Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import dspy
|
3 |
+
import torch
|
4 |
+
import requests
|
5 |
+
from transformers import pipeline
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
from qdrant_client import QdrantClient
|
8 |
+
from datetime import datetime
|
9 |
+
import json
|
10 |
+
|
11 |
+
# === Load Models ===
|
12 |
+
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
13 |
+
embedding_model = SentenceTransformer("intfloat/e5-large")
|
14 |
+
qa_pipeline = pipeline("text-generation", model="WizardLM/WizardMath-7B-V1.0", device_map="auto", torch_dtype=torch.float16)
|
15 |
+
|
16 |
+
# === Qdrant Setup ===
|
17 |
+
qdrant_client = QdrantClient(path="qdrant_data")
|
18 |
+
collection_name = "math_problems"
|
19 |
+
|
20 |
+
# === Guard Function ===
|
21 |
+
def is_valid_math_question(text):
|
22 |
+
candidate_labels = ["math", "not math"]
|
23 |
+
result = classifier(text, candidate_labels)
|
24 |
+
return result['labels'][0] == "math" and result['scores'][0] > 0.7
|
25 |
+
|
26 |
+
# === Retrieval ===
|
27 |
+
def retrieve_from_qdrant(query):
|
28 |
+
query_vector = embedding_model.encode(query).tolist()
|
29 |
+
hits = qdrant_client.search(collection_name=collection_name, query_vector=query_vector, limit=3)
|
30 |
+
return [hit.payload for hit in hits] if hits else []
|
31 |
+
|
32 |
+
# === Web Search ===
|
33 |
+
def web_search_tavily(query):
|
34 |
+
TAVILY_API_KEY = "your_tavily_api_key"
|
35 |
+
response = requests.post(
|
36 |
+
"https://api.tavily.com/search",
|
37 |
+
json={"api_key": TAVILY_API_KEY, "query": query, "search_depth": "advanced"},
|
38 |
+
)
|
39 |
+
return response.json().get("answer", "No answer found from Tavily.")
|
40 |
+
|
41 |
+
# === DSPy Signature ===
|
42 |
+
class MathAnswer(dspy.Signature):
|
43 |
+
question = dspy.InputField()
|
44 |
+
retrieved_context = dspy.InputField()
|
45 |
+
answer = dspy.OutputField()
|
46 |
+
|
47 |
+
# === DSPy Programs ===
|
48 |
+
class MathRetrievalQA(dspy.Program):
|
49 |
+
def forward(self, question):
|
50 |
+
context_items = retrieve_from_qdrant(question)
|
51 |
+
context = "\n".join([item["solution"] for item in context_items if "solution" in item])
|
52 |
+
if not context:
|
53 |
+
return dspy.Output(answer="", retrieved_context="")
|
54 |
+
prompt = f"Question: {question}\nContext: {context}\nAnswer:"
|
55 |
+
answer = qa_pipeline(prompt, max_new_tokens=512)[0]["generated_text"]
|
56 |
+
return dspy.Output(answer=answer, retrieved_context=context)
|
57 |
+
|
58 |
+
class WebFallbackQA(dspy.Program):
|
59 |
+
def forward(self, question):
|
60 |
+
answer = web_search_tavily(question)
|
61 |
+
return dspy.Output(answer=answer, retrieved_context="Tavily")
|
62 |
+
|
63 |
+
class MathRouter(dspy.Program):
|
64 |
+
def forward(self, question):
|
65 |
+
if not is_valid_math_question(question):
|
66 |
+
return dspy.Output(answer="โ Only math questions are accepted. Please rephrase.", retrieved_context="")
|
67 |
+
result = MathRetrievalQA().forward(question)
|
68 |
+
return result if result.answer else WebFallbackQA().forward(question)
|
69 |
+
|
70 |
+
router = MathRouter()
|
71 |
+
|
72 |
+
# === Feedback Storage ===
|
73 |
+
def store_feedback(question, answer, feedback, correct_answer):
|
74 |
+
entry = {
|
75 |
+
"question": question,
|
76 |
+
"model_answer": answer,
|
77 |
+
"feedback": feedback,
|
78 |
+
"correct_answer": correct_answer,
|
79 |
+
"timestamp": str(datetime.now())
|
80 |
+
}
|
81 |
+
with open("feedback.json", "a") as f:
|
82 |
+
f.write(json.dumps(entry) + "\n")
|
83 |
+
|
84 |
+
# === Gradio Functions ===
|
85 |
+
def ask_question(question):
|
86 |
+
result = router.forward(question)
|
87 |
+
return result.answer, question, result.answer
|
88 |
+
|
89 |
+
def submit_feedback(question, model_answer, feedback, correct_answer):
|
90 |
+
store_feedback(question, model_answer, feedback, correct_answer)
|
91 |
+
return "โ
Feedback received. Thank you!"
|
92 |
+
|
93 |
+
# === Gradio UI ===
|
94 |
+
with gr.Blocks() as demo:
|
95 |
+
gr.Markdown("## ๐งฎ Math Question Answering with DSPy + Feedback")
|
96 |
+
|
97 |
+
with gr.Tab("Ask a Math Question"):
|
98 |
+
with gr.Row():
|
99 |
+
question_input = gr.Textbox(label="Enter your math question", lines=2)
|
100 |
+
answer_output = gr.Markdown(label="Answer")
|
101 |
+
hidden_q = gr.Textbox(visible=False)
|
102 |
+
hidden_a = gr.Textbox(visible=False)
|
103 |
+
submit_btn = gr.Button("Get Answer")
|
104 |
+
submit_btn.click(fn=ask_question, inputs=[question_input], outputs=[answer_output, hidden_q, hidden_a])
|
105 |
+
|
106 |
+
with gr.Tab("Submit Feedback"):
|
107 |
+
gr.Markdown("### Was the answer helpful?")
|
108 |
+
fb_question = gr.Textbox(label="Original Question")
|
109 |
+
fb_answer = gr.Textbox(label="Model's Answer")
|
110 |
+
fb_like = gr.Radio(["๐", "๐"], label="Your Feedback")
|
111 |
+
fb_correct = gr.Textbox(label="Correct Answer (optional)")
|
112 |
+
fb_submit_btn = gr.Button("Submit Feedback")
|
113 |
+
fb_status = gr.Textbox(label="Status", interactive=False)
|
114 |
+
fb_submit_btn.click(fn=submit_feedback,
|
115 |
+
inputs=[fb_question, fb_answer, fb_like, fb_correct],
|
116 |
+
outputs=[fb_status])
|
117 |
+
|
118 |
+
demo.launch()
|