manasagangotri commited on
Commit
a6a2ff2
ยท
verified ยท
1 Parent(s): 400519d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -50
app.py CHANGED
@@ -16,10 +16,6 @@ classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnl
16
  print("Loading embedding model...")
17
  embedding_model = SentenceTransformer("intfloat/e5-large")
18
 
19
- print("Loading text generation model...")
20
- # Use a lighter model for testing
21
- #qa_pipeline = pipeline("text-generation", model="gpt2")
22
-
23
  # === Qdrant Setup ===
24
  print("Connecting to Qdrant...")
25
  qdrant_client = QdrantClient(path="qdrant_data")
@@ -29,20 +25,16 @@ collection_name = "math_problems"
29
  def is_valid_math_question(text):
30
  candidate_labels = ["math", "not math"]
31
  result = classifier(text, candidate_labels)
32
- print("Classifier result:", result)
33
  return result['labels'][0] == "math" and result['scores'][0] > 0.7
34
 
35
  # === Retrieval ===
36
  def retrieve_from_qdrant(query):
37
- print("Retrieving context from Qdrant...")
38
  query_vector = embedding_model.encode(query).tolist()
39
  hits = qdrant_client.search(collection_name=collection_name, query_vector=query_vector, limit=3)
40
- print("Retrieved hits:", hits)
41
  return [hit.payload for hit in hits] if hits else []
42
 
43
  # === Web Search ===
44
  def web_search_tavily(query):
45
- print("Calling Tavily...")
46
  TAVILY_API_KEY = "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"
47
  response = requests.post(
48
  "https://api.tavily.com/search",
@@ -59,36 +51,25 @@ class MathAnswer(dspy.Signature):
59
  # === DSPy Programs ===
60
  class MathRetrievalQA(dspy.Program):
61
  def forward(self, question):
62
- print("Inside MathRetrievalQA...")
63
  context_items = retrieve_from_qdrant(question)
64
  context = "\n".join([item["solution"] for item in context_items if "solution" in item])
65
- print("Context for generation:", context)
66
  if not context:
67
- return dspy.Output(answer="", retrieved_context="")
68
  prompt = f"Question: {question}\nContext: {context}\nAnswer:"
69
- print("Generating answer...")
70
- # answer = qa_pipeline(prompt, max_new_tokens=100)[0]["generated_text"]
71
- print("Generated answer:", prompt)
72
  return {"answer": prompt, "retrieved_context": context}
73
 
74
- # return dspy.Output(answer=answer, retrieved_context=context)
75
-
76
  class WebFallbackQA(dspy.Program):
77
  def forward(self, question):
78
- print("Fallback to Tavily...")
79
  answer = web_search_tavily(question)
80
- # return dspy.Output(answer=answer, retrieved_context="Tavily")
81
  return {"answer": answer, "retrieved_context": "Tavily"}
82
 
83
-
84
  class MathRouter(dspy.Program):
85
  def forward(self, question):
86
- print("Routing question:", question)
87
  if not is_valid_math_question(question):
88
- return dspy.Output(answer="โŒ Only math questions are accepted. Please rephrase.", retrieved_context="")
89
  result = MathRetrievalQA().forward(question)
90
- #return result if result.answer else WebFallbackQA().forward(question)
91
  return result if result["answer"] else WebFallbackQA().forward(question)
 
92
  router = MathRouter()
93
 
94
  # === Feedback Storage ===
@@ -100,19 +81,14 @@ def store_feedback(question, answer, feedback, correct_answer):
100
  "correct_answer": correct_answer,
101
  "timestamp": str(datetime.now())
102
  }
103
- print("Storing feedback:", entry)
104
  with open("feedback.json", "a") as f:
105
  f.write(json.dumps(entry) + "\n")
106
 
107
  # === Gradio Functions ===
108
  def ask_question(question):
109
- print("ask_question() called with:", question)
110
  result = router.forward(question)
111
- print("Result:", result)
112
- #return result.answer, question, result.answer
113
  return result["answer"], question, result["answer"]
114
 
115
-
116
  def submit_feedback(question, model_answer, feedback, correct_answer):
117
  store_feedback(question, model_answer, feedback, correct_answer)
118
  return "โœ… Feedback received. Thank you!"
@@ -120,29 +96,27 @@ def submit_feedback(question, model_answer, feedback, correct_answer):
120
  # === Gradio UI ===
121
  with gr.Blocks() as demo:
122
  gr.Markdown("## ๐Ÿงฎ Math Question Answering with DSPy + Feedback")
 
 
 
 
 
 
 
123
 
124
- with gr.Tab("Ask a Math Question"):
125
- with gr.Row():
126
- question_input = gr.Textbox(label="Enter your math question", lines=2)
127
- gr.Markdown("### ๐Ÿง  Answer:")
128
- answer_output = gr.Markdown()
129
-
130
- #answer_output = gr.Markdown(label="Answer")
131
- hidden_q = gr.Textbox(visible=False)
132
- hidden_a = gr.Textbox(visible=False)
133
- submit_btn = gr.Button("Get Answer")
134
- submit_btn.click(fn=ask_question, inputs=[question_input], outputs=[answer_output, hidden_q, hidden_a])
135
-
136
- with gr.Tab("Submit Feedback"):
137
- gr.Markdown("### Was the answer helpful?")
138
- fb_question = gr.Textbox(label="Original Question")
139
- fb_answer = gr.Textbox(label="Model's Answer")
140
- fb_like = gr.Radio(["๐Ÿ‘", "๐Ÿ‘Ž"], label="Your Feedback")
141
- fb_correct = gr.Textbox(label="Correct Answer (optional)")
142
- fb_submit_btn = gr.Button("Submit Feedback")
143
- fb_status = gr.Textbox(label="Status", interactive=False)
144
- fb_submit_btn.click(fn=submit_feedback,
145
- inputs=[fb_question, fb_answer, fb_like, fb_correct],
146
- outputs=[fb_status])
147
 
148
  demo.launch(share=True, debug=True)
 
 
16
  print("Loading embedding model...")
17
  embedding_model = SentenceTransformer("intfloat/e5-large")
18
 
 
 
 
 
19
  # === Qdrant Setup ===
20
  print("Connecting to Qdrant...")
21
  qdrant_client = QdrantClient(path="qdrant_data")
 
25
  def is_valid_math_question(text):
26
  candidate_labels = ["math", "not math"]
27
  result = classifier(text, candidate_labels)
 
28
  return result['labels'][0] == "math" and result['scores'][0] > 0.7
29
 
30
  # === Retrieval ===
31
  def retrieve_from_qdrant(query):
 
32
  query_vector = embedding_model.encode(query).tolist()
33
  hits = qdrant_client.search(collection_name=collection_name, query_vector=query_vector, limit=3)
 
34
  return [hit.payload for hit in hits] if hits else []
35
 
36
  # === Web Search ===
37
  def web_search_tavily(query):
 
38
  TAVILY_API_KEY = "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"
39
  response = requests.post(
40
  "https://api.tavily.com/search",
 
51
  # === DSPy Programs ===
52
  class MathRetrievalQA(dspy.Program):
53
  def forward(self, question):
 
54
  context_items = retrieve_from_qdrant(question)
55
  context = "\n".join([item["solution"] for item in context_items if "solution" in item])
 
56
  if not context:
57
+ return {"answer": "", "retrieved_context": ""}
58
  prompt = f"Question: {question}\nContext: {context}\nAnswer:"
 
 
 
59
  return {"answer": prompt, "retrieved_context": context}
60
 
 
 
61
  class WebFallbackQA(dspy.Program):
62
  def forward(self, question):
 
63
  answer = web_search_tavily(question)
 
64
  return {"answer": answer, "retrieved_context": "Tavily"}
65
 
 
66
  class MathRouter(dspy.Program):
67
  def forward(self, question):
 
68
  if not is_valid_math_question(question):
69
+ return {"answer": "โŒ Only math questions are accepted. Please rephrase.", "retrieved_context": ""}
70
  result = MathRetrievalQA().forward(question)
 
71
  return result if result["answer"] else WebFallbackQA().forward(question)
72
+
73
  router = MathRouter()
74
 
75
  # === Feedback Storage ===
 
81
  "correct_answer": correct_answer,
82
  "timestamp": str(datetime.now())
83
  }
 
84
  with open("feedback.json", "a") as f:
85
  f.write(json.dumps(entry) + "\n")
86
 
87
  # === Gradio Functions ===
88
  def ask_question(question):
 
89
  result = router.forward(question)
 
 
90
  return result["answer"], question, result["answer"]
91
 
 
92
  def submit_feedback(question, model_answer, feedback, correct_answer):
93
  store_feedback(question, model_answer, feedback, correct_answer)
94
  return "โœ… Feedback received. Thank you!"
 
96
  # === Gradio UI ===
97
  with gr.Blocks() as demo:
98
  gr.Markdown("## ๐Ÿงฎ Math Question Answering with DSPy + Feedback")
99
+
100
+ with gr.Row():
101
+ question_input = gr.Textbox(label="Enter your math question", lines=2)
102
+
103
+ answer_output = gr.Markdown()
104
+ hidden_q = gr.Textbox(visible=False)
105
+ hidden_a = gr.Textbox(visible=False)
106
 
107
+ submit_btn = gr.Button("Get Answer")
108
+ submit_btn.click(fn=ask_question, inputs=[question_input], outputs=[answer_output, hidden_q, hidden_a])
109
+
110
+ # Feedback section on same page
111
+ gr.Markdown("### ๐Ÿ’ฌ Give Feedback")
112
+ fb_correct = gr.Textbox(label="Correct Answer (optional)")
113
+ fb_like = gr.Radio(["๐Ÿ‘", "๐Ÿ‘Ž"], label="Was the answer helpful?")
114
+ fb_submit_btn = gr.Button("Submit Feedback")
115
+ fb_status = gr.Markdown()
116
+
117
+ fb_submit_btn.click(fn=submit_feedback,
118
+ inputs=[hidden_q, hidden_a, fb_like, fb_correct],
119
+ outputs=[fb_status])
 
 
 
 
 
 
 
 
 
 
120
 
121
  demo.launch(share=True, debug=True)
122
+