mamkkl commited on
Commit
a663068
·
verified ·
1 Parent(s): 9836927

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +87 -19
app.py CHANGED
@@ -1,12 +1,54 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
 
 
3
 
4
  """
5
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
  """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
 
 
 
 
 
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
 
 
 
 
 
 
10
  def respond(
11
  message,
12
  history: list[tuple[str, str]],
@@ -15,29 +57,55 @@ def respond(
15
  temperature,
16
  top_p,
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
 
 
 
 
 
 
 
 
 
 
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
 
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
27
 
28
- response = ""
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
 
 
 
 
 
41
 
42
 
43
  """
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ import transformers
4
+ from transformers import AutoTokenizer,GenerationConfig
5
+ import torch
6
+ from peft import PeftModel
7
 
8
  """
9
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
10
  """
11
+ #client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
12
+ from util.llama_rope_scaled_monkey_patch import replace_llama_rope_with_scaled_rope
13
+ replace_llama_rope_with_scaled_rope()
14
+ base_model = "Neko-Institute-of-Science/LLaMA-65B-HF"
15
+ lora_weights = "adapter_config.json"
16
+ model = transformers.AutoModelForCausalLM.from_pretrained(
17
+ base_model,
18
+ torch_dtype=torch.float16,
19
+ cache_dir=cache_dir,
20
+ device_map="auto",
21
+ )
22
 
23
+ model = PeftModel.from_pretrained(
24
+ model,
25
+ lora_weights,
26
+ device_map="auto",
27
+ cache_dir=cache_dir,
28
+ torch_dtype=torch.float16,
29
+ )
30
+ tokenizer = AutoTokenizer.from_pretrained(base_model,use_fast=False,cache_dir=cache_dir)
31
+ tokenizer.pad_token = tokenizer.unk_token
32
+ model.eval()
33
+ PROMPT_DICT = {
34
+ "prompt_input": (
35
+ "Below is an instruction that describes a task, paired with further context. "
36
+ "Write a response that appropriately completes the request.\n\n"
37
+ "Instruction:\n{instruction}\n\n Input:\n{input}\n\n Response:"
38
+ ),
39
+ "prompt_no_input": (
40
+ "Below is an instruction that describes a task. "
41
+ "Write a response that appropriately completes the request.\n\n"
42
+ "Instruction:\n{instruction}\n\nResponse:"
43
+ ),
44
+ }
45
 
46
+ def generate_prompt(instruction, input=None):
47
+ if input:
48
+ return PROMPT_DICT["prompt_input"].format(instruction=instruction,input=input)
49
+ else:
50
+ return PROMPT_DICT["prompt_no_input"].format(instruction=instruction)
51
+
52
  def respond(
53
  message,
54
  history: list[tuple[str, str]],
 
57
  temperature,
58
  top_p,
59
  ):
60
+ ins_f = generate_prompt(instruction,input)
61
+ inputs = tokenizer(ins_f, return_tensors="pt")
62
+ input_ids = inputs["input_ids"].cuda()
63
+ generation_config = GenerationConfig(
64
+ temperature=0.1,
65
+ top_p=0.75,
66
+ top_k=40,
67
+ do_sample=True,
68
+ num_beams=1,
69
+ max_new_tokens = 512
70
+ )
71
 
72
+ # Without streaming
73
+ with torch.no_grad():
74
+ generation_output = model.generate(
75
+ input_ids=input_ids,
76
+ generation_config=generation_config,
77
+ return_dict_in_generate=True,
78
+ output_scores=False,
79
+ max_new_tokens=max_new_tokens,
80
+ )
81
+ s = generation_output.sequences[0]
82
+ output = tokenizer.decode(s)
83
+ response = output.split("Response:")[1].strip()
84
+ yield response
85
+
86
+ #messages = [{"role": "system", "content": system_message}]
87
 
88
+ #for val in history:
89
+ # if val[0]:
90
+ # messages.append({"role": "user", "content": val[0]})
91
+ # if val[1]:
92
+ # messages.append({"role": "assistant", "content": val[1]})
93
 
94
+ # messages.append({"role": "user", "content": message})
95
 
96
+ #response = ""
 
 
 
 
 
 
 
97
 
98
+ #for message in client.chat_completion(
99
+ # messages,
100
+ # max_tokens=max_tokens,
101
+ # stream=True,
102
+ # temperature=temperature,
103
+ # top_p=top_p,
104
+ #):
105
+ # token = message.choices[0].delta.content
106
+
107
+ # response += token
108
+ # yield response
109
 
110
 
111
  """