Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -16,10 +16,6 @@ classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnl
|
|
16 |
print("Loading embedding model...")
|
17 |
embedding_model = SentenceTransformer("intfloat/e5-large")
|
18 |
|
19 |
-
print("Loading text generation model...")
|
20 |
-
# Use a lighter model for testing
|
21 |
-
#qa_pipeline = pipeline("text-generation", model="gpt2")
|
22 |
-
|
23 |
# === Qdrant Setup ===
|
24 |
print("Connecting to Qdrant...")
|
25 |
qdrant_client = QdrantClient(path="qdrant_data")
|
@@ -29,20 +25,16 @@ collection_name = "math_problems"
|
|
29 |
def is_valid_math_question(text):
|
30 |
candidate_labels = ["math", "not math"]
|
31 |
result = classifier(text, candidate_labels)
|
32 |
-
print("Classifier result:", result)
|
33 |
return result['labels'][0] == "math" and result['scores'][0] > 0.7
|
34 |
|
35 |
# === Retrieval ===
|
36 |
def retrieve_from_qdrant(query):
|
37 |
-
print("Retrieving context from Qdrant...")
|
38 |
query_vector = embedding_model.encode(query).tolist()
|
39 |
hits = qdrant_client.search(collection_name=collection_name, query_vector=query_vector, limit=3)
|
40 |
-
print("Retrieved hits:", hits)
|
41 |
return [hit.payload for hit in hits] if hits else []
|
42 |
|
43 |
# === Web Search ===
|
44 |
def web_search_tavily(query):
|
45 |
-
print("Calling Tavily...")
|
46 |
TAVILY_API_KEY = "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"
|
47 |
response = requests.post(
|
48 |
"https://api.tavily.com/search",
|
@@ -59,36 +51,25 @@ class MathAnswer(dspy.Signature):
|
|
59 |
# === DSPy Programs ===
|
60 |
class MathRetrievalQA(dspy.Program):
|
61 |
def forward(self, question):
|
62 |
-
print("Inside MathRetrievalQA...")
|
63 |
context_items = retrieve_from_qdrant(question)
|
64 |
context = "\n".join([item["solution"] for item in context_items if "solution" in item])
|
65 |
-
print("Context for generation:", context)
|
66 |
if not context:
|
67 |
-
return
|
68 |
prompt = f"Question: {question}\nContext: {context}\nAnswer:"
|
69 |
-
print("Generating answer...")
|
70 |
-
# answer = qa_pipeline(prompt, max_new_tokens=100)[0]["generated_text"]
|
71 |
-
print("Generated answer:", prompt)
|
72 |
return {"answer": prompt, "retrieved_context": context}
|
73 |
|
74 |
-
# return dspy.Output(answer=answer, retrieved_context=context)
|
75 |
-
|
76 |
class WebFallbackQA(dspy.Program):
|
77 |
def forward(self, question):
|
78 |
-
print("Fallback to Tavily...")
|
79 |
answer = web_search_tavily(question)
|
80 |
-
# return dspy.Output(answer=answer, retrieved_context="Tavily")
|
81 |
return {"answer": answer, "retrieved_context": "Tavily"}
|
82 |
|
83 |
-
|
84 |
class MathRouter(dspy.Program):
|
85 |
def forward(self, question):
|
86 |
-
print("Routing question:", question)
|
87 |
if not is_valid_math_question(question):
|
88 |
-
return
|
89 |
result = MathRetrievalQA().forward(question)
|
90 |
-
#return result if result.answer else WebFallbackQA().forward(question)
|
91 |
return result if result["answer"] else WebFallbackQA().forward(question)
|
|
|
92 |
router = MathRouter()
|
93 |
|
94 |
# === Feedback Storage ===
|
@@ -100,19 +81,14 @@ def store_feedback(question, answer, feedback, correct_answer):
|
|
100 |
"correct_answer": correct_answer,
|
101 |
"timestamp": str(datetime.now())
|
102 |
}
|
103 |
-
print("Storing feedback:", entry)
|
104 |
with open("feedback.json", "a") as f:
|
105 |
f.write(json.dumps(entry) + "\n")
|
106 |
|
107 |
# === Gradio Functions ===
|
108 |
def ask_question(question):
|
109 |
-
print("ask_question() called with:", question)
|
110 |
result = router.forward(question)
|
111 |
-
print("Result:", result)
|
112 |
-
#return result.answer, question, result.answer
|
113 |
return result["answer"], question, result["answer"]
|
114 |
|
115 |
-
|
116 |
def submit_feedback(question, model_answer, feedback, correct_answer):
|
117 |
store_feedback(question, model_answer, feedback, correct_answer)
|
118 |
return "โ
Feedback received. Thank you!"
|
@@ -120,29 +96,27 @@ def submit_feedback(question, model_answer, feedback, correct_answer):
|
|
120 |
# === Gradio UI ===
|
121 |
with gr.Blocks() as demo:
|
122 |
gr.Markdown("## ๐งฎ Math Question Answering with DSPy + Feedback")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
gr.Markdown("### Was the answer helpful?")
|
138 |
-
fb_question = gr.Textbox(label="Original Question")
|
139 |
-
fb_answer = gr.Textbox(label="Model's Answer")
|
140 |
-
fb_like = gr.Radio(["๐", "๐"], label="Your Feedback")
|
141 |
-
fb_correct = gr.Textbox(label="Correct Answer (optional)")
|
142 |
-
fb_submit_btn = gr.Button("Submit Feedback")
|
143 |
-
fb_status = gr.Textbox(label="Status", interactive=False)
|
144 |
-
fb_submit_btn.click(fn=submit_feedback,
|
145 |
-
inputs=[fb_question, fb_answer, fb_like, fb_correct],
|
146 |
-
outputs=[fb_status])
|
147 |
|
148 |
demo.launch(share=True, debug=True)
|
|
|
|
16 |
print("Loading embedding model...")
|
17 |
embedding_model = SentenceTransformer("intfloat/e5-large")
|
18 |
|
|
|
|
|
|
|
|
|
19 |
# === Qdrant Setup ===
|
20 |
print("Connecting to Qdrant...")
|
21 |
qdrant_client = QdrantClient(path="qdrant_data")
|
|
|
25 |
def is_valid_math_question(text):
|
26 |
candidate_labels = ["math", "not math"]
|
27 |
result = classifier(text, candidate_labels)
|
|
|
28 |
return result['labels'][0] == "math" and result['scores'][0] > 0.7
|
29 |
|
30 |
# === Retrieval ===
|
31 |
def retrieve_from_qdrant(query):
|
|
|
32 |
query_vector = embedding_model.encode(query).tolist()
|
33 |
hits = qdrant_client.search(collection_name=collection_name, query_vector=query_vector, limit=3)
|
|
|
34 |
return [hit.payload for hit in hits] if hits else []
|
35 |
|
36 |
# === Web Search ===
|
37 |
def web_search_tavily(query):
|
|
|
38 |
TAVILY_API_KEY = "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"
|
39 |
response = requests.post(
|
40 |
"https://api.tavily.com/search",
|
|
|
51 |
# === DSPy Programs ===
|
52 |
class MathRetrievalQA(dspy.Program):
|
53 |
def forward(self, question):
|
|
|
54 |
context_items = retrieve_from_qdrant(question)
|
55 |
context = "\n".join([item["solution"] for item in context_items if "solution" in item])
|
|
|
56 |
if not context:
|
57 |
+
return {"answer": "", "retrieved_context": ""}
|
58 |
prompt = f"Question: {question}\nContext: {context}\nAnswer:"
|
|
|
|
|
|
|
59 |
return {"answer": prompt, "retrieved_context": context}
|
60 |
|
|
|
|
|
61 |
class WebFallbackQA(dspy.Program):
|
62 |
def forward(self, question):
|
|
|
63 |
answer = web_search_tavily(question)
|
|
|
64 |
return {"answer": answer, "retrieved_context": "Tavily"}
|
65 |
|
|
|
66 |
class MathRouter(dspy.Program):
|
67 |
def forward(self, question):
|
|
|
68 |
if not is_valid_math_question(question):
|
69 |
+
return {"answer": "โ Only math questions are accepted. Please rephrase.", "retrieved_context": ""}
|
70 |
result = MathRetrievalQA().forward(question)
|
|
|
71 |
return result if result["answer"] else WebFallbackQA().forward(question)
|
72 |
+
|
73 |
router = MathRouter()
|
74 |
|
75 |
# === Feedback Storage ===
|
|
|
81 |
"correct_answer": correct_answer,
|
82 |
"timestamp": str(datetime.now())
|
83 |
}
|
|
|
84 |
with open("feedback.json", "a") as f:
|
85 |
f.write(json.dumps(entry) + "\n")
|
86 |
|
87 |
# === Gradio Functions ===
|
88 |
def ask_question(question):
|
|
|
89 |
result = router.forward(question)
|
|
|
|
|
90 |
return result["answer"], question, result["answer"]
|
91 |
|
|
|
92 |
def submit_feedback(question, model_answer, feedback, correct_answer):
|
93 |
store_feedback(question, model_answer, feedback, correct_answer)
|
94 |
return "โ
Feedback received. Thank you!"
|
|
|
96 |
# === Gradio UI ===
|
97 |
with gr.Blocks() as demo:
|
98 |
gr.Markdown("## ๐งฎ Math Question Answering with DSPy + Feedback")
|
99 |
+
|
100 |
+
with gr.Row():
|
101 |
+
question_input = gr.Textbox(label="Enter your math question", lines=2)
|
102 |
+
|
103 |
+
answer_output = gr.Markdown()
|
104 |
+
hidden_q = gr.Textbox(visible=False)
|
105 |
+
hidden_a = gr.Textbox(visible=False)
|
106 |
|
107 |
+
submit_btn = gr.Button("Get Answer")
|
108 |
+
submit_btn.click(fn=ask_question, inputs=[question_input], outputs=[answer_output, hidden_q, hidden_a])
|
109 |
+
|
110 |
+
# Feedback section on same page
|
111 |
+
gr.Markdown("### ๐ฌ Give Feedback")
|
112 |
+
fb_correct = gr.Textbox(label="Correct Answer (optional)")
|
113 |
+
fb_like = gr.Radio(["๐", "๐"], label="Was the answer helpful?")
|
114 |
+
fb_submit_btn = gr.Button("Submit Feedback")
|
115 |
+
fb_status = gr.Markdown()
|
116 |
+
|
117 |
+
fb_submit_btn.click(fn=submit_feedback,
|
118 |
+
inputs=[hidden_q, hidden_a, fb_like, fb_correct],
|
119 |
+
outputs=[fb_status])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
demo.launch(share=True, debug=True)
|
122 |
+
|