mamkkl commited on
Commit
fc5bd6e
·
verified ·
1 Parent(s): 85d1cdf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -2
app.py CHANGED
@@ -3,7 +3,7 @@ from huggingface_hub import InferenceClient
3
  import transformers
4
  from transformers import AutoTokenizer,GenerationConfig
5
  import torch
6
- from peft import PeftModel
7
 
8
  """
9
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
@@ -12,7 +12,26 @@ For more information on `huggingface_hub` Inference API support, please check th
12
  from llama_rope_scaled_monkey_patch import replace_llama_rope_with_scaled_rope
13
  replace_llama_rope_with_scaled_rope()
14
  base_model = "Neko-Institute-of-Science/LLaMA-65B-HF"
15
- lora_weights = "./adapter_config.json"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  cache_dir = "/data"
17
  model = transformers.AutoModelForCausalLM.from_pretrained(
18
  base_model,
 
3
  import transformers
4
  from transformers import AutoTokenizer,GenerationConfig
5
  import torch
6
+ from peft import PeftModel, LoraConfig
7
 
8
  """
9
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
 
12
  from llama_rope_scaled_monkey_patch import replace_llama_rope_with_scaled_rope
13
  replace_llama_rope_with_scaled_rope()
14
  base_model = "Neko-Institute-of-Science/LLaMA-65B-HF"
15
+ lora_weights = LoraConfig(
16
+ auto_mapping=null,
17
+ base_model_name_or_path="Neko-Institute-of-Science/LLaMA-65B-HF",
18
+ bias=none,
19
+ fan_in_fan_out=false,
20
+ inference_mode=true,
21
+ init_lora_weights=true,
22
+ layers_pattern=null,
23
+ layers_to_transform=null,
24
+ lora_alpha=16,
25
+ lora_dropout=0.05,
26
+ modules_to_save=null,
27
+ peft_type="LORA",
28
+ revision=null,
29
+ target_modules=["q_proj","k_proj","v_proj","o_proj","gate_proj","up_proj","down_proj"],
30
+ task_type="CAUSAL_LM",
31
+ lora_alpha=32,
32
+ target_modules=["to_k", "to_q", "to_v", "to_out"],
33
+ )
34
+
35
  cache_dir = "/data"
36
  model = transformers.AutoModelForCausalLM.from_pretrained(
37
  base_model,