{ "cells": [ { "attachments": {}, "cell_type": "markdown", "id": "7d0d9eba-7944-49b4-8b6b-6e05a02dfd02", "metadata": {}, "source": [ "# Image Generation with Stable Diffusion and IP-Adapter\n", "\n", "[IP-Adapter](https://hf.co/papers/2308.06721) is an effective and lightweight adapter that adds image prompting capabilities to a diffusion model. This adapter works by decoupling the cross-attention layers of the image and text features. All the other model components are frozen and only the embedded image features in the UNet are trained. As a result, IP-Adapter files are typically only ~100MBs.\n", "![ip-adapter-pipe.png](https://huggingface.co/h94/IP-Adapter/resolve/main/fig1.png)\n", "\n", "In this tutorial, we will consider how to convert and run Stable Diffusion pipeline with loading IP-Adapter. We will use [stable-diffusion-v1.5](https://huggingface.co/runwayml/stable-diffusion-v1-5) as base model and apply official [IP-Adapter](https://huggingface.co/h94/IP-Adapter) weights. Also for speedup generation process we will use [LCM-LoRA](https://huggingface.co/latent-consistency/lcm-lora-sdv1-5)\n", "\n" ] }, { "attachments": {}, "cell_type": "markdown", "id": "a754d3e8", "metadata": {}, "source": [ "#### Table of contents:\n", "\n", "- [Prerequisites](#Prerequisites)\n", "- [Prepare Diffusers pipeline](#Prepare-Diffusers-pipeline)\n", "- [Convert PyTorch models](#Convert-PyTorch-models)\n", " - [Image Encoder](#Image-Encoder)\n", " - [U-net](#U-net)\n", " - [VAE Encoder and Decoder](#VAE-Encoder-and-Decoder)\n", " - [Text Encoder](#Text-Encoder)\n", "- [Prepare OpenVINO inference pipeline](#Prepare-OpenVINO-inference-pipeline)\n", "- [Run model inference](#Run-model-inference)\n", " - [Select inference device](#Select-inference-device)\n", " - [Generation image variation](#Generation-image-variation)\n", " - [Generation conditioned by image and text](#Generation-conditioned-by-image-and-text)\n", " - [Generation image blending](#Generation-image-blending)\n", "- [Interactive demo](#Interactive-demo)\n", "\n" ] }, { "attachments": {}, "cell_type": "markdown", "id": "37460b75-dea3-4d6b-a068-2b5c70af9298", "metadata": {}, "source": [ "## Prerequisites\n", "[back to top ⬆️](#Table-of-contents:)" ] }, { "cell_type": "code", "execution_count": 1, "id": "04547ab5-2262-44c6-ba11-fa9d21c61d0b", "metadata": {}, "outputs": [], "source": [ "import platform\n", "\n", "%pip install -q \"torch>=2.1\" transformers accelerate diffusers \"openvino>=2023.3.0\" \"gradio>=4.19\" opencv-python \"peft==0.6.2\" --extra-index-url https://download.pytorch.org/whl/cpu\n", "\n", "if platform.system() != \"Windows\":\n", " %pip install -q \"matplotlib>=3.4\"\n", "else:\n", " %pip install -q \"matplotlib>=3.4,<3.7\"" ] }, { "attachments": {}, "cell_type": "markdown", "id": "c1293390-38a5-4ab5-8bec-7a7145989fb6", "metadata": {}, "source": [ "## Prepare Diffusers pipeline\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "First of all, we should collect all components of our pipeline together. To work with Stable Diffusion, we will use HuggingFace [Diffusers](https://github.com/huggingface/diffusers) library. To experiment with Stable Diffusion models, Diffusers exposes the [`StableDiffusionPipeline`](https://huggingface.co/docs/diffusers/using-diffusers/conditional_image_generation) similar to the [other Diffusers pipelines](https://huggingface.co/docs/diffusers/api/pipelines/overview). Additionally, the pipeline supports load adapters that extend Stable Diffusion functionality such as [Low-Rank Adaptation (LoRA)](https://huggingface.co/papers/2106.09685), [PEFT](https://huggingface.co/docs/diffusers/main/en/tutorials/using_peft_for_inference), [IP-Adapter](https://ip-adapter.github.io/), and [Textual Inversion](https://textual-inversion.github.io/). You can find more information about supported adapters in [diffusers documentation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters).\n", "\n", "In this tutorial, we will focus on ip-adapter. IP-Adapter can be integrated into diffusion pipeline using `load_ip_adapter` method. IP-Adapter allows you to use both image and text to condition the image generation process. For adjusting the text prompt and image prompt condition ratio, we can use `set_ip_adapter_scale()` method. If you only use the image prompt, you should set the scale to 1.0. You can lower the scale to get more generation diversity, but it’ll be less aligned with the prompt. scale=0.5 can achieve good results when you use both text and image prompts.\n", "\n", "As discussed before, we will also use LCM LoRA for speeding generation process. You can find more information about LCM LoRA in this [notebook](../latent-consistency-models-image-generation/lcm-lora-controlnet.ipynb). For applying LCM LoRA, we should use `load_lora_weights` method. Additionally, LCM requires using LCMScheduler for efficient generation." ] }, { "cell_type": "code", "execution_count": 2, "id": "1d51d006-1568-437e-a240-11eb86a6de36", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "243ccb21b5ef41029f425a821ad602d0", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Loading pipeline components...: 0%| | 0/7 [00:00= 64:\n" ] } ], "source": [ "UNET_PATH = models_dir / \"unet.xml\"\n", "\n", "\n", "if not UNET_PATH.exists():\n", " inputs = {\n", " \"sample\": torch.randn((2, 4, 64, 64)),\n", " \"timestep\": torch.tensor(1),\n", " \"encoder_hidden_states\": torch.randn((2, 77, 768)),\n", " \"added_cond_kwargs\": {\"image_embeds\": torch.ones((2, 1024))},\n", " }\n", "\n", " with torch.no_grad():\n", " ov_model = ov.convert_model(unet, example_input=inputs)\n", " # dictionary with added_cond_kwargs will be decomposed during conversion\n", " # in some cases decomposition may lead to losing data type and shape information\n", " # We need to recover it manually after the conversion\n", " ov_model.inputs[-1].get_node().set_element_type(ov.Type.f32)\n", " ov_model.validate_nodes_and_infer_types()\n", " ov.save_model(ov_model, UNET_PATH)\n", " del ov_model\n", " cleanup_torchscript_cache()\n", "\n", "del unet\n", "\n", "gc.collect();" ] }, { "attachments": {}, "cell_type": "markdown", "id": "1952caf1-85c6-4033-b525-28e08dd294e6", "metadata": {}, "source": [ "### VAE Encoder and Decoder\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "The VAE model has two parts, an encoder and a decoder. The encoder is used to convert the image into a low dimensional latent representation, which will serve as the input to the U-Net model. The decoder, conversely, transforms the latent representation back into an image.\n", "\n", "During latent diffusion training, the encoder is used to get the latent representations (latents) of the images for the forward diffusion process, which applies more and more noise at each step. During inference, the denoised latents generated by the reverse diffusion process are converted back into images using the VAE decoder. When you run inference for Text-to-Image, there is no initial image as a starting point. You can skip this step and directly generate initial random noise. VAE encoder is used in Image-to-Image generation pipelines for creating initial latent state based on input image. The main difference between IP-Adapter encoded image and VAE encoded image that the first is used as addition into input prompt making connection between text and image during conditioning, while the second used as Unet sample initialization and does not give guarantee preserving some attributes of initial image. It is still can be useful to use both ip-adapter and VAE image in pipeline, we can discuss it in inference examples." ] }, { "cell_type": "code", "execution_count": 5, "id": "c289ec9d-0d97-4529-b1ad-29e2f705785e", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/ea/work/my_optimum_intel/optimum_env/lib/python3.8/site-packages/torch/jit/_trace.py:1093: TracerWarning: Trace had nondeterministic nodes. Did you forget call .eval() on your model? Nodes:\n", "\t%2494 : Float(1, 4, 64, 64, strides=[16384, 4096, 64, 1], requires_grad=0, device=cpu) = aten::randn(%2488, %2489, %2490, %2491, %2492, %2493) # /home/ea/work/my_optimum_intel/optimum_env/lib/python3.8/site-packages/diffusers/utils/torch_utils.py:80:0\n", "This may cause errors in trace checking. To disable trace checking, pass check_trace=False to torch.jit.trace()\n", " _check_trace(\n", "/home/ea/work/my_optimum_intel/optimum_env/lib/python3.8/site-packages/torch/jit/_trace.py:1093: TracerWarning: Output nr 1. of the traced function does not match the corresponding output of the Python function. Detailed error:\n", "Tensor-likes are not close!\n", "\n", "Mismatched elements: 10403 / 16384 (63.5%)\n", "Greatest absolute difference: 0.0013475418090820312 at index (0, 2, 0, 63) (up to 1e-05 allowed)\n", "Greatest relative difference: 0.006741523467531582 at index (0, 3, 63, 59) (up to 1e-05 allowed)\n", " _check_trace(\n" ] } ], "source": [ "VAE_DECODER_PATH = models_dir / \"vae_decoder.xml\"\n", "VAE_ENCODER_PATH = models_dir / \"vae_encoder.xml\"\n", "\n", "if not VAE_DECODER_PATH.exists():\n", "\n", " class VAEDecoderWrapper(torch.nn.Module):\n", " def __init__(self, vae):\n", " super().__init__()\n", " self.vae = vae\n", "\n", " def forward(self, latents):\n", " return self.vae.decode(latents)\n", "\n", " vae_decoder = VAEDecoderWrapper(vae)\n", " with torch.no_grad():\n", " ov_model = ov.convert_model(vae_decoder, example_input=torch.ones([1, 4, 64, 64]))\n", " ov.save_model(ov_model, VAE_DECODER_PATH)\n", " del ov_model\n", " cleanup_torchscript_cache()\n", " del vae_decoder\n", "\n", "if not VAE_ENCODER_PATH.exists():\n", "\n", " class VAEEncoderWrapper(torch.nn.Module):\n", " def __init__(self, vae):\n", " super().__init__()\n", " self.vae = vae\n", "\n", " def forward(self, image):\n", " return self.vae.encode(x=image)[\"latent_dist\"].sample()\n", "\n", " vae_encoder = VAEEncoderWrapper(vae)\n", " vae_encoder.eval()\n", " image = torch.zeros((1, 3, 512, 512))\n", " with torch.no_grad():\n", " ov_model = ov.convert_model(vae_encoder, example_input=image)\n", " ov.save_model(ov_model, VAE_ENCODER_PATH)\n", " del ov_model\n", " cleanup_torchscript_cache()\n", "\n", "del vae\n", "gc.collect();" ] }, { "attachments": {}, "cell_type": "markdown", "id": "8041d911-892b-474e-85f0-5a5300b6bab0", "metadata": {}, "source": [ "### Text Encoder\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "The text-encoder is responsible for transforming the input prompt, for example, \"a photo of an astronaut riding a horse\" into an embedding space that can be understood by the U-Net. It is usually a simple transformer-based encoder that maps a sequence of input tokens to a sequence of latent text embeddings.\n", "\n", "The input of the text encoder is tensor `input_ids`, which contains indexes of tokens from text processed by the tokenizer and padded to the maximum length accepted by the model. Model outputs are two tensors: `last_hidden_state` - hidden state from the last MultiHeadAttention layer in the model and `pooler_out` - pooled output for whole model hidden states." ] }, { "cell_type": "code", "execution_count": 6, "id": "079023ed-8ea7-4d0c-bbdd-03c915045322", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/ea/work/my_optimum_intel/optimum_env/lib/python3.8/site-packages/transformers/modeling_attn_mask_utils.py:86: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n", " if input_shape[-1] > 1 or self.sliding_window is not None:\n", "/home/ea/work/my_optimum_intel/optimum_env/lib/python3.8/site-packages/transformers/modeling_attn_mask_utils.py:162: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n", " if past_key_values_length > 0:\n", "/home/ea/work/my_optimum_intel/optimum_env/lib/python3.8/site-packages/transformers/models/clip/modeling_clip.py:281: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n", " if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):\n" ] } ], "source": [ "TEXT_ENCODER_PATH = models_dir / \"text_encoder.xml\"\n", "\n", "if not TEXT_ENCODER_PATH.exists():\n", " with torch.no_grad():\n", " ov_model = ov.convert_model(\n", " text_encoder,\n", " example_input=torch.ones([1, 77], dtype=torch.long),\n", " input=[\n", " (1, 77),\n", " ],\n", " )\n", " ov.save_model(ov_model, TEXT_ENCODER_PATH)\n", " del ov_model\n", " cleanup_torchscript_cache()\n", " tokenizer.save_pretrained(models_dir / \"tokenizer\")\n", "\n", "del text_encoder\n", "del tokenizer" ] }, { "attachments": {}, "cell_type": "markdown", "id": "465f1701-690d-4d1b-b200-69498d44e53c", "metadata": {}, "source": [ "## Prepare OpenVINO inference pipeline\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "As shown on diagram below, the only difference between original Stable Diffusion pipeline and IP-Adapter Stable Diffusion pipeline only in additional conditioning by image processed via Image Encoder. \n", "![pipeline.png](https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/1afc2ca6-e7ea-4c9e-a2d3-1173346dd9d6)\n", "\n", "The stable diffusion model with ip-adapter takes a latent image representation, a text prompt is transformed to text embeddings via CLIP text encoder and ip-adapter image is transformed to image embeddings via CLIP Image Encoder. Next, the U-Net iteratively *denoises* the random latent image representations while being conditioned on the text and image embeddings. The output of the U-Net, being the noise residual, is used to compute a denoised latent image representation via a scheduler algorithm.\n", "\n", "The *denoising* process is repeated given number of times (by default 4 taking into account that we use LCM) to step-by-step retrieve better latent image representations.\n", "When complete, the latent image representation is decoded by the decoder part of the variational auto encoder (VAE)." ] }, { "cell_type": "code", "execution_count": 7, "id": "ca9a443a-b2b5-40ff-9384-14fb1ce6563e", "metadata": {}, "outputs": [], "source": [ "import inspect\n", "from typing import List, Optional, Union, Dict, Tuple\n", "import numpy as np\n", "\n", "import PIL\n", "import cv2\n", "import torch\n", "\n", "from transformers import CLIPTokenizer, CLIPImageProcessor\n", "from diffusers import DiffusionPipeline\n", "from diffusers.pipelines.stable_diffusion.pipeline_output import (\n", " StableDiffusionPipelineOutput,\n", ")\n", "from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler\n", "\n", "\n", "def scale_fit_to_window(dst_width: int, dst_height: int, image_width: int, image_height: int):\n", " \"\"\"\n", " Preprocessing helper function for calculating image size for resize with peserving original aspect ratio\n", " and fitting image to specific window size\n", "\n", " Parameters:\n", " dst_width (int): destination window width\n", " dst_height (int): destination window height\n", " image_width (int): source image width\n", " image_height (int): source image height\n", " Returns:\n", " result_width (int): calculated width for resize\n", " result_height (int): calculated height for resize\n", " \"\"\"\n", " im_scale = min(dst_height / image_height, dst_width / image_width)\n", " return int(im_scale * image_width), int(im_scale * image_height)\n", "\n", "\n", "def randn_tensor(\n", " shape: Union[Tuple, List],\n", " generator: Optional[Union[List[\"torch.Generator\"], \"torch.Generator\"]] = None,\n", " dtype: Optional[\"torch.dtype\"] = None,\n", "):\n", " \"\"\"A helper function to create random tensors on the desired `device` with the desired `dtype`. When\n", " passing a list of generators, you can seed each batch size individually.\n", "\n", " \"\"\"\n", " batch_size = shape[0]\n", " rand_device = torch.device(\"cpu\")\n", "\n", " # make sure generator list of length 1 is treated like a non-list\n", " if isinstance(generator, list) and len(generator) == 1:\n", " generator = generator[0]\n", "\n", " if isinstance(generator, list):\n", " shape = (1,) + shape[1:]\n", " latents = [torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) for i in range(batch_size)]\n", " latents = torch.cat(latents, dim=0)\n", " else:\n", " latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype)\n", "\n", " return latents\n", "\n", "\n", "def preprocess(image: PIL.Image.Image, height, width):\n", " \"\"\"\n", " Image preprocessing function. Takes image in PIL.Image format, resizes it to keep aspect ration and fits to model input window 512x512,\n", " then converts it to np.ndarray and adds padding with zeros on right or bottom side of image (depends from aspect ratio), after that\n", " converts data to float32 data type and change range of values from [0, 255] to [-1, 1], finally, converts data layout from planar NHWC to NCHW.\n", " The function returns preprocessed input tensor and padding size, which can be used in postprocessing.\n", "\n", " Parameters:\n", " image (PIL.Image.Image): input image\n", " Returns:\n", " image (np.ndarray): preprocessed image tensor\n", " meta (Dict): dictionary with preprocessing metadata info\n", " \"\"\"\n", " src_width, src_height = image.size\n", " dst_width, dst_height = scale_fit_to_window(height, width, src_width, src_height)\n", " image = np.array(image.resize((dst_width, dst_height), resample=PIL.Image.Resampling.LANCZOS))[None, :]\n", " pad_width = width - dst_width\n", " pad_height = height - dst_height\n", " pad = ((0, 0), (0, pad_height), (0, pad_width), (0, 0))\n", " image = np.pad(image, pad, mode=\"constant\")\n", " image = image.astype(np.float32) / 255.0\n", " image = 2.0 * image - 1.0\n", " image = image.transpose(0, 3, 1, 2)\n", " return image, {\"padding\": pad, \"src_width\": src_width, \"src_height\": src_height}\n", "\n", "\n", "class OVStableDiffusionPipeline(DiffusionPipeline):\n", " def __init__(\n", " self,\n", " vae_decoder: ov.Model,\n", " text_encoder: ov.Model,\n", " tokenizer: CLIPTokenizer,\n", " unet: ov.Model,\n", " scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],\n", " image_encoder: ov.Model,\n", " feature_extractor: CLIPImageProcessor,\n", " vae_encoder: ov.Model,\n", " ):\n", " \"\"\"\n", " Pipeline for text-to-image generation using Stable Diffusion and IP-Adapter with OpenVINO\n", " Parameters:\n", " vae_decoder (ov.Model):\n", " Variational Auto-Encoder (VAE) Model to decode images to and from latent representations.\n", " text_encoder (ov.Model):CLIPImageProcessor\n", " Frozen text-encoder. Stable Diffusion uses the text portion of\n", " [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically\n", " the clip-vit-large-patch14(https://huggingface.co/openai/clip-vit-large-patch14) variant.\n", " tokenizer (CLIPTokenizer):\n", " Tokenizer of class CLIPTokenizer(https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).\n", " unet (ov.Model): Conditional U-Net architecture to denoise the encoded image latents.\n", " scheduler (SchedulerMixin):\n", " A scheduler to be used in combination with unet to denoise the encoded image latents\n", " image_encoder (ov.Model):\n", " IP-Adapter image encoder for embedding input image as input prompt for generation\n", " feature_extractor :\n", " \"\"\"\n", " super().__init__()\n", " self.scheduler = scheduler\n", " self.vae_decoder = vae_decoder\n", " self.image_encoder = image_encoder\n", " self.text_encoder = text_encoder\n", " self.unet = unet\n", " self.height = 512\n", " self.width = 512\n", " self.vae_scale_factor = 8\n", " self.tokenizer = tokenizer\n", " self.vae_encoder = vae_encoder\n", " self.feature_extractor = feature_extractor\n", "\n", " def __call__(\n", " self,\n", " prompt: Union[str, List[str]],\n", " ip_adapter_image: PIL.Image.Image,\n", " image: PIL.Image.Image = None,\n", " num_inference_steps: Optional[int] = 4,\n", " negative_prompt: Union[str, List[str]] = None,\n", " guidance_scale: Optional[float] = 0.5,\n", " eta: Optional[float] = 0.0,\n", " output_type: Optional[str] = \"pil\",\n", " height: Optional[int] = None,\n", " width: Optional[int] = None,\n", " generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,\n", " latents: Optional[torch.FloatTensor] = None,\n", " strength: float = 1.0,\n", " **kwargs,\n", " ):\n", " \"\"\"\n", " Function invoked when calling the pipeline for generation.\n", " Parameters:\n", " prompt (str or List[str]):\n", " The prompt or prompts to guide the image generation.\n", " image (PIL.Image.Image, *optional*, None):\n", " Intinal image for generation.\n", " num_inference_steps (int, *optional*, defaults to 50):\n", " The number of denoising steps. More denoising steps usually lead to a higher quality image at the\n", " expense of slower inference.\n", " negative_prompt (str or List[str]):https://user-images.githubusercontent.com/29454499/258651862-28b63016-c5ff-4263-9da8-73ca31100165.jpeg\n", " The negative prompt or prompts to guide the image generation.\n", " guidance_scale (float, *optional*, defaults to 7.5):\n", " Guidance scale as defined in Classifier-Free Diffusion Guidance(https://arxiv.org/abs/2207.12598).\n", " guidance_scale is defined as `w` of equation 2.\n", " Higher guidance scale encourages to generate images that are closely linked to the text prompt,\n", " usually at the expense of lower image quality.\n", " eta (float, *optional*, defaults to 0.0):\n", " Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to\n", " [DDIMScheduler], will be ignored for others.\n", " output_type (`str`, *optional*, defaults to \"pil\"):\n", " The output format of the generate image. Choose between\n", " [PIL](https://pillow.readthedocs.io/en/stable/): PIL.Image.Image or np.array.\n", " height (int, *optional*, 512):\n", " Generated image height\n", " width (int, *optional*, 512):\n", " Generated image width\n", " generator (`torch.Generator` or `List[torch.Generator]`, *optional*):\n", " A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make\n", " generation deterministic.\n", " latents (`torch.FloatTensor`, *optional*):\n", " Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image\n", " generation. Can be used to tweak the same generation with different prompts. If not provided, a latents\n", " tensor is generated by sampling using the supplied random `generator`.\n", " Returns:\n", " Dictionary with keys:\n", " sample - the last generated image PIL.Image.Image or np.arrayhttps://huggingface.co/latent-consistency/lcm-lora-sdv1-5\n", " iterations - *optional* (if gif=True) images for all diffusion steps, List of PIL.Image.Image or np.array.\n", " \"\"\"\n", " do_classifier_free_guidance = guidance_scale > 1.0\n", " # get prompt text embeddings\n", " text_embeddings = self._encode_prompt(\n", " prompt,\n", " do_classifier_free_guidance=do_classifier_free_guidance,\n", " negative_prompt=negative_prompt,\n", " )\n", " # get ip-adapter image embeddings\n", " image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image)\n", " if do_classifier_free_guidance:\n", " image_embeds = np.concatenate([negative_image_embeds, image_embeds])\n", "\n", " # set timesteps\n", " accepts_offset = \"offset\" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())\n", " extra_set_kwargs = {}\n", " if accepts_offset:\n", " extra_set_kwargs[\"offset\"] = 1\n", "\n", " self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)\n", " timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength)\n", " latent_timestep = timesteps[:1]\n", "\n", " # get the initial random noise unless the user supplied it\n", " latents, meta = self.prepare_latents(\n", " 1,\n", " 4,\n", " height or self.height,\n", " width or self.width,\n", " generator=generator,\n", " latents=latents,\n", " image=image,\n", " latent_timestep=latent_timestep,\n", " )\n", "\n", " # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature\n", " # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.\n", " # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502\n", " # and should be between [0, 1]\n", " accepts_eta = \"eta\" in set(inspect.signature(self.scheduler.step).parameters.keys())\n", " extra_step_kwargs = {}\n", " if accepts_eta:\n", " extra_step_kwargs[\"eta\"] = eta\n", "\n", " for i, t in enumerate(self.progress_bar(timesteps)):\n", " # expand the latents if you are doing classifier free guidance\n", " latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents\n", " latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)\n", "\n", " # predict the noise residual\n", " noise_pred = self.unet([latent_model_input, t, text_embeddings, image_embeds])[0]\n", " # perform guidance\n", " if do_classifier_free_guidance:\n", " noise_pred_uncond, noise_pred_text = noise_pred[0], noise_pred[1]\n", " noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)\n", "\n", " # compute the previous noisy sample x_t -> x_t-1\n", " latents = self.scheduler.step(\n", " torch.from_numpy(noise_pred),\n", " t,\n", " torch.from_numpy(latents),\n", " **extra_step_kwargs,\n", " )[\"prev_sample\"].numpy()\n", "\n", " # scale and decode the image latents with vae\n", " image = self.vae_decoder(latents * (1 / 0.18215))[0]\n", "\n", " image = self.postprocess_image(image, meta, output_type)\n", " return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=False)\n", "\n", " def _encode_prompt(\n", " self,\n", " prompt: Union[str, List[str]],\n", " num_images_per_prompt: int = 1,\n", " do_classifier_free_guidance: bool = True,\n", " negative_prompt: Union[str, List[str]] = None,\n", " ):\n", " \"\"\"\n", " Encodes the prompt into text encoder hidden states.\n", "\n", " Parameters:\n", " prompt (str or list(str)): prompt to be encoded\n", " num_images_per_prompt (int): number of images that should be generated per prompt\n", " do_classifier_free_guidance (bool): whether to use classifier free guidance or not\n", " negative_prompt (str or list(str)): negative prompt to be encoded.\n", " Returns:\n", " text_embeddings (np.ndarray): text encoder hidden states\n", " \"\"\"\n", " batch_size = len(prompt) if isinstance(prompt, list) else 1\n", "\n", " # tokenize input prompts\n", " text_inputs = self.tokenizer(\n", " prompt,\n", " padding=\"max_length\",\n", " max_length=self.tokenizer.model_max_length,\n", " truncation=True,\n", " return_tensors=\"np\",\n", " )\n", " text_input_ids = text_inputs.input_ids\n", "\n", " text_embeddings = self.text_encoder(text_input_ids)[0]\n", "\n", " # duplicate text embeddings for each generation per prompt\n", " if num_images_per_prompt != 1:\n", " bs_embed, seq_len, _ = text_embeddings.shape\n", " text_embeddings = np.tile(text_embeddings, (1, num_images_per_prompt, 1))\n", " text_embeddings = np.reshape(text_embeddings, (bs_embed * num_images_per_prompt, seq_len, -1))\n", "\n", " # get unconditional embeddings for classifier free guidance\n", " if do_classifier_free_guidance:\n", " uncond_tokens: List[str]\n", " max_length = text_input_ids.shape[-1]\n", " if negative_prompt is None:\n", " uncond_tokens = [\"\"] * batch_size\n", " elif isinstance(negative_prompt, str):\n", " uncond_tokens = [negative_prompt]\n", " else:\n", " uncond_tokens = negative_prompt\n", " uncond_input = self.tokenizer(\n", " uncond_tokens,\n", " padding=\"max_length\",\n", " max_length=max_length,\n", " truncation=True,\n", " return_tensors=\"np\",\n", " )\n", "\n", " uncond_embeddings = self.text_encoder(uncond_input.input_ids)[0]\n", "\n", " # duplicate unconditional embeddings for each generation per prompt, using mps friendly method\n", " seq_len = uncond_embeddings.shape[1]\n", " uncond_embeddings = np.tile(uncond_embeddings, (1, num_images_per_prompt, 1))\n", " uncond_embeddings = np.reshape(uncond_embeddings, (batch_size * num_images_per_prompt, seq_len, -1))\n", "\n", " # For classifier-free guidance, we need to do two forward passes.\n", " # Here we concatenate the unconditional and text embeddings into a single batch\n", " # to avoid doing two forward passes\n", " text_embeddings = np.concatenate([uncond_embeddings, text_embeddings])\n", "\n", " return text_embeddings\n", "\n", " def prepare_latents(\n", " self,\n", " batch_size,\n", " num_channels_latents,\n", " height,\n", " width,\n", " dtype=torch.float32,\n", " generator=None,\n", " latents=None,\n", " image=None,\n", " latent_timestep=None,\n", " ):\n", " shape = (\n", " batch_size,\n", " num_channels_latents,\n", " height // self.vae_scale_factor,\n", " width // self.vae_scale_factor,\n", " )\n", " if isinstance(generator, list) and len(generator) != batch_size:\n", " raise ValueError(\n", " f\"You have passed a list of generators of length {len(generator)}, but requested an effective batch\"\n", " f\" size of {batch_size}. Make sure the batch size matches the length of the generators.\"\n", " )\n", "\n", " if latents is None:\n", " latents = randn_tensor(shape, generator=generator, dtype=dtype)\n", "\n", " if image is None:\n", " # scale the initial noise by the standard deviation required by the scheduler\n", " latents = latents * self.scheduler.init_noise_sigma\n", " return latents.numpy(), {}\n", " input_image, meta = preprocess(image, height, width)\n", " image_latents = self.vae_encoder(input_image)[0]\n", " image_latents = image_latents * 0.18215\n", " latents = self.scheduler.add_noise(torch.from_numpy(image_latents), latents, latent_timestep).numpy()\n", " return latents, meta\n", "\n", " def postprocess_image(self, image: np.ndarray, meta: Dict, output_type: str = \"pil\"):\n", " \"\"\"\n", " Postprocessing for decoded image. Takes generated image decoded by VAE decoder, unpad it to initial image size (if required),\n", " normalize and convert to [0, 255] pixels range. Optionally, converts it from np.ndarray to PIL.Image format\n", "\n", " Parameters:\n", " image (np.ndarray):\n", " Generated image\n", " meta (Dict):\n", " Metadata obtained on the latents preparing step can be empty\n", " output_type (str, *optional*, pil):\n", " Output format for result, can be pil or numpy\n", " Returns:\n", " image (List of np.ndarray or PIL.Image.Image):\n", " Post-processed images\n", " \"\"\"\n", " if \"padding\" in meta:\n", " pad = meta[\"padding\"]\n", " (_, end_h), (_, end_w) = pad[1:3]\n", " h, w = image.shape[2:]\n", " unpad_h = h - end_h\n", " unpad_w = w - end_w\n", " image = image[:, :, :unpad_h, :unpad_w]\n", " image = np.clip(image / 2 + 0.5, 0, 1)\n", " image = np.transpose(image, (0, 2, 3, 1))\n", " # 9. Convert to PIL\n", " if output_type == \"pil\":\n", " image = self.numpy_to_pil(image)\n", " if \"src_height\" in meta:\n", " orig_height, orig_width = meta[\"src_height\"], meta[\"src_width\"]\n", " image = [img.resize((orig_width, orig_height), PIL.Image.Resampling.LANCZOS) for img in image]\n", " else:\n", " if \"src_height\" in meta:\n", " orig_height, orig_width = meta[\"src_height\"], meta[\"src_width\"]\n", " image = [cv2.resize(img, (orig_width, orig_width)) for img in image]\n", " return image\n", "\n", " def encode_image(self, image, num_images_per_prompt=1):\n", " if not isinstance(image, torch.Tensor):\n", " image = self.feature_extractor(image, return_tensors=\"pt\").pixel_values\n", "\n", " image_embeds = self.image_encoder(image)[0]\n", " if num_images_per_prompt > 1:\n", " image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)\n", "\n", " uncond_image_embeds = np.zeros(image_embeds.shape)\n", " return image_embeds, uncond_image_embeds\n", "\n", " def get_timesteps(self, num_inference_steps: int, strength: float):\n", " \"\"\"\n", " Helper function for getting scheduler timesteps for generation\n", " In case of image-to-image generation, it updates number of steps according to strength\n", "\n", " Parameters:\n", " num_inference_steps (int):\n", " number of inference steps for generation\n", " strength (float):\n", " value between 0.0 and 1.0, that controls the amount of noise that is added to the input image.\n", " Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input.\n", " \"\"\"\n", " # get the original timestep using init_timestep\n", " init_timestep = min(int(num_inference_steps * strength), num_inference_steps)\n", "\n", " t_start = max(num_inference_steps - init_timestep, 0)\n", " timesteps = self.scheduler.timesteps[t_start:]\n", "\n", " return timesteps, num_inference_steps - t_start" ] }, { "attachments": {}, "cell_type": "markdown", "id": "73369a60-990e-4dc7-b498-1db962398298", "metadata": {}, "source": [ "## Run model inference\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "Now let's configure our pipeline and take a look on generation results.\n", "\n", "### Select inference device\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "Select inference device from dropdown list." ] }, { "cell_type": "code", "execution_count": 8, "id": "d3a33e7a-1397-4170-bcfe-48809dd4d963", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "fa7731148d4c42468c9f518e3be708b3", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Dropdown(description='Device:', options=('CPU', 'GPU.0', 'GPU.1', 'AUTO'), value='CPU')" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "core = ov.Core()\n", "\n", "import ipywidgets as widgets\n", "\n", "device = widgets.Dropdown(\n", " options=core.available_devices + [\"AUTO\"],\n", " value=\"CPU\",\n", " description=\"Device:\",\n", " disabled=False,\n", ")\n", "\n", "device" ] }, { "cell_type": "code", "execution_count": 9, "id": "e3cb7120-9b5b-44b2-907c-f6e02df00371", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "The config attributes {'skip_prk_steps': True} were passed to LCMScheduler, but are not expected and will be ignored. Please verify your scheduler_config.json configuration file.\n" ] } ], "source": [ "from transformers import AutoTokenizer\n", "\n", "ov_config = {\"INFERENCE_PRECISION_HINT\": \"f32\"} if device.value != \"CPU\" else {}\n", "vae_decoder = core.compile_model(VAE_DECODER_PATH, device.value, ov_config)\n", "vae_encoder = core.compile_model(VAE_ENCODER_PATH, device.value, ov_config)\n", "text_encoder = core.compile_model(TEXT_ENCODER_PATH, device.value)\n", "image_encoder = core.compile_model(IMAGE_ENCODER_PATH, device.value)\n", "unet = core.compile_model(UNET_PATH, device.value)\n", "\n", "scheduler = LCMScheduler.from_pretrained(models_dir / \"scheduler\")\n", "tokenizer = AutoTokenizer.from_pretrained(models_dir / \"tokenizer\")\n", "feature_extractor = CLIPImageProcessor.from_pretrained(models_dir / \"feature_extractor\")\n", "\n", "ov_pipe = OVStableDiffusionPipeline(\n", " vae_decoder,\n", " text_encoder,\n", " tokenizer,\n", " unet,\n", " scheduler,\n", " image_encoder,\n", " feature_extractor,\n", " vae_encoder,\n", ")" ] }, { "attachments": {}, "cell_type": "markdown", "id": "7aaa5f01-dafd-463d-be36-13505d2f7007", "metadata": {}, "source": [ "### Generation image variation\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "If we stay input text prompt empty and provide only ip-adapter image, we can get variation of the same image." ] }, { "cell_type": "code", "execution_count": 10, "id": "2556696d-9a33-4300-8199-dc2e15e393fa", "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "\n", "\n", "def visualize_results(images, titles):\n", " \"\"\"\n", " Helper function for results visualization\n", "\n", " Parameters:\n", " orig_img (PIL.Image.Image): original image\n", " processed_img (PIL.Image.Image): processed image after editing\n", " img1_title (str): title for the image on the left\n", " img2_title (str): title for the image on the right\n", " Returns:\n", " fig (matplotlib.pyplot.Figure): matplotlib generated figure contains drawing result\n", " \"\"\"\n", " im_w, im_h = images[0].size\n", " is_horizontal = im_h <= im_w\n", " figsize = (10, 15 * len(images)) if is_horizontal else (15 * len(images), 10)\n", " fig, axs = plt.subplots(\n", " 1 if is_horizontal else len(images),\n", " len(images) if is_horizontal else 1,\n", " figsize=figsize,\n", " sharex=\"all\",\n", " sharey=\"all\",\n", " )\n", " fig.patch.set_facecolor(\"white\")\n", " list_axes = list(axs.flat)\n", " for a in list_axes:\n", " a.set_xticklabels([])\n", " a.set_yticklabels([])\n", " a.get_xaxis().set_visible(False)\n", " a.get_yaxis().set_visible(False)\n", " a.grid(False)\n", " for image, title, ax in zip(images, titles, list_axes):\n", " ax.imshow(np.array(image))\n", " ax.set_title(title, fontsize=20)\n", " fig.subplots_adjust(wspace=0.0 if is_horizontal else 0.01, hspace=0.01 if is_horizontal else 0.0)\n", " fig.tight_layout()\n", " return fig" ] }, { "cell_type": "code", "execution_count": 11, "id": "12fc99c7-684c-49cb-acca-753ef21950a3", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f1965ac03cee4f279be657d40dc88f3c", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/4 [00:00" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "generator = torch.Generator(device=\"cpu\").manual_seed(576)\n", "\n", "image = load_image(\"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/load_neg_embed.png\")\n", "\n", "result = ov_pipe(\n", " prompt=\"\",\n", " ip_adapter_image=image,\n", " gaidance_scale=1,\n", " negative_prompt=\"\",\n", " num_inference_steps=4,\n", " generator=generator,\n", ")\n", "\n", "fig = visualize_results([image, result.images[0]], [\"input image\", \"result\"])" ] }, { "attachments": {}, "cell_type": "markdown", "id": "8a1405c3-fd46-4ff6-b3e0-c3d40bb72f0e", "metadata": {}, "source": [ "### Generation conditioned by image and text\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "IP-Adapter allows you to use both image and text to condition the image generation process. Both IP-Adapter image and text prompt serve as extension for each other, for example we can use a text prompt to add “sunglasses” 😎 on previous image." ] }, { "cell_type": "code", "execution_count": 12, "id": "94a2679e-9801-49a3-895f-e8465a16fbc3", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f53693ca72c342d890e25c806232d8ca", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/4 [00:00" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = visualize_results([image, result.images[0]], [\"input image\", \"result\"])" ] }, { "attachments": {}, "cell_type": "markdown", "id": "fe0acc45-a646-4838-ab56-88bd3b726d59", "metadata": {}, "source": [ "### Generation image blending\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "IP-Adapter also works great with Image-to-Image translation. It helps to achieve image blending effect." ] }, { "cell_type": "code", "execution_count": 14, "id": "90da4fbf-8368-4ef1-b917-e8853eeb03f9", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "89e1c79bb73c40a0beef4b1a8acff384", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/5 [00:00" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = visualize_results([image, ip_image, result.images[0]], [\"input image\", \"ip-adapter image\", \"result\"])" ] }, { "attachments": {}, "cell_type": "markdown", "id": "6eba1997-6c8c-45e0-bb5d-958ac3066bff", "metadata": {}, "source": [ "## Interactive demo\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "Now, you can try model using own images and text prompts." ] }, { "cell_type": "code", "execution_count": null, "id": "8b81ba28-934e-46d2-b061-65888da9103a", "metadata": {}, "outputs": [], "source": [ "import gradio as gr\n", "\n", "\n", "def generate_from_text(\n", " positive_prompt,\n", " negative_prompt,\n", " ip_adapter_image,\n", " seed,\n", " num_steps,\n", " guidance_scale,\n", " _=gr.Progress(track_tqdm=True),\n", "):\n", " generator = torch.Generator(device=\"cpu\").manual_seed(seed)\n", " result = ov_pipe(\n", " positive_prompt,\n", " ip_adapter_image=ip_adapter_image,\n", " negative_prompt=negative_prompt,\n", " guidance_scale=guidance_scale,\n", " num_inference_steps=num_steps,\n", " generator=generator,\n", " )\n", " return result.images[0]\n", "\n", "\n", "def generate_from_image(\n", " img,\n", " ip_adapter_image,\n", " positive_prompt,\n", " negative_prompt,\n", " seed,\n", " num_steps,\n", " guidance_scale,\n", " strength,\n", " _=gr.Progress(track_tqdm=True),\n", "):\n", " generator = torch.Generator(device=\"cpu\").manual_seed(seed)\n", " result = ov_pipe(\n", " positive_prompt,\n", " image=img,\n", " ip_adapter_image=ip_adapter_image,\n", " negative_prompt=negative_prompt,\n", " num_inference_steps=num_steps,\n", " guidance_scale=guidance_scale,\n", " strength=strength,\n", " generator=generator,\n", " )\n", " return result.images[0]\n", "\n", "\n", "with gr.Blocks() as demo:\n", " with gr.Tab(\"Text-to-Image generation\"):\n", " with gr.Row():\n", " with gr.Column():\n", " ip_adapter_input = gr.Image(label=\"IP-Adapter Image\", type=\"pil\")\n", " text_input = gr.Textbox(lines=3, label=\"Positive prompt\")\n", " neg_text_input = gr.Textbox(lines=3, label=\"Negative prompt\")\n", " with gr.Accordion(\"Advanced options\", open=False):\n", " seed_input = gr.Slider(0, 10000000, value=42, label=\"Seed\")\n", " steps_input = gr.Slider(1, 12, value=4, step=1, label=\"Steps\")\n", " guidance_scale_input = gr.Slider(\n", " label=\"Guidance scale\",\n", " minimum=0.1,\n", " maximum=2,\n", " step=0.1,\n", " value=0.5,\n", " )\n", " out = gr.Image(label=\"Result\", type=\"pil\")\n", " btn = gr.Button()\n", " btn.click(\n", " generate_from_text,\n", " [\n", " text_input,\n", " neg_text_input,\n", " ip_adapter_input,\n", " seed_input,\n", " steps_input,\n", " guidance_scale_input,\n", " ],\n", " out,\n", " )\n", " gr.Examples(\n", " [\n", " [\n", " \"https://raw.githubusercontent.com/tencent-ailab/IP-Adapter/main/assets/images/woman.png\",\n", " \"best quality, high quality\",\n", " \"low resolution\",\n", " ],\n", " [\n", " \"https://raw.githubusercontent.com/tencent-ailab/IP-Adapter/main/assets/images/statue.png\",\n", " \"wearing a hat\",\n", " \"\",\n", " ],\n", " ],\n", " [ip_adapter_input, text_input, neg_text_input],\n", " )\n", " with gr.Tab(\"Image-to-Image generation\"):\n", " with gr.Row():\n", " with gr.Column():\n", " i2i_input = gr.Image(label=\"Image\", type=\"pil\")\n", " i2i_ip_adapter_input = gr.Image(label=\"IP-Adapter Image\", type=\"pil\")\n", " i2i_text_input = gr.Textbox(lines=3, label=\"Text\")\n", " i2i_neg_text_input = gr.Textbox(lines=3, label=\"Negative prompt\")\n", " with gr.Accordion(\"Advanced options\", open=False):\n", " i2i_seed_input = gr.Slider(0, 10000000, value=42, label=\"Seed\")\n", " i2i_steps_input = gr.Slider(1, 12, value=8, step=1, label=\"Steps\")\n", " strength_input = gr.Slider(0, 1, value=0.7, label=\"Strength\")\n", " i2i_guidance_scale = gr.Slider(\n", " label=\"Guidance scale\",\n", " minimum=0.1,\n", " maximum=2,\n", " step=0.1,\n", " value=0.5,\n", " )\n", " i2i_out = gr.Image(label=\"Result\")\n", " i2i_btn = gr.Button()\n", " i2i_btn.click(\n", " generate_from_image,\n", " [\n", " i2i_input,\n", " i2i_ip_adapter_input,\n", " i2i_text_input,\n", " i2i_neg_text_input,\n", " i2i_seed_input,\n", " i2i_steps_input,\n", " i2i_guidance_scale,\n", " strength_input,\n", " ],\n", " i2i_out,\n", " )\n", " gr.Examples(\n", " [\n", " [\n", " \"https://raw.githubusercontent.com/tencent-ailab/IP-Adapter/main/assets/images/river.png\",\n", " \"https://raw.githubusercontent.com/tencent-ailab/IP-Adapter/main/assets/images/statue.png\",\n", " ],\n", " ],\n", " [i2i_ip_adapter_input, i2i_input],\n", " )\n", "try:\n", " demo.queue().launch(debug=True)\n", "except Exception:\n", " demo.queue().launch(share=True, debug=True)\n", "# if you are launching remotely, specify server_name and server_port\n", "# demo.launch(server_name='your server name', server_port='server port in int')\n", "# Read more in the docs: https://gradio.app/docs/" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" }, "openvino_notebooks": { "imageUrl": "https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/stable-diffusion-ip-adapter/stable-diffusion-ip-adapter.png?raw=true", "tags": { "categories": [ "Model Demos", "AI Trends" ], "libraries": [], "other": [ "Stable Diffusion" ], "tasks": [ "Image-to-Image", "Text-to-Image" ] } }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": {}, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }