{ "cells": [ { "attachments": {}, "cell_type": "markdown", "id": "7607ce35-db52-4e1c-add7-8abed748de6a", "metadata": {}, "source": [ "# Super Resolution with PaddleGAN and OpenVINO™\n", "\n", "This notebook demonstrates converting the RealSR (real-world super-resolution) model from [PaddlePaddle/PaddleGAN](https://github.com/PaddlePaddle/PaddleGAN) to OpenVINO Intermediate Representation (OpenVINO IR) format, and shows inference results on both the PaddleGAN and OpenVINO IR models.\n", "\n", "For more information about the various PaddleGAN superresolution models, refer to the [PaddleGAN documentation](https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/en_US/tutorials/single_image_super_resolution.md). For more information about RealSR, see the [research paper](https://openaccess.thecvf.com/content_CVPRW_2020/papers/w31/Ji_Real-World_Super-Resolution_via_Kernel_Estimation_and_Noise_Injection_CVPRW_2020_paper.pdf) from CVPR 2020.\n", "\n", "This notebook works best with small images (up to 800x600 resolution).\n", "\n", "\n", "#### Table of contents:\n", "\n", "- [Imports](#Imports)\n", "- [Settings](#Settings)\n", "- [Inference on PaddlePaddle Model](#Inference-on-PaddlePaddle-Model)\n", " - [Investigate PaddleGAN Model](#Investigate-PaddleGAN-Model)\n", " - [Do Inference](#Do-Inference)\n", "- [Convert PaddleGAN Model to ONNX and OpenVINO IR](#Convert-PaddleGAN-Model-to-ONNX-and-OpenVINO-IR)\n", " - [Convert PaddlePaddle Model to ONNX](#Convert-PaddlePaddle-Model-to-ONNX)\n", " - [Convert ONNX Model to OpenVINO IR with Model Conversion Python API](#Convert-ONNX-Model-to-OpenVINO-IR-with-Model-Conversion-Python-API)\n", "- [Do Inference on OpenVINO IR Model](#Do-Inference-on-OpenVINO-IR-Model)\n", " - [Select inference device](#Select-inference-device)\n", " - [Show an Animated GIF](#Show-an-Animated-GIF)\n", " - [Create a Comparison Video](#Create-a-Comparison-Video)\n", " - [Download the video](#Download-the-video)\n", "\n" ] }, { "attachments": {}, "cell_type": "markdown", "id": "b4a9e69d-27cc-421a-b526-7cc31cbb06bd", "metadata": {}, "source": [ "## Imports\n", "[back to top ⬆️](#Table-of-contents:)\n" ] }, { "cell_type": "code", "execution_count": 3, "id": "b286aabe-5d1f-42fb-84fa-8d5c7f9a7eae", "metadata": {}, "outputs": [], "source": [ "import platform\n", "\n", "%pip install -q \"openvino>=2023.1.0\"\n", "\n", "%pip install -q \"paddlepaddle>=2.5.1\" \"paddle2onnx>=0.6\"\n", "\n", "%pip install -q \"imageio==2.9.0\" \"imageio\" \"numba>=0.53.1\" \"easydict\" \"munch\" \"natsort\" Pillow tqdm\n", "%pip install -q \"git+https://github.com/PaddlePaddle/PaddleGAN.git\" --no-deps\n", "%pip install -q \"scikit-image>=0.19.2\"\n", "\n", "if platform.system() != \"Windows\":\n", " %pip install -q \"matplotlib>=3.4\"\n", "else:\n", " %pip install -q \"matplotlib>=3.4,<3.7\"" ] }, { "cell_type": "code", "execution_count": 1, "id": "e41056f1", "metadata": { "tags": [] }, "outputs": [], "source": [ "import time\n", "import warnings\n", "from pathlib import Path\n", "\n", "import cv2\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import openvino as ov\n", "import paddle\n", "from IPython.display import HTML, FileLink, ProgressBar, clear_output, display\n", "from IPython.display import Image as DisplayImage\n", "from PIL import Image\n", "from paddle.static import InputSpec\n", "from ppgan.apps import RealSRPredictor\n", "\n", "# Fetch `notebook_utils` module\n", "import requests\n", "\n", "r = requests.get(\n", " url=\"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py\",\n", ")\n", "\n", "open(\"notebook_utils.py\", \"w\").write(r.text)\n", "from notebook_utils import NotebookAlert, download_file" ] }, { "attachments": {}, "cell_type": "markdown", "id": "b8aaf4da-a840-4c07-bd4c-b703fa5c58fa", "metadata": {}, "source": [ "## Settings\n", "[back to top ⬆️](#Table-of-contents:)\n" ] }, { "cell_type": "code", "execution_count": 2, "id": "764178fb-c9b2-4005-8dc8-84018b12c439", "metadata": { "tags": [] }, "outputs": [], "source": [ "# The filenames of the downloaded and converted models.\n", "MODEL_NAME = \"paddlegan_sr\"\n", "MODEL_DIR = Path(\"model\")\n", "OUTPUT_DIR = Path(\"output\")\n", "OUTPUT_DIR.mkdir(exist_ok=True)\n", "\n", "model_path = MODEL_DIR / MODEL_NAME\n", "ir_path = model_path.with_suffix(\".xml\")\n", "onnx_path = model_path.with_suffix(\".onnx\")" ] }, { "attachments": {}, "cell_type": "markdown", "id": "0e51e484-6d4d-4ce1-a757-de8790ee6669", "metadata": {}, "source": [ "## Inference on PaddlePaddle Model\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "### Investigate PaddleGAN Model\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "The [PaddleGAN documentation](https://github.com/PaddlePaddle/PaddleGAN) explains how to run the model with `sr.run()` method. Find out what that function does, and check other relevant functions that are called from that function. Adding `??` to the methods shows the docstring and source code." ] }, { "cell_type": "code", "execution_count": 3, "id": "151fd351", "metadata": { "tags": [] }, "outputs": [], "source": [ "# Running this cell will download the model weights if they have not been downloaded before.\n", "# This may take a while.\n", "sr = RealSRPredictor()" ] }, { "cell_type": "code", "execution_count": 4, "id": "b6ece28c-9f84-4f91-9c7b-48376ddb1e9b", "metadata": { "tags": [] }, "outputs": [], "source": [ "??sr.run" ] }, { "cell_type": "code", "execution_count": 5, "id": "d78cc588-fb6f-43b3-a97a-bef8ae92b011", "metadata": { "tags": [] }, "outputs": [], "source": [ "??sr.run_image" ] }, { "cell_type": "code", "execution_count": 6, "id": "f701eaca-781b-4ae5-86b1-76465448f811", "metadata": { "tags": [] }, "outputs": [], "source": [ "??sr.norm" ] }, { "cell_type": "code", "execution_count": 7, "id": "4a8cc86a-6e13-432f-9b1b-ca0a5588973c", "metadata": { "tags": [] }, "outputs": [], "source": [ "??sr.denorm" ] }, { "attachments": {}, "cell_type": "markdown", "id": "2f3417c1-5cac-4d88-bd37-15982525ebb4", "metadata": {}, "source": [ "The run checks whether the input is an image or a video. For an image, it loads the image as an `RGB` image, normalizes it, and converts it to a Paddle tensor. It is propagated to the network by calling the `self.model()` method and then *\"denormalized\"*. The normalization function simply divides all image values by 255. This converts an image with integer values in the range of 0 to 255 to an image with floating point values in the range of 0 to 1. The denormalization function transforms the output from the (C,H,W) network shape to (H,W,C) image shape. It then clips the image values between 0 and 255, and converts the image to a standard `RGB` image with integer values in the range of 0 to 255.\n", "\n", "To get more information about how the model looks like, use the `sr.model??` command. " ] }, { "cell_type": "code", "execution_count": 8, "id": "289f5d1e-ffa7-4729-a68e-873289043585", "metadata": { "tags": [] }, "outputs": [], "source": [ "# sr.model??" ] }, { "attachments": {}, "cell_type": "markdown", "id": "cf962925-7176-4f25-bf7a-59cf86433aa8", "metadata": {}, "source": [ "### Do Inference\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "To show inference on the PaddlePaddle model, set `PADDLEGAN_INFERENCE` to `True` in the cell below. Keep in mind that performing inference may take some time." ] }, { "cell_type": "code", "execution_count": null, "id": "74f3eda1", "metadata": {}, "outputs": [], "source": [ "# Load the image from openvino storage\n", "IMAGE_PATH = download_file(\n", " \"https://storage.openvinotoolkit.org/repositories/openvino_notebooks/data/data/image/coco_tulips.jpg\",\n", " directory=\"data\",\n", ")" ] }, { "cell_type": "code", "execution_count": 9, "id": "95f6554f-62ec-4e7d-aeb8-c43e09e219b7", "metadata": { "tags": [] }, "outputs": [], "source": [ "# Set PADDLEGAN_INFERENCE to True to show inference on the PaddlePaddle model.\n", "# This may take a long time, especially for larger images.\n", "#\n", "PADDLEGAN_INFERENCE = False\n", "if PADDLEGAN_INFERENCE:\n", " # Load the input image and convert to a tensor with the input shape.\n", " image = cv2.cvtColor(cv2.imread(str(IMAGE_PATH)), cv2.COLOR_BGR2RGB)\n", " input_image = image.transpose(2, 0, 1)[None, :, :, :] / 255\n", " input_tensor = paddle.to_tensor(input_image.astype(np.float32))\n", " if max(image.shape) > 400:\n", " NotebookAlert(\n", " f\"This image has {image.shape} shape. Doing inference will be slow \"\n", " \"and the notebook may stop responding. Set PADDLEGAN_INFERENCE to False \"\n", " \"to skip doing inference on the PaddlePaddle model.\",\n", " \"warning\",\n", " )" ] }, { "cell_type": "code", "execution_count": 10, "id": "f49d0770-d885-4e78-addf-1fc51022540f", "metadata": { "tags": [] }, "outputs": [], "source": [ "if PADDLEGAN_INFERENCE:\n", " # Do inference and measure how long it takes.\n", " print(f\"Start superresolution inference for {IMAGE_PATH.name} with shape {image.shape}...\")\n", " start_time = time.perf_counter()\n", " sr.model.eval()\n", " with paddle.no_grad():\n", " result = sr.model(input_tensor)\n", " end_time = time.perf_counter()\n", " duration = end_time - start_time\n", " result_image = (result.numpy().squeeze() * 255).clip(0, 255).astype(\"uint8\").transpose((1, 2, 0))\n", " print(f\"Superresolution image shape: {result_image.shape}\")\n", " print(f\"Inference duration: {duration:.2f} seconds\")\n", " plt.imshow(result_image);" ] }, { "attachments": {}, "cell_type": "markdown", "id": "adb6be9f", "metadata": {}, "source": [ "## Convert PaddleGAN Model to ONNX and OpenVINO IR\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "To convert the PaddlePaddle model to OpenVINO IR, first convert the model to ONNX, and then convert the ONNX model to the OpenVINO IR format.\n", "\n", "### Convert PaddlePaddle Model to ONNX\n", "[back to top ⬆️](#Table-of-contents:)\n" ] }, { "cell_type": "code", "execution_count": 11, "id": "c6735bf0", "metadata": { "tags": [] }, "outputs": [], "source": [ "# Ignore PaddlePaddle warnings:\n", "# The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1).\n", "warnings.filterwarnings(\"ignore\")\n", "sr.model.eval()\n", "# ONNX export requires an input shape in this format as a parameter.\n", "# Both OpenVINO and Paddle support `-1` placeholder for marking flexible dimensions\n", "input_shape = [-1, 3, -1, -1]\n", "x_spec = InputSpec(input_shape, \"float32\", \"x\")\n", "paddle.onnx.export(sr.model, str(model_path), input_spec=[x_spec], opset_version=13)" ] }, { "attachments": {}, "cell_type": "markdown", "id": "93f8c13a", "metadata": {}, "source": [ "### Convert ONNX Model to OpenVINO IR with [Model Conversion Python API](https://docs.openvino.ai/2024/openvino-workflow/model-preparation.html)\n", "[back to top ⬆️](#Table-of-contents:)\n" ] }, { "cell_type": "code", "execution_count": 13, "id": "af0d8b16", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Exporting ONNX model to OpenVINO IR... This may take a few minutes.\n" ] } ], "source": [ "print(\"Exporting ONNX model to OpenVINO IR... This may take a few minutes.\")\n", "\n", "model = ov.convert_model(onnx_path, input=input_shape)\n", "\n", "# Serialize model in IR format\n", "ov.save_model(model, str(ir_path))" ] }, { "attachments": {}, "cell_type": "markdown", "id": "c5317e89-0b52-4d4a-af5d-d0b4a136c0a9", "metadata": { "execution": { "iopub.execute_input": "2021-08-03T15:46:41.605511Z", "iopub.status.busy": "2021-08-03T15:46:41.605374Z", "iopub.status.idle": "2021-08-03T15:46:41.607174Z", "shell.execute_reply": "2021-08-03T15:46:41.606871Z", "shell.execute_reply.started": "2021-08-03T15:46:41.605498Z" } }, "source": [ "## Do Inference on OpenVINO IR Model\n", "[back to top ⬆️](#Table-of-contents:)\n" ] }, { "cell_type": "code", "execution_count": null, "id": "7f0f83cb", "metadata": { "tags": [] }, "outputs": [], "source": [ "# Read the network and get input and output names.\n", "core = ov.Core()\n", "# Alternatively, the model obtained from `ov.convert_model()` may be used here\n", "model = core.read_model(model=ir_path)\n", "input_layer = model.input(0)" ] }, { "attachments": {}, "cell_type": "markdown", "id": "e994d44e-377c-47f0-b6e2-509278b316cd", "metadata": {}, "source": [ "### Select inference device\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "select device from dropdown list for running inference using OpenVINO" ] }, { "cell_type": "code", "execution_count": 15, "id": "b630c036-1bc5-4dc5-bcb3-8add17aad69f", "metadata": { "tags": [ "hide-input" ] }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5da6c33fe753440cb93b69da39da3f5e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Dropdown(description='Device:', index=2, options=('CPU', 'GPU', 'AUTO'), value='AUTO')" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import ipywidgets as widgets\n", "\n", "device = widgets.Dropdown(\n", " options=core.available_devices + [\"AUTO\"],\n", " value=\"AUTO\",\n", " description=\"Device:\",\n", " disabled=False,\n", ")\n", "\n", "device" ] }, { "cell_type": "code", "execution_count": 16, "id": "dba4b8d3-6048-4d91-896f-922d17e574c0", "metadata": { "tags": [] }, "outputs": [], "source": [ "image = cv2.cvtColor(cv2.imread(str(IMAGE_PATH)), cv2.COLOR_BGR2RGB)\n", "if max(image.shape) > 800:\n", " NotebookAlert(\n", " f\"This image has shape {image.shape}. The notebook works best with images with \"\n", " \"a maximum side of 800x600. Larger images may work well, but inference may \"\n", " \"be slow\",\n", " \"warning\",\n", " )\n", "plt.imshow(image)" ] }, { "cell_type": "code", "execution_count": 17, "id": "4e5c959b-4456-440e-9bd7-5a900b49ac6f", "metadata": { "tags": [] }, "outputs": [], "source": [ "# Load the network to the CPU device (this may take a few seconds).\n", "compiled_model = core.compile_model(model=model, device_name=device.value)\n", "output_layer = compiled_model.output(0)" ] }, { "cell_type": "code", "execution_count": 18, "id": "499cfbc6-e935-4f06-b786-43b3020e72a1", "metadata": { "tags": [] }, "outputs": [], "source": [ "# Convert the image to the network input shape and divide pixel values by 255.\n", "# See the \"Investigate PaddleGAN model\" section.\n", "input_image = image.transpose(2, 0, 1)[None, :, :, :] / 255\n", "start_time = time.perf_counter()\n", "# Do inference.\n", "ir_result = compiled_model([input_image])[output_layer]\n", "end_time = time.perf_counter()\n", "duration = end_time - start_time\n", "print(f\"Inference duration: {duration:.2f} seconds\")" ] }, { "cell_type": "code", "execution_count": 19, "id": "7f8d9340-4151-475e-a074-9907adba7c9b", "metadata": { "tags": [] }, "outputs": [], "source": [ "# Get the result array in CHW format.\n", "result_array = ir_result.squeeze()\n", "# Convert the array to an image with the same method as PaddleGAN:\n", "# Multiply by 255, clip values between 0 and 255, convert to a HWC INT8 image.\n", "# See the \"Investigate PaddleGAN model\" section.\n", "image_super = (result_array * 255).clip(0, 255).astype(\"uint8\").transpose((1, 2, 0))\n", "# Resize the image with bicubic upsampling for comparison.\n", "image_bicubic = cv2.resize(image, tuple(image_super.shape[:2][::-1]), interpolation=cv2.INTER_CUBIC)" ] }, { "cell_type": "code", "execution_count": 20, "id": "2ef4f90a-1d3a-4e9c-a667-a300fe7b1559", "metadata": { "tags": [] }, "outputs": [], "source": [ "plt.imshow(image_super)" ] }, { "attachments": {}, "cell_type": "markdown", "id": "563ef395-63f1-4b2f-856d-a1fd9a114c8d", "metadata": {}, "source": [ "### Show an Animated GIF\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "To visualize the difference between the bicubic image and the superresolution image, create an animated GIF image that switches between both versions." ] }, { "cell_type": "code", "execution_count": 21, "id": "540d1cef-0c64-47f3-86f3-e86442093dc8", "metadata": { "tags": [] }, "outputs": [], "source": [ "result_pil = Image.fromarray(image_super)\n", "bicubic_pil = Image.fromarray(image_bicubic)\n", "gif_image_path = OUTPUT_DIR / Path(IMAGE_PATH.stem + \"_comparison.gif\")\n", "final_image_path = OUTPUT_DIR / Path(IMAGE_PATH.stem + \"_super.png\")\n", "\n", "result_pil.save(\n", " fp=str(gif_image_path),\n", " format=\"GIF\",\n", " append_images=[bicubic_pil],\n", " save_all=True,\n", " duration=1000,\n", " loop=0,\n", ")\n", "\n", "result_pil.save(fp=str(final_image_path), format=\"png\")\n", "DisplayImage(open(gif_image_path, \"rb\").read(), width=1920 // 2)" ] }, { "attachments": {}, "cell_type": "markdown", "id": "b8ab71ad-e254-477a-a334-3bf1ee509454", "metadata": {}, "source": [ "### Create a Comparison Video\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "Create a video with a \"slider\", showing the bicubic image to the right and the superresolution image on the left. \n", "\n", "For the video, the superresolution and bicubic image are resized to half the original width and height, to improve processing speed. This gives an indication of the superresolution effect. The video is saved as an `.avi` video file. You can click on the link to download the video, or open it directly from the images directory, and play it locally." ] }, { "cell_type": "code", "execution_count": 22, "id": "df667cd6-333b-49b0-bad6-684cdd7b8ada", "metadata": { "tags": [] }, "outputs": [], "source": [ "FOURCC = cv2.VideoWriter_fourcc(*\"MJPG\")\n", "result_video_path = OUTPUT_DIR / Path(f\"{IMAGE_PATH.stem}_comparison_paddlegan.avi\")\n", "video_target_height, video_target_width = (\n", " image_super.shape[0] // 2,\n", " image_super.shape[1] // 2,\n", ")\n", "\n", "out_video = cv2.VideoWriter(\n", " str(result_video_path),\n", " FOURCC,\n", " 90,\n", " (video_target_width, video_target_height),\n", ")\n", "\n", "resized_result_image = cv2.resize(image_super, (video_target_width, video_target_height))[:, :, (2, 1, 0)]\n", "resized_bicubic_image = cv2.resize(image_bicubic, (video_target_width, video_target_height))[:, :, (2, 1, 0)]\n", "\n", "progress_bar = ProgressBar(total=video_target_width)\n", "progress_bar.display()\n", "\n", "for i in range(2, video_target_width):\n", " # Create a frame where the left part (until i pixels width) contains the\n", " # superresolution image, and the right part (from i pixels width) contains\n", " # the bicubic image.\n", " comparison_frame = np.hstack(\n", " (\n", " resized_result_image[:, :i, :],\n", " resized_bicubic_image[:, i:, :],\n", " )\n", " )\n", "\n", " # Create a small black border line between the superresolution\n", " # and bicubic part of the image.\n", " comparison_frame[:, i - 1 : i + 1, :] = 0\n", " out_video.write(comparison_frame)\n", " progress_bar.progress = i\n", " progress_bar.update()\n", "out_video.release()\n", "clear_output()" ] }, { "attachments": {}, "cell_type": "markdown", "id": "5416273f", "metadata": {}, "source": [ "#### Download the video\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "Please, click the link below to download the video or just run cell if you use the Google Colab" ] }, { "cell_type": "code", "execution_count": null, "id": "2fc6d068", "metadata": {}, "outputs": [], "source": [ "if \"google.colab\" in str(get_ipython()):\n", " # Save a file\n", " from google.colab import files\n", "\n", " # Save the file to the local file system\n", " with open(result_video_path, \"r\") as f:\n", " files.download(result_video_path)\n", "else:\n", " video_link = FileLink(result_video_path)\n", " video_link.html_link_str = \"%s\"\n", " display(HTML(f\"The video has been saved to {video_link._repr_html_()}\"))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" }, "openvino_notebooks": { "imageUrl": "https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/vision-superresolution/vision-superresolution-image.png?raw=true", "tags": { "categories": [ "Model Demos" ], "libraries": [], "other": [], "tasks": [ "Image-to-Image", "Super Resolution" ] } }, "vscode": { "interpreter": { "hash": "cec18e25feb9469b5ff1085a8097bdcd86db6a4ac301d6aeff87d0f3e7ce4ca5" } }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": {}, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }