Spaces:
Build error
Build error
Upload 5 files
Browse files- app.py +69 -0
- categories.txt +101 -0
- model.py +33 -0
- pretrain_vit.pth +3 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### 1. Imports and class names setup ###
|
2 |
+
import gradio as gr
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from model import create_vit_model
|
7 |
+
from timeit import default_timer as timer
|
8 |
+
from typing import Tuple, Dict
|
9 |
+
|
10 |
+
# Setup class names
|
11 |
+
with open("categories.txt", "r") as f:
|
12 |
+
class_names = [food_name.strip() for food_name in f.readlines()]
|
13 |
+
|
14 |
+
### 2. Model and transforms preparation ###
|
15 |
+
|
16 |
+
# Create model
|
17 |
+
vit, vit_transforms = create_vit_model(
|
18 |
+
num_classes=len(class_names),
|
19 |
+
)
|
20 |
+
|
21 |
+
# Load saved weights
|
22 |
+
vit.load_state_dict(
|
23 |
+
torch.load(
|
24 |
+
f="pretrain_vit.pth",
|
25 |
+
map_location=torch.device('cpu')
|
26 |
+
)
|
27 |
+
)
|
28 |
+
|
29 |
+
### 3. Predict function ###
|
30 |
+
|
31 |
+
# Create predict function
|
32 |
+
def predict(img) -> Tuple[Dict, float]:
|
33 |
+
"""Transforms and performs a prediction on img and returns prediction and time taken.
|
34 |
+
"""
|
35 |
+
# Start the timer
|
36 |
+
start_time = timer()
|
37 |
+
|
38 |
+
# Transform the target image and add a batch dimension
|
39 |
+
img = vit_transforms(img).unsqueeze(0)
|
40 |
+
|
41 |
+
# Put model into evaluation mode and turn on inference mode
|
42 |
+
vit.eval()
|
43 |
+
with torch.inference_mode():
|
44 |
+
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities
|
45 |
+
pred_probs = torch.softmax(vit(img), dim=1)
|
46 |
+
|
47 |
+
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
|
48 |
+
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
|
49 |
+
|
50 |
+
# Calculate the prediction time
|
51 |
+
pred_time = round(timer() - start_time, 5)
|
52 |
+
|
53 |
+
# Return the prediction dictionary and prediction time
|
54 |
+
return pred_labels_and_probs, pred_time
|
55 |
+
|
56 |
+
### 4. Gradio app ###
|
57 |
+
|
58 |
+
# Create Gradio interface
|
59 |
+
demo = gr.Interface(
|
60 |
+
fn=predict,
|
61 |
+
inputs=gr.Image(type="pil"),
|
62 |
+
outputs=[
|
63 |
+
gr.Label(num_top_classes=5, label="Predictions"),
|
64 |
+
gr.Number(label="Prediction time (s)"),
|
65 |
+
],
|
66 |
+
)
|
67 |
+
|
68 |
+
# Launch the app!
|
69 |
+
demo.launch()
|
categories.txt
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
apple_pie
|
2 |
+
baby_back_ribs
|
3 |
+
baklava
|
4 |
+
beef_carpaccio
|
5 |
+
beef_tartare
|
6 |
+
beet_salad
|
7 |
+
beignets
|
8 |
+
bibimbap
|
9 |
+
bread_pudding
|
10 |
+
breakfast_burrito
|
11 |
+
bruschetta
|
12 |
+
caesar_salad
|
13 |
+
cannoli
|
14 |
+
caprese_salad
|
15 |
+
carrot_cake
|
16 |
+
ceviche
|
17 |
+
cheese_plate
|
18 |
+
cheesecake
|
19 |
+
chicken_curry
|
20 |
+
chicken_quesadilla
|
21 |
+
chicken_wings
|
22 |
+
chocolate_cake
|
23 |
+
chocolate_mousse
|
24 |
+
churros
|
25 |
+
clam_chowder
|
26 |
+
club_sandwich
|
27 |
+
crab_cakes
|
28 |
+
creme_brulee
|
29 |
+
croque_madame
|
30 |
+
cup_cakes
|
31 |
+
deviled_eggs
|
32 |
+
donuts
|
33 |
+
dumplings
|
34 |
+
edamame
|
35 |
+
eggs_benedict
|
36 |
+
escargots
|
37 |
+
falafel
|
38 |
+
filet_mignon
|
39 |
+
fish_and_chips
|
40 |
+
foie_gras
|
41 |
+
french_fries
|
42 |
+
french_onion_soup
|
43 |
+
french_toast
|
44 |
+
fried_calamari
|
45 |
+
fried_rice
|
46 |
+
frozen_yogurt
|
47 |
+
garlic_bread
|
48 |
+
gnocchi
|
49 |
+
greek_salad
|
50 |
+
grilled_cheese_sandwich
|
51 |
+
grilled_salmon
|
52 |
+
guacamole
|
53 |
+
gyoza
|
54 |
+
hamburger
|
55 |
+
hot_and_sour_soup
|
56 |
+
hot_dog
|
57 |
+
huevos_rancheros
|
58 |
+
hummus
|
59 |
+
ice_cream
|
60 |
+
lasagna
|
61 |
+
lobster_bisque
|
62 |
+
lobster_roll_sandwich
|
63 |
+
macaroni_and_cheese
|
64 |
+
macarons
|
65 |
+
miso_soup
|
66 |
+
mussels
|
67 |
+
nachos
|
68 |
+
omelette
|
69 |
+
onion_rings
|
70 |
+
oysters
|
71 |
+
pad_thai
|
72 |
+
paella
|
73 |
+
pancakes
|
74 |
+
panna_cotta
|
75 |
+
peking_duck
|
76 |
+
pho
|
77 |
+
pizza
|
78 |
+
pork_chop
|
79 |
+
poutine
|
80 |
+
prime_rib
|
81 |
+
pulled_pork_sandwich
|
82 |
+
ramen
|
83 |
+
ravioli
|
84 |
+
red_velvet_cake
|
85 |
+
risotto
|
86 |
+
samosa
|
87 |
+
sashimi
|
88 |
+
scallops
|
89 |
+
seaweed_salad
|
90 |
+
shrimp_and_grits
|
91 |
+
spaghetti_bolognese
|
92 |
+
spaghetti_carbonara
|
93 |
+
spring_rolls
|
94 |
+
steak
|
95 |
+
strawberry_shortcake
|
96 |
+
sushi
|
97 |
+
tacos
|
98 |
+
takoyaki
|
99 |
+
tiramisu
|
100 |
+
tuna_tartare
|
101 |
+
waffles
|
model.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision
|
3 |
+
|
4 |
+
from torch import nn
|
5 |
+
|
6 |
+
|
7 |
+
def create_vit_model(num_classes:int=3,
|
8 |
+
seed:int=42):
|
9 |
+
"""Creates a ViT-B/16 feature extractor model and transforms.
|
10 |
+
|
11 |
+
Args:
|
12 |
+
num_classes (int, optional): number of target classes. Defaults to 3.
|
13 |
+
seed (int, optional): random seed value for output layer. Defaults to 42.
|
14 |
+
|
15 |
+
Returns:
|
16 |
+
model (torch.nn.Module): ViT-B/16 feature extractor model.
|
17 |
+
transforms (torchvision.transforms): ViT-B/16 image transforms.
|
18 |
+
"""
|
19 |
+
# Create ViT_B_16 pretrained weights, transforms and model
|
20 |
+
weights = torchvision.models.ViT_B_16_Weights.DEFAULT
|
21 |
+
transforms = weights.transforms()
|
22 |
+
model = torchvision.models.vit_b_16(weights=weights)
|
23 |
+
|
24 |
+
# Freeze all layers in model
|
25 |
+
for param in model.parameters():
|
26 |
+
param.requires_grad = False
|
27 |
+
|
28 |
+
# Change classifier head to suit our needs (this will be trainable)
|
29 |
+
torch.manual_seed(seed)
|
30 |
+
model.heads = nn.Sequential(nn.Linear(in_features=768, # keep this the same as original model
|
31 |
+
out_features=num_classes)) # update to reflect target number of classes
|
32 |
+
|
33 |
+
return model, transforms
|
pretrain_vit.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5e4a7d9c4f83e5c4a7a5cb460e5f4be60c58835f5c47508593bae9e54d31f9
|
3 |
+
size 343565971
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch==1.13.0
|
2 |
+
torchvision==0.14.0
|
3 |
+
gradio==3.11.0
|