Update app.py
Browse files
app.py
CHANGED
@@ -68,26 +68,32 @@ def generator(input_ids, generation_config, max_new_tokens):
|
|
68 |
return generation_output
|
69 |
|
70 |
def loadModel():
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
89 |
return model
|
90 |
-
|
|
|
|
|
91 |
#@spaces.GPU(duration=120)
|
92 |
def respond(
|
93 |
message,
|
@@ -96,10 +102,7 @@ def respond(
|
|
96 |
max_tokens,
|
97 |
temperature,
|
98 |
top_p,
|
99 |
-
):
|
100 |
-
model = loadModel()
|
101 |
-
tokenizer = AutoTokenizer.from_pretrained(base_model,use_fast=False,cache_dir=cache_dir)
|
102 |
-
tokenizer.pad_token = tokenizer.unk_token
|
103 |
ins_f = generate_prompt(message,None)
|
104 |
inputs = tokenizer(ins_f, return_tensors="pt")
|
105 |
input_ids = inputs["input_ids"].cuda()
|
|
|
68 |
return generation_output
|
69 |
|
70 |
def loadModel():
|
71 |
+
global model, tokenizer
|
72 |
+
if model is None:
|
73 |
+
from llama_rope_scaled_monkey_patch import replace_llama_rope_with_scaled_rope
|
74 |
+
replace_llama_rope_with_scaled_rope()
|
75 |
+
t_model = transformers.AutoModelForCausalLM.from_pretrained(
|
76 |
+
base_model,
|
77 |
+
torch_dtype=torch.float16,
|
78 |
+
cache_dir=cache_dir,
|
79 |
+
device_map="auto",
|
80 |
+
)
|
81 |
+
model = PeftModel.from_pretrained(
|
82 |
+
t_model,
|
83 |
+
lora_weights,
|
84 |
+
device_map="auto",
|
85 |
+
cache_dir=cache_dir,
|
86 |
+
torch_dtype=torch.float16,
|
87 |
+
is_trainable=False,
|
88 |
+
)
|
89 |
+
model.eval()
|
90 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model,use_fast=False,cache_dir=cache_dir)
|
91 |
+
tokenizer.pad_token = tokenizer.unk_token
|
92 |
+
model = model.to("cuda")
|
93 |
return model
|
94 |
+
|
95 |
+
model, tokenizer = loadModel()
|
96 |
+
|
97 |
#@spaces.GPU(duration=120)
|
98 |
def respond(
|
99 |
message,
|
|
|
102 |
max_tokens,
|
103 |
temperature,
|
104 |
top_p,
|
105 |
+
):
|
|
|
|
|
|
|
106 |
ins_f = generate_prompt(message,None)
|
107 |
inputs = tokenizer(ins_f, return_tensors="pt")
|
108 |
input_ids = inputs["input_ids"].cuda()
|