import gradio as gr from diffusers import DiffusionPipeline import torch import random # Use lightweight model (faster & less resources) model_id = "OFA-Sys/small-stable-diffusion-v0" # 35x smaller than SDXL # Load model with optimizations pipe = DiffusionPipeline.from_pretrained( model_id, torch_dtype=torch.float16 ).to("cuda") def generate(prompt): # Random seed for unique generations random_seed = random.randint(0, 2147483647) generator = torch.Generator("cuda").manual_seed(random_seed) # Generate image with variations image = pipe( prompt, num_inference_steps=20, # Faster generation generator=generator ).images[0] return image # Simple interface gr.Interface( fn=generate, inputs=gr.Textbox(label="Enter text prompt"), outputs=gr.Image(label="Generated Image"), title="Simple AI Image Generator", description="Type anything - get random images every time!", allow_flagging="never" # Remove feedback buttons ).launch()