|
import torch
|
|
import transformers
|
|
import transformers.models.llama.modeling_llama
|
|
from einops import rearrange
|
|
import random
|
|
|
|
max_len = 8192
|
|
class ScaledRotaryEmbedding(torch.nn.Module):
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
|
super().__init__()
|
|
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
|
self.register_buffer("inv_freq", inv_freq)
|
|
|
|
|
|
max_position_embeddings = 8192
|
|
|
|
|
|
self.max_seq_len_cached = max_position_embeddings
|
|
t = torch.arange(
|
|
self.max_seq_len_cached,
|
|
device=self.inv_freq.device,
|
|
dtype=self.inv_freq.dtype,
|
|
)
|
|
|
|
self.scale = 1 / 4
|
|
t *= self.scale
|
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
|
|
|
emb = torch.cat((freqs, freqs), dim=-1)
|
|
self.register_buffer(
|
|
"cos_cached", emb.cos()[None, None, :, :], persistent=False
|
|
)
|
|
self.register_buffer(
|
|
"sin_cached", emb.sin()[None, None, :, :], persistent=False
|
|
)
|
|
|
|
def forward(self, x, seq_len=None):
|
|
|
|
|
|
if seq_len > self.max_seq_len_cached:
|
|
self.max_seq_len_cached = seq_len
|
|
t = torch.arange(
|
|
self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype
|
|
)
|
|
t *= self.scale
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
|
|
|
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
|
self.register_buffer(
|
|
"cos_cached", emb.cos()[None, None, :, :], persistent=False
|
|
)
|
|
self.register_buffer(
|
|
"sin_cached", emb.sin()[None, None, :, :], persistent=False
|
|
)
|
|
return (
|
|
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
|
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
|
)
|
|
|
|
|
|
def replace_llama_rope_with_scaled_rope():
|
|
transformers.models.llama.modeling_llama.LlamaRotaryEmbedding = (
|
|
ScaledRotaryEmbedding
|
|
) |