import gradio as gr from huggingface_hub import InferenceClient import transformers from transformers import AutoTokenizer,GenerationConfig, BitsAndBytesConfig import torch from peft import PeftModel import spaces import torch import bitsandbytes, accelerate print(transformers.__version__) # Should be >= 4.26.0 print(bitsandbytes.__version__) # Should be >= 0.37.0 print(accelerate.__version__) # Should be >= 0.12.0 num_gpus = torch.cuda.device_count() print(f"Number of available GPUs: {num_gpus}") """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ #client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") base_model = "Neko-Institute-of-Science/LLaMA-65B-HF" lora_weights = "./" #lora_weights = LoraConfig( # auto_mapping=None, # base_model_name_or_path="Neko-Institute-of-Science/LLaMA-65B-HF", # bias=None, # fan_in_fan_out=False, # inference_mode=True, # init_lora_weights=True, # layers_pattern=None, # layers_to_transform=None, # lora_alpha=16, # lora_dropout=0.05, # modules_to_save=None, # peft_type="LORA", # revision=None, # target_modules=["q_proj","k_proj","v_proj","o_proj","gate_proj","up_proj","down_proj"], # task_type="CAUSAL_LM", #) cache_dir = "/data" PROMPT_DICT = { "prompt_input": ( "Below is an instruction that describes a task, paired with further context. " "Write a response that appropriately completes the request.\n\n" "Instruction:\n{instruction}\n\n Input:\n{input}\n\n Response:" ), "prompt_no_input": ( "Below is an instruction that describes a task. " "Write a response that appropriately completes the request.\n\n" "Instruction:\n{instruction}\n\nResponse:" ), } model = None tokenizer = None quantization_config = BitsAndBytesConfig( load_in_8bit=True, # Enable 8-bit quantization llm_int8_enable_fp32_cpu_offload=True # Enable FP32 CPU offloading ) def print_resources(): # List details for each GPU for i in range(num_gpus): print(f"GPU {i}: {torch.cuda.get_device_name(i)}") print(f" Total Memory: {torch.cuda.get_device_properties(i).total_memory / 1e9:.2f} GB") print(f" CUDA Capability: {torch.cuda.get_device_properties(i).major}.{torch.cuda.get_device_properties(i).minor}") print(f" Allocated Memory: {torch.cuda.memory_allocated(i) / 1e9:.2f} GB") print(f" Cached Memory: {torch.cuda.memory_reserved(i) / 1e9:.2f} GB") print(f" Free Memory: {torch.cuda.get_device_properties(i).total_memory / 1e9 - torch.cuda.memory_reserved(i) / 1e9:.2f} GB") def generate_prompt(instruction, input=None): if input: return PROMPT_DICT["prompt_input"].format(instruction=instruction,input=input) else: return PROMPT_DICT["prompt_no_input"].format(instruction=instruction) def generator(input_ids, generation_config, max_new_tokens): # Without streaming with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=False, max_new_tokens=max_new_tokens, ) return generation_output def loadModel(): global model, tokenizer if model is None: #from llama_rope_scaled_monkey_patch import replace_llama_rope_with_scaled_rope #replace_llama_rope_with_scaled_rope() model = transformers.AutoModelForCausalLM.from_pretrained( base_model, torch_dtype=torch.float16, cache_dir=cache_dir, device_map="auto", #quantization_config=quantization_config, max_memory={ 0: "30GB", # GPU 0 with 20GB memory 1: "45GB", # GPU 0 with 20GB memory 2: "45GB", # GPU 0 with 20GB memory 3: "45GB", # GPU 0 with 20GB memory #"cpu": "5GB" # CPU with 100GB memory }, ) print_resources() model = PeftModel.from_pretrained( model, lora_weights, device_map="auto", cache_dir='', torch_dtype=torch.float16, is_trainable=False, max_memory={ 0: "30GB", # GPU 0 with 20GB memory 1: "45GB", # GPU 0 with 20GB memory 2: "45GB", # GPU 0 with 20GB memory 3: "45GB", # GPU 0 with 20GB memory #"cpu": "5GB" # CPU with 100GB memory }, ) tokenizer = AutoTokenizer.from_pretrained(base_model,use_fast=False,cache_dir=cache_dir) tokenizer.pad_token = tokenizer.unk_token print_resources() return model, tokenizer model, tokenizer = loadModel() #@spaces.GPU(duration=120) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): ins_f = generate_prompt(message,None) inputs = tokenizer(ins_f, return_tensors="pt") print_resources() input_ids = inputs["input_ids"].cuda() max_new_tokens = 512 generation_config = GenerationConfig( temperature=0.1, top_p=0.75, top_k=40, do_sample=True, num_beams=1, max_new_tokens = max_new_tokens ) #generation_output = generator(input_ids, generation_config, max_new_tokens) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=False, max_new_tokens=max_new_tokens, ) s = generation_output.sequences[0] output = tokenizer.decode(s) response = output.split("Response:")[1].strip() yield response #messages = [{"role": "system", "content": system_message}] #for val in history: # if val[0]: # messages.append({"role": "user", "content": val[0]}) # if val[1]: # messages.append({"role": "assistant", "content": val[1]}) # messages.append({"role": "user", "content": message}) #response = "" #for message in client.chat_completion( # messages, # max_tokens=max_tokens, # stream=True, # temperature=temperature, # top_p=top_p, #): # token = message.choices[0].delta.content # response += token # yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()