Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,54 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
3 |
|
4 |
"""
|
5 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def respond(
|
11 |
message,
|
12 |
history: list[tuple[str, str]],
|
@@ -15,29 +57,55 @@ def respond(
|
|
15 |
temperature,
|
16 |
top_p,
|
17 |
):
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
|
43 |
"""
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
import transformers
|
4 |
+
from transformers import AutoTokenizer,GenerationConfig
|
5 |
+
import torch
|
6 |
+
from peft import PeftModel
|
7 |
|
8 |
"""
|
9 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
10 |
"""
|
11 |
+
#client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
12 |
+
from util.llama_rope_scaled_monkey_patch import replace_llama_rope_with_scaled_rope
|
13 |
+
replace_llama_rope_with_scaled_rope()
|
14 |
+
base_model = "Neko-Institute-of-Science/LLaMA-65B-HF"
|
15 |
+
lora_weights = "adapter_config.json"
|
16 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
17 |
+
base_model,
|
18 |
+
torch_dtype=torch.float16,
|
19 |
+
cache_dir=cache_dir,
|
20 |
+
device_map="auto",
|
21 |
+
)
|
22 |
|
23 |
+
model = PeftModel.from_pretrained(
|
24 |
+
model,
|
25 |
+
lora_weights,
|
26 |
+
device_map="auto",
|
27 |
+
cache_dir=cache_dir,
|
28 |
+
torch_dtype=torch.float16,
|
29 |
+
)
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model,use_fast=False,cache_dir=cache_dir)
|
31 |
+
tokenizer.pad_token = tokenizer.unk_token
|
32 |
+
model.eval()
|
33 |
+
PROMPT_DICT = {
|
34 |
+
"prompt_input": (
|
35 |
+
"Below is an instruction that describes a task, paired with further context. "
|
36 |
+
"Write a response that appropriately completes the request.\n\n"
|
37 |
+
"Instruction:\n{instruction}\n\n Input:\n{input}\n\n Response:"
|
38 |
+
),
|
39 |
+
"prompt_no_input": (
|
40 |
+
"Below is an instruction that describes a task. "
|
41 |
+
"Write a response that appropriately completes the request.\n\n"
|
42 |
+
"Instruction:\n{instruction}\n\nResponse:"
|
43 |
+
),
|
44 |
+
}
|
45 |
|
46 |
+
def generate_prompt(instruction, input=None):
|
47 |
+
if input:
|
48 |
+
return PROMPT_DICT["prompt_input"].format(instruction=instruction,input=input)
|
49 |
+
else:
|
50 |
+
return PROMPT_DICT["prompt_no_input"].format(instruction=instruction)
|
51 |
+
|
52 |
def respond(
|
53 |
message,
|
54 |
history: list[tuple[str, str]],
|
|
|
57 |
temperature,
|
58 |
top_p,
|
59 |
):
|
60 |
+
ins_f = generate_prompt(instruction,input)
|
61 |
+
inputs = tokenizer(ins_f, return_tensors="pt")
|
62 |
+
input_ids = inputs["input_ids"].cuda()
|
63 |
+
generation_config = GenerationConfig(
|
64 |
+
temperature=0.1,
|
65 |
+
top_p=0.75,
|
66 |
+
top_k=40,
|
67 |
+
do_sample=True,
|
68 |
+
num_beams=1,
|
69 |
+
max_new_tokens = 512
|
70 |
+
)
|
71 |
|
72 |
+
# Without streaming
|
73 |
+
with torch.no_grad():
|
74 |
+
generation_output = model.generate(
|
75 |
+
input_ids=input_ids,
|
76 |
+
generation_config=generation_config,
|
77 |
+
return_dict_in_generate=True,
|
78 |
+
output_scores=False,
|
79 |
+
max_new_tokens=max_new_tokens,
|
80 |
+
)
|
81 |
+
s = generation_output.sequences[0]
|
82 |
+
output = tokenizer.decode(s)
|
83 |
+
response = output.split("Response:")[1].strip()
|
84 |
+
yield response
|
85 |
+
|
86 |
+
#messages = [{"role": "system", "content": system_message}]
|
87 |
|
88 |
+
#for val in history:
|
89 |
+
# if val[0]:
|
90 |
+
# messages.append({"role": "user", "content": val[0]})
|
91 |
+
# if val[1]:
|
92 |
+
# messages.append({"role": "assistant", "content": val[1]})
|
93 |
|
94 |
+
# messages.append({"role": "user", "content": message})
|
95 |
|
96 |
+
#response = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
#for message in client.chat_completion(
|
99 |
+
# messages,
|
100 |
+
# max_tokens=max_tokens,
|
101 |
+
# stream=True,
|
102 |
+
# temperature=temperature,
|
103 |
+
# top_p=top_p,
|
104 |
+
#):
|
105 |
+
# token = message.choices[0].delta.content
|
106 |
+
|
107 |
+
# response += token
|
108 |
+
# yield response
|
109 |
|
110 |
|
111 |
"""
|