# Background Removal Demo [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/eaidova/openvino_notebooks_binder.git/main?urlpath=git-pull%3Frepo%3Dhttps%253A%252F%252Fgithub.com%252Fopenvinotoolkit%252Fopenvino_notebooks%26urlpath%3Dtree%252Fopenvino_notebooks%252Fnotebooks%2Fvision-background-removal%2Fvision-background-removal.ipynb) [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/vision-background-removal/vision-background-removal.ipynb) This demo notebook shows image segmentation and removing/adding background with [U^2-Net](https://github.com/xuebinqin/U-2-Net) and OpenVINO™. ![Image segmentation with U^2-Net and OpenVINO](https://user-images.githubusercontent.com/77325899/116818525-1ca00980-ab6c-11eb-83b4-d42fa7d6d94a.png) ![Background removal with U^2-Net and OpenVINO](https://user-images.githubusercontent.com/77325899/116818585-74d70b80-ab6c-11eb-9bad-1ddf1b5ea5fe.png) ## Notebook Contents * Importing Pytorch library and loading U^2-Net model. * Converting PyTorch U^2-Net model to OpenVINO IR format. * Loading and preprocessing input image. * Doing inference on OpenVINO IR model. * Visualizing results. ## U^2-Net source ``` markdown @InProceedings{Qin_2020_PR, title = {U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection}, author = {Qin, Xuebin and Zhang, Zichen and Huang, Chenyang and Dehghan, Masood and Zaiane, Osmar and Jagersand, Martin}, journal = {Pattern Recognition}, volume = {106}, pages = {107404}, year = {2020} } ``` ## Installation Instructions This is a self-contained example that relies solely on its own code.
We recommend running the notebook in a virtual environment. You only need a Jupyter server to start. For details, please refer to [Installation Guide](../../README.md).