Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification,pipeline | |
import requests | |
import json | |
import os | |
GEMINI_API_KEY = "AIzaSyBO3-HG-WcITn58PdpK7mMyvFQitoH00qA" # Replace with your Gemini API key | |
GOOGLE_API_KEY = "AIzaSyAf5v5380xkpo0Rk3kBiSxpxYVBQwcDi2A" | |
st.set_page_config(page_title="News Prediction", page_icon=":earth_africa:") | |
# Load tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained("hamzab/roberta-fake-news-classification") | |
model = AutoModelForSequenceClassification.from_pretrained("hamzab/roberta-fake-news-classification") | |
from deep_translator import GoogleTranslator | |
def translate_to_english(text): | |
try: | |
return GoogleTranslator(source='auto', target='en').translate(text) | |
except Exception as e: | |
return f"Error in translation: {e}" | |
def predict_fake(title, text): | |
input_str = "<title>" + title + "<content>" + text + "<end>" | |
input_ids = tokenizer.encode_plus(input_str, max_length=512, padding="max_length", truncation=True, return_tensors="pt") | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
model.to(device) | |
with torch.no_grad(): | |
output = model(input_ids["input_ids"].to(device), attention_mask=input_ids["attention_mask"].to(device)) | |
return dict(zip(["Fake", "Real"], [x.item() for x in list(torch.nn.Softmax()(output.logits)[0])])) | |
def fact_check_with_google(api_key, query): | |
url = f"https://factchecktools.googleapis.com/v1alpha1/claims:search" | |
params = { | |
"query": query, | |
"key": api_key | |
} | |
response = requests.get(url, params=params) | |
if response.status_code == 200: | |
return response.json() | |
else: | |
return {"error": f"Unable to fetch results from Google Fact Check API. HTTP {response.status_code}: {response.text}"} | |
# Load summarizer | |
def load_summarizer(): | |
return pipeline("summarization", model="facebook/bart-large-cnn") | |
summarizer = load_summarizer() | |
import google.generativeai as genai | |
# Initialize Gemini with your API Key | |
def configure_gemini(api_key): | |
genai.configure(api_key=api_key) | |
model = genai.GenerativeModel('gemini-2.0-flash') | |
return model | |
# Function to extract fact-check query using Gemini | |
def generate_fact_check_query(model, title, text): | |
prompt = f""" | |
You are a helpful assistant that extracts the **core claim** from news articles to be used for fact checking. | |
Given the **title** and **content**, provide a **single-line, specific, fact-checkable statement** that can be searched in fact-checking databases like Google's Fact Check API. | |
Return only the optimized query. | |
--- | |
Title: {title} | |
Content: {text} | |
""" | |
try: | |
response = model.generate_content(prompt) | |
return response.text.strip() | |
except Exception as e: | |
return f"Error generating query: {e}" | |
def main(): | |
st.title("Fake News Prediction") | |
# Store your API key here or load from environment variable | |
# π Replace this! | |
with st.form("news_form"): | |
st.subheader("Enter News Details") | |
title = st.text_input("Title") | |
text = st.text_area("Text") | |
language = st.selectbox("Select Language", options=["English", "Other"]) | |
check_fact = st.checkbox("Also check with Google Fact Check API") | |
submit_button = st.form_submit_button("Submit") | |
if submit_button: | |
if language == "Other": | |
title = translate_to_english(title) | |
text = translate_to_english(text) | |
prediction = predict_fake(title, text) | |
st.subheader("Prediction:") | |
st.write("Prediction: ", prediction) | |
if prediction.get("Real") > 0.5: | |
st.write("This news is predicted to be **real** :muscle:") | |
else: | |
st.write("This news is predicted to be **fake** :shit:") | |
# Use Gemini to generate a better fact-check | |
if GEMINI_API_KEY: | |
gemini_model = configure_gemini(GEMINI_API_KEY) | |
# β Use Gemini to generate better fact-check query | |
fact_query = generate_fact_check_query(gemini_model, title, text) | |
st.markdown("#### π Optimized Query for Fact Check") | |
st.write(fact_query) | |
if check_fact: | |
# β Perform fact check with optimized query | |
fact_check_data = fact_check_with_google(GOOGLE_API_KEY, fact_query) | |
st.subheader("π§Ύ Google Fact Check Results") | |
if "claims" in fact_check_data: | |
for claim in fact_check_data["claims"]: | |
st.markdown(f"**Claim:** {claim.get('text', 'N/A')}") | |
for review in claim.get("claimReview", []): | |
st.write(f"- **Publisher**: {review.get('publisher', {}).get('name', 'N/A')}") | |
st.write(f"- **Rating**: {review.get('textualRating', 'N/A')}") | |
st.write(f"- **URL**: {review.get('url', 'N/A')}") | |
st.write("---") | |
else: | |
st.write("No fact-check results found. Try modifying the title or content.") | |
if __name__ == "__main__": | |
main() | |