Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import transformers
|
|
4 |
from transformers import AutoTokenizer,GenerationConfig
|
5 |
import torch
|
6 |
from peft import PeftModel
|
|
|
7 |
|
8 |
"""
|
9 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
@@ -43,108 +44,108 @@ PROMPT_DICT = {
|
|
43 |
"Instruction:\n{instruction}\n\nResponse:"
|
44 |
),
|
45 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
90 |
)
|
|
|
|
|
|
|
|
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
additional_inputs=[
|
137 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
138 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
139 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
140 |
-
gr.Slider(
|
141 |
-
minimum=0.1,
|
142 |
-
maximum=1.0,
|
143 |
-
value=0.95,
|
144 |
-
step=0.05,
|
145 |
-
label="Top-p (nucleus sampling)",
|
146 |
-
),
|
147 |
-
],
|
148 |
-
)
|
149 |
model.eval()
|
150 |
demo.launch()
|
|
|
4 |
from transformers import AutoTokenizer,GenerationConfig
|
5 |
import torch
|
6 |
from peft import PeftModel
|
7 |
+
import spaces
|
8 |
|
9 |
"""
|
10 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
|
|
44 |
"Instruction:\n{instruction}\n\nResponse:"
|
45 |
),
|
46 |
}
|
47 |
+
from llama_rope_scaled_monkey_patch import replace_llama_rope_with_scaled_rope
|
48 |
+
replace_llama_rope_with_scaled_rope()
|
49 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
50 |
+
base_model,
|
51 |
+
torch_dtype=torch.float16,
|
52 |
+
cache_dir=cache_dir,
|
53 |
+
device_map="auto",
|
54 |
+
)
|
55 |
|
56 |
+
model = PeftModel.from_pretrained(
|
57 |
+
model,
|
58 |
+
lora_weights,
|
59 |
+
device_map="auto",
|
60 |
+
cache_dir=cache_dir,
|
61 |
+
torch_dtype=torch.float16,
|
62 |
+
)
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model,use_fast=False,cache_dir=cache_dir)
|
64 |
+
tokenizer.pad_token = tokenizer.unk_token
|
65 |
+
def generate_prompt(instruction, input=None):
|
66 |
+
if input:
|
67 |
+
return PROMPT_DICT["prompt_input"].format(instruction=instruction,input=input)
|
68 |
+
else:
|
69 |
+
return PROMPT_DICT["prompt_no_input"].format(instruction=instruction)
|
70 |
+
|
71 |
+
@spaces.GPU
|
72 |
+
def respond(
|
73 |
+
message,
|
74 |
+
history: list[tuple[str, str]],
|
75 |
+
system_message,
|
76 |
+
max_tokens,
|
77 |
+
temperature,
|
78 |
+
top_p,
|
79 |
+
):
|
80 |
+
ins_f = generate_prompt(instruction,input)
|
81 |
+
inputs = tokenizer(ins_f, return_tensors="pt")
|
82 |
+
input_ids = inputs["input_ids"].cuda()
|
83 |
+
generation_config = GenerationConfig(
|
84 |
+
temperature=0.1,
|
85 |
+
top_p=0.75,
|
86 |
+
top_k=40,
|
87 |
+
do_sample=True,
|
88 |
+
num_beams=1,
|
89 |
+
max_new_tokens = 512
|
90 |
+
)
|
91 |
+
|
92 |
+
# Without streaming
|
93 |
+
with torch.no_grad():
|
94 |
+
generation_output = model.generate(
|
95 |
+
input_ids=input_ids,
|
96 |
+
generation_config=generation_config,
|
97 |
+
return_dict_in_generate=True,
|
98 |
+
output_scores=False,
|
99 |
+
max_new_tokens=max_new_tokens,
|
100 |
)
|
101 |
+
s = generation_output.sequences[0]
|
102 |
+
output = tokenizer.decode(s)
|
103 |
+
response = output.split("Response:")[1].strip()
|
104 |
+
yield response
|
105 |
|
106 |
+
#messages = [{"role": "system", "content": system_message}]
|
107 |
+
|
108 |
+
#for val in history:
|
109 |
+
# if val[0]:
|
110 |
+
# messages.append({"role": "user", "content": val[0]})
|
111 |
+
# if val[1]:
|
112 |
+
# messages.append({"role": "assistant", "content": val[1]})
|
113 |
+
|
114 |
+
# messages.append({"role": "user", "content": message})
|
115 |
+
|
116 |
+
#response = ""
|
117 |
+
|
118 |
+
#for message in client.chat_completion(
|
119 |
+
# messages,
|
120 |
+
# max_tokens=max_tokens,
|
121 |
+
# stream=True,
|
122 |
+
# temperature=temperature,
|
123 |
+
# top_p=top_p,
|
124 |
+
#):
|
125 |
+
# token = message.choices[0].delta.content
|
126 |
+
|
127 |
+
# response += token
|
128 |
+
# yield response
|
129 |
+
|
130 |
+
|
131 |
+
"""
|
132 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
133 |
+
"""
|
134 |
+
demo = gr.ChatInterface(
|
135 |
+
respond,
|
136 |
+
additional_inputs=[
|
137 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
138 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
139 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
140 |
+
gr.Slider(
|
141 |
+
minimum=0.1,
|
142 |
+
maximum=1.0,
|
143 |
+
value=0.95,
|
144 |
+
step=0.05,
|
145 |
+
label="Top-p (nucleus sampling)",
|
146 |
+
),
|
147 |
+
],
|
148 |
+
)
|
149 |
+
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
model.eval()
|
151 |
demo.launch()
|