Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -18,7 +18,14 @@ embedding_model = SentenceTransformer("intfloat/e5-large")
|
|
18 |
|
19 |
print("Loading text generation model...")
|
20 |
# Use a lighter model for testing
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
# === Qdrant Setup ===
|
24 |
print("Connecting to Qdrant...")
|
@@ -65,9 +72,11 @@ class MathRetrievalQA(dspy.Program):
|
|
65 |
print("Context for generation:", context)
|
66 |
if not context:
|
67 |
return dspy.Output(answer="", retrieved_context="")
|
68 |
-
|
|
|
69 |
print("Generating answer...")
|
70 |
-
answer = qa_pipeline(prompt, max_new_tokens=
|
|
|
71 |
print("Generated answer:", answer)
|
72 |
return {"answer": answer, "retrieved_context": context}
|
73 |
|
|
|
18 |
|
19 |
print("Loading text generation model...")
|
20 |
# Use a lighter model for testing
|
21 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline
|
22 |
+
|
23 |
+
print("Loading text generation model...")
|
24 |
+
model_name = "google/flan-t5-large"
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
26 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
27 |
+
qa_pipeline = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
|
28 |
+
|
29 |
|
30 |
# === Qdrant Setup ===
|
31 |
print("Connecting to Qdrant...")
|
|
|
72 |
print("Context for generation:", context)
|
73 |
if not context:
|
74 |
return dspy.Output(answer="", retrieved_context="")
|
75 |
+
|
76 |
+
prompt = f"Question: {question}\nStep-by-step solution:\n{context}\nAnswer:"
|
77 |
print("Generating answer...")
|
78 |
+
answer = qa_pipeline(prompt, max_new_tokens=150)[0]["generated_text"]
|
79 |
+
|
80 |
print("Generated answer:", answer)
|
81 |
return {"answer": answer, "retrieved_context": context}
|
82 |
|