{ "cells": [ { "cell_type": "markdown", "id": "e5501f221fd5d19f", "metadata": {}, "source": [ "# Text-to-Image Generation with Stable Diffusion v2 and OpenVINO™\n", "\n", "Stable Diffusion v2 is the next generation of Stable Diffusion model a Text-to-Image latent diffusion model created by the researchers and engineers from [Stability AI](https://stability.ai/) and [LAION](https://laion.ai/). \n", "\n", "General diffusion models are machine learning systems that are trained to denoise random gaussian noise step by step, to get to a sample of interest, such as an image.\n", "Diffusion models have shown to achieve state-of-the-art results for generating image data. But one downside of diffusion models is that the reverse denoising process is slow. In addition, these models consume a lot of memory because they operate in pixel space, which becomes unreasonably expensive when generating high-resolution images. Therefore, it is challenging to train these models and also use them for inference. OpenVINO brings capabilities to run model inference on Intel hardware and opens the door to the fantastic world of diffusion models for everyone!\n", "\n", "In previous notebooks, we already discussed how to run [Text-to-Image generation and Image-to-Image generation using Stable Diffusion v1](../stable-diffusion-text-to-image/stable-diffusion-text-to-image.ipynb) and [controlling its generation process using ControlNet](./controlnet-stable-diffusion/controlnet-stable-diffusion.ipynb). Now is turn of Stable Diffusion v2.\n", "\n", "## Stable Diffusion v2: What’s new?\n", "\n", "The new stable diffusion model offers a bunch of new features inspired by the other models that have emerged since the introduction of the first iteration. Some of the features that can be found in the new model are:\n", "\n", "* The model comes with a new robust encoder, OpenCLIP, created by LAION and aided by Stability AI; this version v2 significantly enhances the produced photos over the V1 versions. \n", "* The model can now generate images in a 768x768 resolution, offering more information to be shown in the generated images.\n", "* The model finetuned with [v-objective](https://arxiv.org/abs/2202.00512). The v-parameterization is particularly useful for numerical stability throughout the diffusion process to enable progressive distillation for models. For models that operate at higher resolution, it is also discovered that the v-parameterization avoids color shifting artifacts that are known to affect high resolution diffusion models, and in the video setting it avoids temporal color shifting that sometimes appears with epsilon-prediction used in Stable Diffusion v1. \n", "* The model also comes with a new diffusion model capable of running upscaling on the images generated. Upscaled images can be adjusted up to 4 times the original image. Provided as separated model, for more details please check [stable-diffusion-x4-upscaler](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler)\n", "* The model comes with a new refined depth architecture capable of preserving context from prior generation layers in an image-to-image setting. This structure preservation helps generate images that preserving forms and shadow of objects, but with different content.\n", "* The model comes with an updated inpainting module built upon the previous model. This text-guided inpainting makes switching out parts in the image easier than before.\n", "\n", "This notebook demonstrates how to convert and run Stable Diffusion v2 model using OpenVINO.\n", "\n", "Notebook contains the following steps:\n", "\n", "1. Create PyTorch models pipeline using Diffusers library.\n", "2. Convert PyTorch models to OpenVINO IR format, using model conversion API.\n", "3. Apply hybrid post-training quantization to UNet model with [NNCF](https://github.com/openvinotoolkit/nncf/).\n", "4. Run Stable Diffusion v2 Text-to-Image pipeline with OpenVINO.\n", "\n", "**Note:** This is the full version of the Stable Diffusion text-to-image implementation. If you would like to get started and run the notebook quickly, check out [stable-diffusion-v2-text-to-image-demo notebook](../stable-diffusion-v2/stable-diffusion-v2-text-to-image-demo.ipynb).\n" ] }, { "cell_type": "markdown", "id": "e2bceddde9f8d526", "metadata": {}, "source": [ "#### Table of contents:\n", "\n", "- [Prerequisites](#Prerequisites)\n", "- [Stable Diffusion v2 for Text-to-Image Generation](#Stable-Diffusion-v2-for-Text-to-Image-Generation)\n", " - [Stable Diffusion in Diffusers library](#Stable-Diffusion-in-Diffusers-library)\n", " - [Convert models to OpenVINO Intermediate representation (IR) format](#Convert-models-to-OpenVINO-Intermediate-representation-(IR)-format)\n", " - [Text Encoder](#Text-Encoder)\n", " - [U-Net](#U-Net)\n", " - [VAE](#VAE)\n", " - [Prepare Inference Pipeline](#Prepare-Inference-Pipeline)\n", " - [Configure Inference Pipeline](#Configure-Inference-Pipeline)\n", "- [Quantization](#Quantization)\n", " - [Prepare calibration dataset](#Prepare-calibration-dataset)\n", " - [Run Hybrid Model Quantization](#Run-Hybrid-Model-Quantization)\n", " - [Compare inference time of the FP16 and INT8 pipelines](#Compare-inference-time-of-the-FP16-and-INT8-pipelines)\n", "- [Run Text-to-Image generation](#Run-Text-to-Image-generation)\n", "\n" ] }, { "cell_type": "markdown", "id": "1a571d16e81bf3c4", "metadata": {}, "source": [ "## Prerequisites\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "install required packages" ] }, { "cell_type": "code", "execution_count": 1, "id": "6723fa8e346926b7", "metadata": { "ExecuteTime": { "end_time": "2024-02-13T13:29:10.765014Z", "start_time": "2024-02-13T13:29:08.472566Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Note: you may need to restart the kernel to use updated packages.\n" ] } ], "source": [ "%pip install -q \"diffusers>=0.14.0\" \"openvino>=2023.1.0\" \"datasets>=2.14.6\" \"transformers>=4.25.1\" \"gradio>=4.19\" \"torch>=2.1\" Pillow opencv-python --extra-index-url https://download.pytorch.org/whl/cpu\n", "%pip install -q \"nncf>=2.9.0\"" ] }, { "cell_type": "markdown", "id": "3c4a678aa7817277", "metadata": {}, "source": [ "## Stable Diffusion v2 for Text-to-Image Generation\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "To start, let's look on Text-to-Image process for Stable Diffusion v2. We will use [Stable Diffusion v2-1](https://huggingface.co/stabilityai/stable-diffusion-2-1) model for these purposes. The main difference from Stable Diffusion v2 and Stable Diffusion v2.1 is usage of more data, more training, and less restrictive filtering of the dataset, that gives promising results for selecting wide range of input text prompts. More details about model can be found in [Stability AI blog post](https://stability.ai/blog/stablediffusion2-1-release7-dec-2022) and original model [repository](https://github.com/Stability-AI/stablediffusion).\n", "\n", "### Stable Diffusion in Diffusers library\n", "[back to top ⬆️](#Table-of-contents:)\n", "To work with Stable Diffusion v2, we will use Hugging Face [Diffusers](https://github.com/huggingface/diffusers) library. To experiment with Stable Diffusion models, Diffusers exposes the [`StableDiffusionPipeline`](https://huggingface.co/docs/diffusers/using-diffusers/conditional_image_generation) similar to the [other Diffusers pipelines](https://huggingface.co/docs/diffusers/api/pipelines/overview). The code below demonstrates how to create `StableDiffusionPipeline` using `stable-diffusion-2-1`:" ] }, { "cell_type": "code", "execution_count": 2, "id": "d277beedf7e92c43", "metadata": { "ExecuteTime": { "end_time": "2024-02-13T13:29:13.431319Z", "start_time": "2024-02-13T13:29:10.766275Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "35c151ae50214855ac10300a2e2bb495", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Loading pipeline components...: 0%| | 0/6 [00:00 1.0\n", " # get prompt text embeddings\n", " text_embeddings = self._encode_prompt(\n", " prompt,\n", " do_classifier_free_guidance=do_classifier_free_guidance,\n", " negative_prompt=negative_prompt,\n", " )\n", " # set timesteps\n", " accepts_offset = \"offset\" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())\n", " extra_set_kwargs = {}\n", " if accepts_offset:\n", " extra_set_kwargs[\"offset\"] = 1\n", "\n", " self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)\n", " timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength)\n", " latent_timestep = timesteps[:1]\n", "\n", " # get the initial random noise unless the user supplied it\n", " latents, meta = self.prepare_latents(image, latent_timestep)\n", "\n", " # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature\n", " # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.\n", " # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502\n", " # and should be between [0, 1]\n", " accepts_eta = \"eta\" in set(inspect.signature(self.scheduler.step).parameters.keys())\n", " extra_step_kwargs = {}\n", " if accepts_eta:\n", " extra_step_kwargs[\"eta\"] = eta\n", "\n", " for t in self.progress_bar(timesteps):\n", " # expand the latents if we are doing classifier free guidance\n", " latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents\n", " latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)\n", "\n", " # predict the noise residual\n", " noise_pred = self.unet([latent_model_input, np.array(t, dtype=np.float32), text_embeddings])[self._unet_output]\n", " # perform guidance\n", " if do_classifier_free_guidance:\n", " noise_pred_uncond, noise_pred_text = noise_pred[0], noise_pred[1]\n", " noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)\n", "\n", " # compute the previous noisy sample x_t -> x_t-1\n", " latents = self.scheduler.step(torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs)[\"prev_sample\"].numpy()\n", " # scale and decode the image latents with vae\n", " image = self.vae_decoder(latents * (1 / 0.18215))[self._vae_d_output]\n", "\n", " image = self.postprocess_image(image, meta, output_type)\n", " return {\"sample\": image}\n", "\n", " def _encode_prompt(\n", " self,\n", " prompt: Union[str, List[str]],\n", " num_images_per_prompt: int = 1,\n", " do_classifier_free_guidance: bool = True,\n", " negative_prompt: Union[str, List[str]] = None,\n", " ):\n", " \"\"\"\n", " Encodes the prompt into text encoder hidden states.\n", "\n", " Parameters:\n", " prompt (str or list(str)): prompt to be encoded\n", " num_images_per_prompt (int): number of images that should be generated per prompt\n", " do_classifier_free_guidance (bool): whether to use classifier free guidance or not\n", " negative_prompt (str or list(str)): negative prompt to be encoded\n", " Returns:\n", " text_embeddings (np.ndarray): text encoder hidden states\n", " \"\"\"\n", " batch_size = len(prompt) if isinstance(prompt, list) else 1\n", "\n", " # tokenize input prompts\n", " text_inputs = self.tokenizer(\n", " prompt,\n", " padding=\"max_length\",\n", " max_length=self.tokenizer.model_max_length,\n", " truncation=True,\n", " return_tensors=\"np\",\n", " )\n", " text_input_ids = text_inputs.input_ids\n", "\n", " text_embeddings = self.text_encoder(text_input_ids)[self._text_encoder_output]\n", "\n", " # duplicate text embeddings for each generation per prompt\n", " if num_images_per_prompt != 1:\n", " bs_embed, seq_len, _ = text_embeddings.shape\n", " text_embeddings = np.tile(text_embeddings, (1, num_images_per_prompt, 1))\n", " text_embeddings = np.reshape(text_embeddings, (bs_embed * num_images_per_prompt, seq_len, -1))\n", "\n", " # get unconditional embeddings for classifier free guidance\n", " if do_classifier_free_guidance:\n", " uncond_tokens: List[str]\n", " max_length = text_input_ids.shape[-1]\n", " if negative_prompt is None:\n", " uncond_tokens = [\"\"] * batch_size\n", " elif isinstance(negative_prompt, str):\n", " uncond_tokens = [negative_prompt]\n", " else:\n", " uncond_tokens = negative_prompt\n", " uncond_input = self.tokenizer(\n", " uncond_tokens,\n", " padding=\"max_length\",\n", " max_length=max_length,\n", " truncation=True,\n", " return_tensors=\"np\",\n", " )\n", "\n", " uncond_embeddings = self.text_encoder(uncond_input.input_ids)[self._text_encoder_output]\n", "\n", " # duplicate unconditional embeddings for each generation per prompt, using mps friendly method\n", " seq_len = uncond_embeddings.shape[1]\n", " uncond_embeddings = np.tile(uncond_embeddings, (1, num_images_per_prompt, 1))\n", " uncond_embeddings = np.reshape(uncond_embeddings, (batch_size * num_images_per_prompt, seq_len, -1))\n", "\n", " # For classifier free guidance, we need to do two forward passes.\n", " # Here we concatenate the unconditional and text embeddings into a single batch\n", " # to avoid doing two forward passes\n", " text_embeddings = np.concatenate([uncond_embeddings, text_embeddings])\n", "\n", " return text_embeddings\n", "\n", " def prepare_latents(self, image: PIL.Image.Image = None, latent_timestep: torch.Tensor = None):\n", " \"\"\"\n", " Function for getting initial latents for starting generation\n", "\n", " Parameters:\n", " image (PIL.Image.Image, *optional*, None):\n", " Input image for generation, if not provided randon noise will be used as starting point\n", " latent_timestep (torch.Tensor, *optional*, None):\n", " Predicted by scheduler initial step for image generation, required for latent image mixing with nosie\n", " Returns:\n", " latents (np.ndarray):\n", " Image encoded in latent space\n", " \"\"\"\n", " latents_shape = (1, 4, self.height // 8, self.width // 8)\n", " noise = np.random.randn(*latents_shape).astype(np.float32)\n", " if image is None:\n", " # if we use LMSDiscreteScheduler, let's make sure latents are mulitplied by sigmas\n", " if isinstance(self.scheduler, LMSDiscreteScheduler):\n", " noise = noise * self.scheduler.sigmas[0].numpy()\n", " return noise, {}\n", " input_image, meta = preprocess(image)\n", " latents = self.vae_encoder(input_image)[self._vae_e_output]\n", " latents = latents * 0.18215\n", " latents = self.scheduler.add_noise(torch.from_numpy(latents), torch.from_numpy(noise), latent_timestep).numpy()\n", " return latents, meta\n", "\n", " def postprocess_image(self, image: np.ndarray, meta: Dict, output_type: str = \"pil\"):\n", " \"\"\"\n", " Postprocessing for decoded image. Takes generated image decoded by VAE decoder, unpad it to initila image size (if required),\n", " normalize and convert to [0, 255] pixels range. Optionally, convertes it from np.ndarray to PIL.Image format\n", "\n", " Parameters:\n", " image (np.ndarray):\n", " Generated image\n", " meta (Dict):\n", " Metadata obtained on latents preparing step, can be empty\n", " output_type (str, *optional*, pil):\n", " Output format for result, can be pil or numpy\n", " Returns:\n", " image (List of np.ndarray or PIL.Image.Image):\n", " Postprocessed images\n", " \"\"\"\n", " if \"padding\" in meta:\n", " pad = meta[\"padding\"]\n", " (_, end_h), (_, end_w) = pad[1:3]\n", " h, w = image.shape[2:]\n", " unpad_h = h - end_h\n", " unpad_w = w - end_w\n", " image = image[:, :, :unpad_h, :unpad_w]\n", " image = np.clip(image / 2 + 0.5, 0, 1)\n", " image = np.transpose(image, (0, 2, 3, 1))\n", " # 9. Convert to PIL\n", " if output_type == \"pil\":\n", " image = self.numpy_to_pil(image)\n", " if \"src_height\" in meta:\n", " orig_height, orig_width = meta[\"src_height\"], meta[\"src_width\"]\n", " image = [img.resize((orig_width, orig_height), PIL.Image.Resampling.LANCZOS) for img in image]\n", " else:\n", " if \"src_height\" in meta:\n", " orig_height, orig_width = meta[\"src_height\"], meta[\"src_width\"]\n", " image = [cv2.resize(img, (orig_width, orig_width)) for img in image]\n", " return image\n", "\n", " def get_timesteps(self, num_inference_steps: int, strength: float):\n", " \"\"\"\n", " Helper function for getting scheduler timesteps for generation\n", " In case of image-to-image generation, it updates number of steps according to strength\n", "\n", " Parameters:\n", " num_inference_steps (int):\n", " number of inference steps for generation\n", " strength (float):\n", " value between 0.0 and 1.0, that controls the amount of noise that is added to the input image.\n", " Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input.\n", " \"\"\"\n", " # get the original timestep using init_timestep\n", " init_timestep = min(int(num_inference_steps * strength), num_inference_steps)\n", "\n", " t_start = max(num_inference_steps - init_timestep, 0)\n", " timesteps = self.scheduler.timesteps[t_start:]\n", "\n", " return timesteps, num_inference_steps - t_start" ] }, { "cell_type": "markdown", "id": "8ae7b18e9f8c995a", "metadata": {}, "source": [ "### Configure Inference Pipeline\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "First, you should create instances of OpenVINO Model." ] }, { "cell_type": "code", "execution_count": 8, "id": "635200a7b5d84bf3", "metadata": { "ExecuteTime": { "end_time": "2024-02-13T13:30:16.325848Z", "start_time": "2024-02-13T13:30:16.083685Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "68783cc794cb49a1b5ca674b689805d1", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Dropdown(description='Device:', index=4, options=('CPU', 'GPU.0', 'GPU.1', 'GPU.2', 'AUTO'), value='AUTO')" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import ipywidgets as widgets\n", "\n", "core = ov.Core()\n", "device = widgets.Dropdown(\n", " options=core.available_devices + [\"AUTO\"],\n", " value=\"AUTO\",\n", " description=\"Device:\",\n", " disabled=False,\n", ")\n", "\n", "device" ] }, { "cell_type": "code", "execution_count": 9, "id": "ab277c23095fa5a7", "metadata": { "ExecuteTime": { "end_time": "2024-02-13T13:30:19.234103Z", "start_time": "2024-02-13T13:30:16.326662Z" } }, "outputs": [], "source": [ "ov_config = {\"INFERENCE_PRECISION_HINT\": \"f32\"} if device.value != \"CPU\" else {}\n", "\n", "text_enc = core.compile_model(TEXT_ENCODER_OV_PATH, device.value)\n", "unet_model = core.compile_model(UNET_OV_PATH, device.value)\n", "vae_decoder = core.compile_model(VAE_DECODER_OV_PATH, device.value, ov_config)\n", "vae_encoder = core.compile_model(VAE_ENCODER_OV_PATH, device.value, ov_config)" ] }, { "cell_type": "markdown", "id": "e0cdcdb5a1c10f1a", "metadata": {}, "source": [ "Model tokenizer and scheduler are also important parts of the pipeline. Let us define them and put all components together." ] }, { "cell_type": "code", "execution_count": 10, "id": "25897d22da482d91", "metadata": { "ExecuteTime": { "end_time": "2024-02-13T13:30:19.432106Z", "start_time": "2024-02-13T13:30:19.236629Z" } }, "outputs": [], "source": [ "from transformers import CLIPTokenizer\n", "\n", "scheduler = DDIMScheduler.from_config(conf) # DDIMScheduler is used because UNet quantization produces better results with it\n", "tokenizer = CLIPTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\")\n", "\n", "ov_pipe = OVStableDiffusionPipeline(\n", " tokenizer=tokenizer,\n", " text_encoder=text_enc,\n", " unet=unet_model,\n", " vae_encoder=vae_encoder,\n", " vae_decoder=vae_decoder,\n", " scheduler=scheduler,\n", ")" ] }, { "cell_type": "markdown", "id": "5a5f91dfea77c91", "metadata": {}, "source": [ "## Quantization\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "[NNCF](https://github.com/openvinotoolkit/nncf/) enables post-training quantization by adding quantization layers into model graph and then using a subset of the training dataset to initialize the parameters of these additional quantization layers. Quantized operations are executed in `INT8` instead of `FP32`/`FP16` making model inference faster.\n", "\n", "According to `Stable Diffusion v2` structure, the UNet model takes up significant portion of the overall pipeline execution time. Now we will show you how to optimize the UNet part using [NNCF](https://github.com/openvinotoolkit/nncf/) to reduce computation cost and speed up the pipeline. Quantizing the rest of the pipeline does not significantly improve inference performance but can lead to a substantial degradation of accuracy.\n", "\n", "For this model we apply quantization in hybrid mode which means that we quantize: (1) weights of MatMul and Embedding layers and (2) activations of other layers. The steps are the following:\n", "\n", "1. Create a calibration dataset for quantization.\n", "2. Collect operations with weights.\n", "3. Run `nncf.compress_model()` to compress only the model weights.\n", "4. Run `nncf.quantize()` on the compressed model with weighted operations ignored by providing `ignored_scope` parameter.\n", "5. Save the `INT8` model using `openvino.save_model()` function.\n", "\n", "Please select below whether you would like to run quantization to improve model inference speed.\n", "\n", "> **NOTE**: Quantization is time and memory consuming operation. Running quantization code below may take some time." ] }, { "cell_type": "code", "execution_count": 11, "id": "d5850cecdf32cb56", "metadata": { "ExecuteTime": { "end_time": "2024-02-13T13:30:19.437075Z", "start_time": "2024-02-13T13:30:19.433071Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a254008cba184c21844c547636b96931", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Checkbox(value=True, description='Quantization')" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "to_quantize = widgets.Checkbox(\n", " value=True,\n", " description=\"Quantization\",\n", " disabled=False,\n", ")\n", "\n", "to_quantize" ] }, { "cell_type": "code", "execution_count": 12, "id": "7f9846bbc13089cd", "metadata": { "ExecuteTime": { "end_time": "2024-02-13T13:30:19.441469Z", "start_time": "2024-02-13T13:30:19.437809Z" } }, "outputs": [], "source": [ "# Fetch `skip_kernel_extension` module\n", "import requests\n", "\n", "r = requests.get(\n", " url=\"https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/skip_kernel_extension.py\",\n", ")\n", "open(\"skip_kernel_extension.py\", \"w\").write(r.text)\n", "\n", "int8_ov_pipe = None\n", "\n", "%load_ext skip_kernel_extension" ] }, { "cell_type": "markdown", "id": "75734990a15dcf4b", "metadata": {}, "source": [ "### Prepare calibration dataset\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "We use a portion of [conceptual_captions](https://huggingface.co/datasets/conceptual_captions) dataset from Hugging Face as calibration data.\n", "To collect intermediate model inputs for calibration we should customize `CompiledModel`." ] }, { "cell_type": "code", "execution_count": 13, "id": "e277c7ebebde9973", "metadata": { "ExecuteTime": { "end_time": "2024-02-13T13:30:20.034818Z", "start_time": "2024-02-13T13:30:19.442211Z" } }, "outputs": [], "source": [ "%%skip not $to_quantize.value\n", "\n", "import datasets\n", "import numpy as np\n", "from tqdm.notebook import tqdm\n", "from typing import Any, Dict, List\n", "\n", "\n", "def disable_progress_bar(pipeline, disable=True):\n", " if not hasattr(pipeline, \"_progress_bar_config\"):\n", " pipeline._progress_bar_config = {'disable': disable}\n", " else:\n", " pipeline._progress_bar_config['disable'] = disable\n", "\n", "\n", "class CompiledModelDecorator(ov.CompiledModel):\n", " def __init__(self, compiled_model: ov.CompiledModel, data_cache: List[Any] = None, keep_prob: float = 0.5):\n", " super().__init__(compiled_model)\n", " self.data_cache = data_cache if data_cache is not None else []\n", " self.keep_prob = keep_prob\n", "\n", " def __call__(self, *args, **kwargs):\n", " if np.random.rand() <= self.keep_prob:\n", " self.data_cache.append(*args)\n", " return super().__call__(*args, **kwargs)\n", "\n", "\n", "def collect_calibration_data(ov_pipe, calibration_dataset_size: int, num_inference_steps: int) -> List[Dict]:\n", " original_unet = ov_pipe.unet\n", " calibration_data = []\n", " ov_pipe.unet = CompiledModelDecorator(original_unet, calibration_data, keep_prob=0.7)\n", " disable_progress_bar(ov_pipe)\n", "\n", " dataset = datasets.load_dataset(\"conceptual_captions\", split=\"train\").shuffle(seed=42)\n", "\n", " # Run inference for data collection\n", " pbar = tqdm(total=calibration_dataset_size)\n", " for batch in dataset:\n", " prompt = batch[\"caption\"]\n", " if len(prompt) > ov_pipe.tokenizer.model_max_length:\n", " continue\n", " ov_pipe(prompt, num_inference_steps=num_inference_steps, seed=1)\n", " pbar.update(len(calibration_data) - pbar.n)\n", " if pbar.n >= calibration_dataset_size:\n", " break\n", "\n", " disable_progress_bar(ov_pipe, disable=False)\n", " ov_pipe.unet = original_unet\n", " return calibration_data" ] }, { "cell_type": "markdown", "id": "1a5d9c1dcbebb1a8", "metadata": {}, "source": [ "### Run Hybrid Model Quantization\n", "[back to top ⬆️](#Table-of-contents:)" ] }, { "cell_type": "code", "execution_count": 14, "id": "586920796dacd8db", "metadata": { "ExecuteTime": { "end_time": "2024-02-13T14:31:36.656460Z", "start_time": "2024-02-13T13:32:03.144519Z" }, "test_replace": { "calibration_dataset_size = 300": "calibration_dataset_size = 10", "num_inference_steps=50)": "num_inference_steps=10)" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "INFO:nncf:NNCF initialized successfully. Supported frameworks detected: torch, onnx, openvino\n" ] } ], "source": [ "%%skip not $to_quantize.value\n", "\n", "from collections import deque\n", "from transformers import set_seed\n", "import nncf\n", "\n", "def get_operation_const_op(operation, const_port_id: int):\n", " node = operation.input_value(const_port_id).get_node()\n", " queue = deque([node])\n", " constant_node = None\n", " allowed_propagation_types_list = [\"Convert\", \"FakeQuantize\", \"Reshape\"]\n", "\n", " while len(queue) != 0:\n", " curr_node = queue.popleft()\n", " if curr_node.get_type_name() == \"Constant\":\n", " constant_node = curr_node\n", " break\n", " if len(curr_node.inputs()) == 0:\n", " break\n", " if curr_node.get_type_name() in allowed_propagation_types_list:\n", " queue.append(curr_node.input_value(0).get_node())\n", "\n", " return constant_node\n", "\n", "\n", "def is_embedding(node) -> bool:\n", " allowed_types_list = [\"f16\", \"f32\", \"f64\"]\n", " const_port_id = 0\n", " input_tensor = node.input_value(const_port_id)\n", " if input_tensor.get_element_type().get_type_name() in allowed_types_list:\n", " const_node = get_operation_const_op(node, const_port_id)\n", " if const_node is not None:\n", " return True\n", "\n", " return False\n", "\n", "\n", "def collect_ops_with_weights(model):\n", " ops_with_weights = []\n", " for op in model.get_ops():\n", " if op.get_type_name() == \"MatMul\":\n", " constant_node_0 = get_operation_const_op(op, const_port_id=0)\n", " constant_node_1 = get_operation_const_op(op, const_port_id=1)\n", " if constant_node_0 or constant_node_1:\n", " ops_with_weights.append(op.get_friendly_name())\n", " if op.get_type_name() == \"Gather\" and is_embedding(op):\n", " ops_with_weights.append(op.get_friendly_name())\n", "\n", " return ops_with_weights\n", "\n", "UNET_INT8_OV_PATH = sd2_1_model_dir / 'unet_optimized.xml'\n", "if not UNET_INT8_OV_PATH.exists():\n", " calibration_dataset_size = 300\n", " set_seed(1)\n", " unet_calibration_data = collect_calibration_data(ov_pipe,\n", " calibration_dataset_size=calibration_dataset_size,\n", " num_inference_steps=50)\n", "\n", " unet = core.read_model(UNET_OV_PATH)\n", " \n", " # Collect operations which weights will be compressed\n", " unet_ignored_scope = collect_ops_with_weights(unet)\n", " \n", " # Compress model weights\n", " compressed_unet = nncf.compress_weights(unet, ignored_scope=nncf.IgnoredScope(types=['Convolution']))\n", " \n", " # Quantize both weights and activations of Convolution layers\n", " quantized_unet = nncf.quantize(\n", " model=compressed_unet,\n", " calibration_dataset=nncf.Dataset(unet_calibration_data),\n", " subset_size=calibration_dataset_size,\n", " model_type=nncf.ModelType.TRANSFORMER,\n", " ignored_scope=nncf.IgnoredScope(names=unet_ignored_scope),\n", " advanced_parameters=nncf.AdvancedQuantizationParameters(smooth_quant_alpha=-1)\n", " )\n", " \n", " ov.save_model(quantized_unet, UNET_INT8_OV_PATH)" ] }, { "cell_type": "code", "execution_count": 15, "id": "b5d398a5a7b87506", "metadata": { "ExecuteTime": { "end_time": "2024-02-13T14:32:27.192039Z", "start_time": "2024-02-13T14:32:23.567293Z" } }, "outputs": [], "source": [ "%%skip not $to_quantize.value\n", "\n", "int8_unet_model = core.compile_model(UNET_INT8_OV_PATH, device.value)\n", "int8_ov_pipe = OVStableDiffusionPipeline(\n", " tokenizer=tokenizer,\n", " text_encoder=text_enc,\n", " unet=int8_unet_model,\n", " vae_encoder=vae_encoder,\n", " vae_decoder=vae_decoder,\n", " scheduler=scheduler\n", ")" ] }, { "cell_type": "markdown", "id": "73151859000e9305", "metadata": {}, "source": [ "### Compare UNet file size" ] }, { "cell_type": "code", "execution_count": 16, "id": "4cf380af026bfaac", "metadata": { "ExecuteTime": { "end_time": "2024-02-13T14:32:27.198596Z", "start_time": "2024-02-13T14:32:27.195616Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "FP16 model size: 1691232.51 KB\n", "INT8 model size: 846918.58 KB\n", "Model compression rate: 1.997\n" ] } ], "source": [ "%%skip not $to_quantize.value\n", "\n", "fp16_ir_model_size = UNET_OV_PATH.with_suffix(\".bin\").stat().st_size / 1024\n", "quantized_model_size = UNET_INT8_OV_PATH.with_suffix(\".bin\").stat().st_size / 1024\n", "\n", "print(f\"FP16 model size: {fp16_ir_model_size:.2f} KB\")\n", "print(f\"INT8 model size: {quantized_model_size:.2f} KB\")\n", "print(f\"Model compression rate: {fp16_ir_model_size / quantized_model_size:.3f}\")" ] }, { "cell_type": "markdown", "id": "637babca1053f709", "metadata": {}, "source": [ "### Compare inference time of the FP16 and INT8 pipelines\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "To measure the inference performance of the `FP16` and `INT8` pipelines, we use median inference time on calibration subset.\n", "\n", "> **NOTE**: For the most accurate performance estimation, it is recommended to run `benchmark_app` in a terminal/command prompt after closing other applications." ] }, { "cell_type": "code", "execution_count": 17, "id": "b653073baccacaa1", "metadata": { "ExecuteTime": { "end_time": "2024-02-13T14:32:29.452397Z", "start_time": "2024-02-13T14:32:29.449204Z" } }, "outputs": [], "source": [ "%%skip not $to_quantize.value\n", "\n", "import time\n", "\n", "def calculate_inference_time(pipeline, validation_data):\n", " inference_time = []\n", " pipeline.set_progress_bar_config(disable=True)\n", " for prompt in validation_data:\n", " start = time.perf_counter()\n", " _ = pipeline(prompt, num_inference_steps=10, seed=0)\n", " end = time.perf_counter()\n", " delta = end - start\n", " inference_time.append(delta)\n", " return np.median(inference_time)" ] }, { "cell_type": "code", "execution_count": 18, "id": "cd270c546efe7b33", "metadata": { "ExecuteTime": { "end_time": "2024-02-13T14:44:53.370640Z", "start_time": "2024-02-13T14:32:30.218862Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/nsavel/venvs/ov_notebooks_tmp/lib/python3.8/site-packages/datasets/load.py:1429: FutureWarning: The repository for conceptual_captions contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at https://hf.co/datasets/conceptual_captions\n", "You can avoid this message in future by passing the argument `trust_remote_code=True`.\n", "Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`.\n", " warnings.warn(\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Performance speed-up: 1.232\n" ] } ], "source": [ "%%skip not $to_quantize.value\n", "\n", "validation_size = 10\n", "validation_dataset = datasets.load_dataset(\"conceptual_captions\", split=\"train\", streaming=True).take(validation_size)\n", "validation_data = [batch[\"caption\"] for batch in validation_dataset]\n", "\n", "fp_latency = calculate_inference_time(ov_pipe, validation_data)\n", "int8_latency = calculate_inference_time(int8_ov_pipe, validation_data)\n", "print(f\"Performance speed-up: {fp_latency / int8_latency:.3f}\")" ] }, { "cell_type": "markdown", "id": "3b7f93ec1bd55a2f", "metadata": {}, "source": [ "## Run Text-to-Image generation\n", "[back to top ⬆️](#Table-of-contents:)\n", "\n", "Now, you can define a text prompts for image generation and run inference pipeline.\n", "Optionally, you can also change the random generator seed for latent state initialization and number of steps.\n", "\n", "> **Note**: Consider increasing `steps` to get more precise results. A suggested value is `50`, but it will take longer time to process." ] }, { "cell_type": "markdown", "id": "cd89fdab77ca1f8c", "metadata": {}, "source": [ "Please select below whether you would like to use the quantized model to launch the interactive demo." ] }, { "cell_type": "code", "execution_count": 19, "id": "edd734469b49f2f8", "metadata": { "ExecuteTime": { "end_time": "2024-02-13T14:44:53.376186Z", "start_time": "2024-02-13T14:44:53.371802Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2bb8194dc4f24c1087fc33e4efe5e5e9", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Checkbox(value=True, description='Use quantized model')" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "quantized_model_present = int8_ov_pipe is not None\n", "\n", "use_quantized_model = widgets.Checkbox(\n", " value=True if quantized_model_present else False,\n", " description=\"Use quantized model\",\n", " disabled=not quantized_model_present,\n", ")\n", "\n", "use_quantized_model" ] }, { "cell_type": "code", "execution_count": null, "id": "f1136e88de27fec2", "metadata": { "ExecuteTime": { "end_time": "2024-02-13T14:44:55.067276Z", "start_time": "2024-02-13T14:44:53.376929Z" } }, "outputs": [], "source": [ "import gradio as gr\n", "\n", "\n", "pipeline = int8_ov_pipe if use_quantized_model.value else ov_pipe\n", "\n", "\n", "def generate(prompt, negative_prompt, seed, num_steps, _=gr.Progress(track_tqdm=True)):\n", " result = pipeline(\n", " prompt,\n", " negative_prompt=negative_prompt,\n", " num_inference_steps=num_steps,\n", " seed=seed,\n", " )\n", " return result[\"sample\"][0]\n", "\n", "\n", "gr.close_all()\n", "demo = gr.Interface(\n", " generate,\n", " [\n", " gr.Textbox(\n", " \"valley in the Alps at sunset, epic vista, beautiful landscape, 4k, 8k\",\n", " label=\"Prompt\",\n", " ),\n", " gr.Textbox(\n", " \"frames, borderline, text, charachter, duplicate, error, out of frame, watermark, low quality, ugly, deformed, blur\",\n", " label=\"Negative prompt\",\n", " ),\n", " gr.Slider(value=42, label=\"Seed\", maximum=10000000),\n", " gr.Slider(value=25, label=\"Steps\", minimum=1, maximum=50),\n", " ],\n", " \"image\",\n", ")\n", "\n", "try:\n", " demo.queue().launch()\n", "except Exception:\n", " demo.queue().launch(share=True)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" }, "openvino_notebooks": { "imageUrl": "https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/stable-diffusion-v2/stable-diffusion-v2-optimum-demo.png?raw=true", "tags": { "categories": [ "Model Demos", "AI Trends" ], "libraries": [], "other": [ "Stable Diffusion" ], "tasks": [ "Text-to-Image" ] } }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": {}, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }