf4e38b751d1e4a6a2529e", "IPY_MODEL_b2e98c36c19645a58650a14581584ff2" ], "layout": "IPY_MODEL_7c9fa4b4b37f46378ed7f3994cb48b2a" } }, "a5ddee2456c04d07911dd7ccd76a57ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "bar_style": "success", "layout": "IPY_MODEL_baf22e3088a84360978ebb75c70823ac", "max": 460, "style": "IPY_MODEL_1fb361e7a29443a0ab521b20789dc61b", "value": 460 } }, "a703833052db437b82c84335a3efcbbe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "bar_style": "success", "layout": "IPY_MODEL_59adf9ab8fd14ab7a8227164028eaaa9", "max": 20, "style": "IPY_MODEL_6b33fe2ea66a4bdca6009b8a84a89397", "value": 20 } }, "a7a23981677d4dbbb288bf0c39a4c189": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "a8cdc00189e64e3993432d0e324790cb": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "layout": "IPY_MODEL_e4338485619b4a94bc238ddd3b19b50c", "outputs": [ { "data": { "text/html": "
Applying Weight Compression ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 151/1510:00:010:00:00\n
\n", "text/plain": "Applying Weight Compression \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[38;2;0;104;181m151/151\u001b[0m • \u001b[38;2;0;104;181m0:00:01\u001b[0m • \u001b[38;2;0;104;181m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "a9089d7d14e9439dade895354e6c2de3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "ab9ebdf0de4648e489ba0cb7ad224ee4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "abbda547876f47079d9ab6c377101f88": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "layout": "IPY_MODEL_c00de576524f4831983a9a51a94edbe2", "outputs": [ { "data": { "text/html": "
Applying Weight Compression ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 195/1950:00:030:00:00\n
\n", "text/plain": "Applying Weight Compression \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[38;2;0;104;181m195/195\u001b[0m • \u001b[38;2;0;104;181m0:00:03\u001b[0m • \u001b[38;2;0;104;181m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "af243c5eeb3c4d1bb965fe8b48033199": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "affe5a1a9b4042e19b3cb211789d6fb1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_5b8eab76b07547c4be2d9e2e06f8e766", "style": "IPY_MODEL_03545c4ca8314d77b931e6455e4efd4e", "value": " 602/602 [00:00<00:00, 39.0kB/s]" } }, "b1c3b03dba7a4c4dace9944a8f1ff132": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_db1cf49abd7d418eb09473eb93fb641c", "style": "IPY_MODEL_cdacdaaf630a4bf184c5f4d09907a814", "value": " 1.06M/1.06M [00:00<00:00, 1.49MB/s]" } }, "b26cbe9a0e3b41d08e870ef68f4a2090": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "description_width": "" } }, "b2e98c36c19645a58650a14581584ff2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_b557beadca674a278fe1a9ffa1be0572", "style": "IPY_MODEL_3bb2085675de4dd3839862d70744ae32", "value": " 570/570 [00:00<00:00, 17.6kB/s]" } }, "b2f4e8b69bef4b66b406125e86bc4182": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_53ea89fe77c24884ad25c1f1ff0c5956", "style": "IPY_MODEL_eea5d9779ea94b2f8902c95b82fb5870", "value": " 1.06M/1.06M [00:00<00:00, 1.30MB/s]" } }, "b43801ce58fc4a72b1011438deb0dd5b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "b4850a49ecfb4205a880c4611fc7a618": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "b557beadca674a278fe1a9ffa1be0572": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "b60f6f5e1101405993fcd7af42b0e4d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_a0a27b6359724b12912eb84c5bd22ebf", "style": "IPY_MODEL_999d00cb9fd3459ba7ada97f22308636", "value": " 474/474 [00:00<00:00, 15.1kB/s]" } }, "b65e84528862407ba0606389cbedb288": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "bar_style": "success", "layout": "IPY_MODEL_6b044ff9d2e042d796cb2a340c370003", "max": 1059962, "style": "IPY_MODEL_99b49780f7f14a08a730161e193aa3ed", "value": 1059962 } }, "b6b2f46fac8b412eb3fdd70807f564d6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "bar_style": "success", "layout": "IPY_MODEL_08cc30de01df48c9b7c66a465a0cdb31", "max": 725, "style": "IPY_MODEL_1463c6aa33054bb48d33a04da42b38b1", "value": 725 } }, "b7f1ac0875c74678b5469028bc3bac44": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "b84e44c96daf4e3590e466b8236e73df": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "b8cbb4ab1bbd4c1cad1bea0a81de5ee2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "ba1f9ae4c3e4429cb0e1eb200821acda": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_eee6aafac71348349a353ec906b36874", "style": "IPY_MODEL_69d0a161f64840609f9964d1161e1533", "value": " 20/20 [03:14<00:00,  9.85s/it]" } }, "baf22e3088a84360978ebb75c70823ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "bb0302c46c1245e18cafab864d235030": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_c609c81563e1437ea5232c11a75ffdb5", "IPY_MODEL_7297a22ca8a846c391dd07d47b455783", "IPY_MODEL_46032329c440472cb7fe39266706c6b5" ], "layout": "IPY_MODEL_1797a2d9019f4867a5fc040a292eb5b2" } }, "bd5587cb38aa4178998a308226267423": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "bar_style": "success", "layout": "IPY_MODEL_eb8a6f11020745fb9431296dc6d82808", "max": 10270077736, "style": "IPY_MODEL_a45110d54e72466388c92634bf630ef9", "value": 10270077736 } }, "be7529e1fec54b178b1147626a7a2d6d": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "layout": "IPY_MODEL_b84e44c96daf4e3590e466b8236e73df", "outputs": [ { "data": { "text/html": "
Applying Weight Compression ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 74/740:00:000:00:00\n
\n", "text/plain": "Applying Weight Compression \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[38;2;0;104;181m74/74\u001b[0m • \u001b[38;2;0;104;181m0:00:00\u001b[0m • \u001b[38;2;0;104;181m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "bf704babfc54455c9e8b59fd69bb2944": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "c00de576524f4831983a9a51a94edbe2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "c0308b65c44f4718842d8513edffe71e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "c035548b3e4e4d628b1cdfeb2c23ee8b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_91f326c3b3804da2924b33437ad4debb", "IPY_MODEL_f072206ce43048d3ab0d02e37a553b11", "IPY_MODEL_154eebd3c4404fa0b064ad7cda164da6" ], "layout": "IPY_MODEL_cd2ae10748a342e4a8b3d6deb946aa5e" } }, "c0aef47f7cbd4efd9c715c8d01940cf4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "c1911eb51d894d769e648c7dc99606d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "c29f6068cec3412681633b5e1db2a50d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_c42c75ac13e344a4835bc3d048ba262b", "style": "IPY_MODEL_64c1e23c39f8449886df9eaf016d1969", "value": " 10.3G/10.3G [07:37<00:00, 22.9MB/s]" } }, "c2abfae2dfa344aba0513a34a466f6fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "c38b4aa371124d89aa46001190ffbc26": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "c42c75ac13e344a4835bc3d048ba262b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "c53fd516fab646bb9cefccb5e7a9ad11": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "c59ff1d6a9494c20bd886981b1b17693": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_455db030c58b49e6bfd8096553896b2b", "style": "IPY_MODEL_c656c1585b0249dbadced1def951183f", "value": "tokenizer_2/tokenizer_config.json: 100%" } }, "c5b4a8bef4ba4d99acaaa2fe12bf3ad0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "bar_style": "success", "layout": "IPY_MODEL_bf704babfc54455c9e8b59fd69bb2944", "max": 524619, "style": "IPY_MODEL_2969d4a7294942c3a0ea0f92075f0b3b", "value": 524619 } }, "c609c81563e1437ea5232c11a75ffdb5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_d4e9dbac1a904f2f939cd82acf3739b8", "style": "IPY_MODEL_c38b4aa371124d89aa46001190ffbc26", "value": "tokenizer/special_tokens_map.json: 100%" } }, "c63e9ef45af742d88db5ebf908d70cec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "description_width": "" } }, "c656c1585b0249dbadced1def951183f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "c6b1ceca9d164a30b2f47eaf05c7645d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "c6cab0696f964705a31d44d4c9b87543": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "c7b8429fc0ae42f1beeef863c5e7b0df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_34b5bee47f054b5ba4006c27fcd9550f", "style": "IPY_MODEL_53c40f03d3334600be00a7d2a888904a", "value": "tokenizer_2/special_tokens_map.json: 100%" } }, "c8e2feb78aef4d59b0e1a69e07abc897": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_1301086c42e3401c9d1a40fd1c40e696", "IPY_MODEL_3e40e1b9172d4311bc114bc8defb2388", "IPY_MODEL_0f934f58c3af4430b430834315eaf9c5" ], "layout": "IPY_MODEL_e6f61003313945e5820e07a711171a4b" } }, "caab1f6abdce4d428e83937e25bd349f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_3ce60ee3de884e33a650704058f7f584", "style": "IPY_MODEL_4741a4b0a54f4c21b823690e6383d61e", "value": "text_encoder_2/model.safetensors: 100%" } }, "cac1dedfe7b74f5c81532419e1de8b63": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_caab1f6abdce4d428e83937e25bd349f", "IPY_MODEL_8b7e56f8a93243f9a60d21d03762921d", "IPY_MODEL_d35da8984ddd470dae0526a53bedbdcf" ], "layout": "IPY_MODEL_0e90994e8dc04df993298d5504536d64" } }, "cc8a744983d941bfaad4d1cadc5fd05a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "cd2ae10748a342e4a8b3d6deb946aa5e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "cdacdaaf630a4bf184c5f4d09907a814": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "cf12f90487784ee9a6e92d5442deca56": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "description_width": "" } }, "cfdfd279c30c43f0b325bfe4c4e34c51": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_c7b8429fc0ae42f1beeef863c5e7b0df", "IPY_MODEL_a5ddee2456c04d07911dd7ccd76a57ce", "IPY_MODEL_fde0869343d44010ae5131bcc0546fcf" ], "layout": "IPY_MODEL_f120898bc8714c76b070dad01c68c002" } }, "cfe92404ff124245882869d98c4a628f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "d085e12e600f47aa8b0e3860c9b06ee8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "description_width": "" } }, "d1e22d64d0664d129b6f6b27488f1123": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "bar_style": "success", "layout": "IPY_MODEL_b4850a49ecfb4205a880c4611fc7a618", "max": 524619, "style": "IPY_MODEL_5ec73bcdbde2478095ea710133a4f58c", "value": 524619 } }, "d35da8984ddd470dae0526a53bedbdcf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_88cd393150504d0c992190e68f04a931", "style": "IPY_MODEL_4bc7dd1fd618428683e84fb60e034e45", "value": " 2.78G/2.78G [02:03<00:00, 22.7MB/s]" } }, "d4e9dbac1a904f2f939cd82acf3739b8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "d554c2f8859e41a3a5ffa6818f100cc0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "d90cb4f682a442b3a33c73404a4e62ef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "da84d423e7aa44ef86ac80d54699f0ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "db1cf49abd7d418eb09473eb93fb641c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "db929808e7354e168644f769bcedefb6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "dd0abd9af82a4b61af61a187f6c72169": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "dddf8b339a974e08a623c86fd373b6de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "bar_style": "success", "layout": "IPY_MODEL_8057d2f557ce41e68462cc988ea85125", "max": 602, "style": "IPY_MODEL_8350358fbe7f42c8b2743b6ae4ddfcb1", "value": 602 } }, "e11867b3851c4877ae3e09f796cf7f77": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "e24d4009f24b4bbc829797e36c6ec356": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_8a5f6c47080a489aa3baff90eaba2701", "IPY_MODEL_1ffc4883a81d421ab38f9f8140151860", "IPY_MODEL_2cac655200f04814ba646211b0f72890" ], "layout": "IPY_MODEL_f721f616344345d095a8f4e40d9892d1" } }, "e2753d2b97604ac8ab3587df80d53c5e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "description_width": "" } }, "e42411c35bc74b19a9ef8dfa5796bddb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_79a5cd1a0a3141eebbf7950ca0556078", "IPY_MODEL_dddf8b339a974e08a623c86fd373b6de", "IPY_MODEL_affe5a1a9b4042e19b3cb211789d6fb1" ], "layout": "IPY_MODEL_877fe60b705449fa9081ce2b2a754038" } }, "e4338485619b4a94bc238ddd3b19b50c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "e6f61003313945e5820e07a711171a4b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "e7e5479453a94fd9a99f8cd0a699f2dd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "e8b9215a53514adbb0a2e43b504c8765": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "eb8a6f11020745fb9431296dc6d82808": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "ec1ae1ad7031449e98cfd3692a944ce3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "ecbcc490ee394fefa2bfeee0a88763e0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "ecc600aff09040a2a0efe2266894a449": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_c1911eb51d894d769e648c7dc99606d8", "style": "IPY_MODEL_75dbade35b8c4cb69ff47be4ff590fae", "value": "100%" } }, "eea5d9779ea94b2f8902c95b82fb5870": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "eee6aafac71348349a353ec906b36874": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "f07146a9129947a0bfb9852d2b9e7ec3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "f072206ce43048d3ab0d02e37a553b11": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "bar_style": "success", "layout": "IPY_MODEL_22c9b3cc6b424505a920a1deef65b91a", "max": 1675, "style": "IPY_MODEL_7e56578dffc14dd7835c688d85adb51f", "value": 1675 } }, "f120898bc8714c76b070dad01c68c002": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "f13a7fc3a204478192438338512a3aa8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "f1a80f2b60ba41229f893c4ef507bc7a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "bar_style": "success", "layout": "IPY_MODEL_fb8d32f154cb4b2dbc741a1947d2d79d", "max": 577, "style": "IPY_MODEL_b26cbe9a0e3b41d08e870ef68f4a2090", "value": 577 } }, "f3a63877510043ebb3f7c0b5b626da57": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_9aa0ab20c78649c9899478727d23315e", "style": "IPY_MODEL_583b33af9073438faf3cce2f749d7007", "value": "tokenizer/vocab.json: 100%" } }, "f721f616344345d095a8f4e40d9892d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "f8c552ccbe61432cb1804a48aa0064da": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "description_width": "" } }, "fa12b3662c344c76891b1f96079429a2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_d554c2f8859e41a3a5ffa6818f100cc0", "style": "IPY_MODEL_6f269b8ae61641748c003310d08284a5", "value": "tokenizer_2/vocab.json: 100%" } }, "fb8d32f154cb4b2dbc741a1947d2d79d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "fbc344333dab426482525a73b13832cc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_9d9ee1317cec446ab21b9b18a7a3f244", "IPY_MODEL_492f4a453773422bbae9df34f1c6c456", "IPY_MODEL_b60f6f5e1101405993fcd7af42b0e4d1" ], "layout": "IPY_MODEL_4a7160b5f4424ed9bea9f3d121d259d6" } }, "fde0869343d44010ae5131bcc0546fcf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "layout": "IPY_MODEL_61fafb527a3e460d94314bd7237b7a8e", "style": "IPY_MODEL_ecbcc490ee394fefa2bfeee0a88763e0", "value": " 460/460 [00:00<00:00, 42.9kB/s]" } }, "ff2f5097e39748ae89e3a63b98076644": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }